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Abstract

Background: Emergency triage accuracy is critical but varies with clinician experience, cognitive load, and case complexity.
Mis-triage can delay care for high-risk patients and exacerbate crowding through unnecessary prioritization. Large language
models (LLMs) show promise as triage decision-support tools but are vulnerable to hallucinations. Retrieval-augmented generation
(RAG) may improve reliability by grounding LLM reasoning in authoritative guidelines and real clinical cases.

Objective: This study aimed to evaluate whether a dual-source RAG system that integrates guideline- and case-based evidence
improves emergency triage performance versus a baseline LLM and to assess how closely its urgency assignments align with
expert consensus and outcome-defined clinical severity.

Methods: We developed a dual-source RAG system—Multi-Evidence Clinical Reasoning RAG (MECR-RAG)—that retrieves
sections from the Hong Kong Accident and Emergency Triage Guidelines (HKAETG) and cases from a database of 3000
emergency department triage encounters. In a retrospective single-center evaluation, MECR-RAG and a prompt-only baseline
LLM (both DeepSeek-V3) were tested on 236 routine triage encounters to predict 5-level triage categories. Expert consensus
reference labels were assigned by blinded senior triage nurses. Primary outcomes were quadratic weighted kappa (QWK) and
accuracy versus consensus labels. Secondary analyses examined performance within 3 operationally and clinically relevant triage
bands—immediate (categories 1 and 2), urgent (category 3), and nonurgent (categories 4 and 5). In 226 encounters with follow-up,
we also assigned outcome-based severity tiers (R1-R3) using a published 3-level urgency reference standard and defined a
disposition-safety composite.

Results: MECR-RAG achieved a mean QWK of 0.902 (SD 0.0021; 95% CI 0.901-0.904) and accuracy of 0.802 (SD 0.0082;
95% CI 0.795-0.808), outperforming the baseline LLM (QWK 0.801, SD 0.004; accuracy 0.542, SD 0.0073; both P<.001) and
demonstrating expert-comparable agreement with triage nurses (interrater QWK 0.887). In 3-group analysis, MECR-RAG reduced
overtriage from 68/236 (28.8%) with the baseline LLM to 30/236 (12.7%) and maintained low undertriage from 4/236 (1.7%) to
3/236 (1.3%), with the largest gains in the diagnostically ambiguous yet operationally important categories 3 and 4. In a secondary
outcome-based analysis defining high-severity courses as R1+R2, MECR-RAG detected high-risk patients more sensitively than
initial nurse triage (124/130, 95.4% vs 117/130, 90.0%; P=.02) while maintaining nurse-level specificity. MECR-RAG yielded
the lowest weighted harm index (13.7, 19.5, and 20.3 per 100 patients for MECR-RAG, nurses, and the baseline LLM, respectively).

Conclusions: A dual-source RAG triage system that combines guideline-based rules with case-based reasoning achieved
expert-comparable agreement, reduced overtriage, and better aligned urgency assignments than a prompt-only baseline LLM.
Secondary outcome–based analyses in this cohort suggested more favorable triage patterns than initial nurse triage, supporting
MECR-RAG as a concurrent decision-support layer that flags discordant or high-risk assignments; prospective multicenter
implementation studies are needed to determine effects on emergency department crowding, delays, and patient outcomes.
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Introduction

Emergency triage is a critical step in emergency department
(ED) operations, determining which patients are seen first when
demand exceeds capacity. However, triage accuracy varies with
clinicians’ experience, cognitive load, and the complexity of
presenting symptoms, and even trained nurses may misclassify
a substantial minority of encounters [1,2]. Undertriage risks
delayed recognition of life-threatening illness and preventable
morbidity or mortality, whereas overtriage diverts scarce
resources toward lower-acuity patients and can exacerbate ED
crowding and boarding, both of which are associated with worse
outcomes [2]. These challenges are particularly pronounced in
mid-acuity categories, which represent most ED visits and where
small changes in urgency assignment can translate into large
differences in waiting time, crowding pressure, and exposure
to harm.

Large language models (LLMs) have emerged as potential tools
for clinical decision support because they can interpret free-text
notes, integrate medical knowledge, and generate structured
recommendations. In emergency care, LLMs have been tested
for triage on simulated vignettes and curated cases, but reported
performance has been highly variable, with agreement with
human raters (Cohen κ) ranging from 0.125 to 0.899 across
models, datasets, and evaluation frameworks [3-8]. A
fundamental limitation of current “prompt-only” LLMs is their
tendency to hallucinate, generating outputs that appear plausible
but are factually incorrect or unsupported [9]. In emergency
triage, such hallucinations may lead to urgency levels being
assigned based on fabricated reasoning, outdated rules, or
misinterpretation of presenting complaints, posing potential
risks to patient safety and consistency.

Retrieval-augmented generation (RAG) has been proposed as
a way to mitigate hallucinations by grounding LLM outputs in
external, task-specific knowledge sources such as clinical
guidelines, textbooks, electronic health records, and biomedical
literature [10-12]. By retrieving relevant evidence at inference
time and conditioning generation on that material, RAG can
improve access to current, domain-specific knowledge and make
model reasoning more transparent. Early work in emergency
care has shown that adding retrieval can improve triage or
referral accuracy compared with nonretrieval models. Yazaki
et al [13] integrated RAG with a triage guideline database and
tested GPT-3.5 on 100 structured, simulated scenarios derived
from the Japanese National Examination for Emergency Medical
Technicians, finding that the RAG-enhanced model achieved
70/100 (70%) accuracy and outperformed both emergency
medical technicians and physicians. Gaber et al [14] used a
curated dataset of 2000 real-world ED cases from the MIMIC-IV
(Medical Information Mart for Intensive Care IV) database and
retrieved evidence from a corpus of 30,000 PubMed abstracts,
demonstrating superior triage-level prediction and exact-match
accuracy compared with nonretrieval workflows.

Despite these advances, existing applications of RAG to
emergency triage and referral have important gaps. One study
relied largely on textbook-style, simulated examination cases
[13], whereas another used routine labels from structured
research datasets without clinician-adjudicated ground truth
[14]. In both studies, RAG was applied to a single knowledge
source—either structured triage guidelines or biomedical
literature—rather than explicitly combining protocol-based rules
with experiential knowledge from prior cases.

To our knowledge, no prior work has evaluated a dual-source
RAG system that jointly retrieves local triage guidelines and
real-world past triage cases, or directly compared such a system
with a prompt-only LLM using raw, unstructured triage
documentation paired with a blinded expert consensus reference
standard and outcome-based validity checks. This design better
captures the complexity and variability of real-world practice
and strengthens the translational relevance of performance
estimates.

There is also growing recognition that agreement with human
labels alone is an incomplete measure of triage quality. Large
cohort studies of systems such as the Emergency Severity Index
(ESI) and the Manchester Triage System (MTS) have shown
that nurse-assigned categories can underestimate or overestimate
“true” acuity when judged against downstream outcomes such
as hospitalization, intensive care unit (ICU) transfer, revisits,
and short-term mortality [15-17]. In parallel, a Journal of the
American Medical Association (JAMA) editorial on artificial
intelligence (AI) in medicine has argued that evaluations of AI
tools should prioritize clinically meaningful outcomes,
patient-centered care, quality, and equity rather than focusing
solely on narrow technical accuracy metrics [18]. Accordingly,
evaluations of LLM-enabled triage should explicitly examine
how assigned urgency levels align with downstream clinical
severity and sentinel safety events, rather than treating
concordance with nurse labels as sufficient.

In this context, we developed a dual-source RAG
system—Multi-Evidence Clinical Reasoning RAG
(MECR-RAG)—that retrieves both structured local triage
guidelines (Hong Kong Accident and Emergency Triage
Guidelines [HKAETG]) and analogous past triage cases and
applies a structured Multi-Evidence Clinical Reasoning (MECR)
framework to assign 5-level urgency categories. We
retrospectively evaluated MECR-RAG on real ED triage notes,
benchmarking it against a prompt-only baseline LLM and
against expert nurse consensus labels. Our primary aim was to
determine whether a dual-source RAG triage system
(MECR-RAG) improves 5-level triage accuracy and agreement
(quadratic weighted κ and accuracy) with expert nurse consensus
compared with a prompt-only baseline LLM and to benchmark
its performance against expert triage nurses. We hypothesized
that MECR-RAG would achieve higher agreement than the
baseline LLM and noninferior agreement relative to expert
nurses. As a secondary aim, in a subset with follow-up data, we
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assessed outcome-informed validity by examining how
MECR-RAG, the baseline LLM, and initial nurse triage aligned
with downstream clinical severity tiers and a composite of
sentinel safety outcomes. This early-phase, single-center
evaluation, reported in accordance with TRIPOD-LLM
(Transparent Reporting of a multivariable prediction model for
Individual Prognosis Or Diagnosis - Large Language Models)
[19], is intended to provide a methodologically rigorous
foundation for future prospective and implementation studies
of RAG-enhanced triage decision-support systems designed to
augment, rather than replace, nurse-led triage.

Methods

Study Design and Setting
This study was a retrospective, proof-of-concept evaluation of
a RAG-enhanced LLM for ED triage classification. The primary
objective was to compare the performance of an RAG-based
LLM that referenced both historical case data and the HKAETG
against a prompt-only baseline LLM in assigning triage urgency
levels.

The HKAETG is a 5-level triage system implemented across
all 18 government-funded public EDs in Hong Kong. Its
structure is conceptually aligned with other internationally
recognized systems such as the MTS and ESI. Under the
HKAETG, patients are assigned to 1 of 5 categories based on
clinical urgency and time-to-treatment targets: category 1
(critical, 0 minutes), category 2 (emergency, 10 minutes),
category 3 (urgent, 30 minutes), category 4 (semiurgent, 120
minutes), and category 5 (nonurgent, 180 minutes).

All study data were sourced from a single center, Princess
Margaret Hospital (PMH), a major acute public hospital in Hong
Kong and one of the city’s largest tertiary care facilities. PMH
operates a 24-hour ED and manages a high volume of complex
and time-sensitive cases. In 2023 and 2024, the ED recorded
113,974 and 110,812 visits, respectively, highlighting its central
role in emergency care delivery.

Pilot Study, Sample Size Calculation, and Model
Selection
Before the main evaluation, we conducted a pilot study to inform
model selection, prompting strategy, and sample size estimation.
We randomly sampled 1000 ED triage cases from December
2024; 200 cases were used for pilot testing, and the remaining
800 cases were reserved to simulate a retrieval database. All
pilot cases were excluded from the final study.

Three commercially available LLMs (DeepSeek-V3, GPT-4o,
and Claude 3.7 Sonnet) were compared in both prompt-only
and RAG configurations, with performance assessed against
clinician-assigned triage labels using quadratic weighted kappa
(QWK) and accuracy. Across models, performance was
statistically similar in this pilot. DeepSeek-V3 was therefore
selected as the backbone model for the main study primarily on
the basis of its inference cost, application programming interface
(API) accessibility, and comparable pilot performance.

In the pilot setting, the MECR-RAG configuration achieved an
approximate QWK of 0.75 compared with 0.50 for the

prompt-only baseline. Using the formula for comparing 2 kappa
coefficients described by Fleiss, with α=.05 and power=.80
[20], the minimum required sample size to detect this difference
was 48 cases. We nevertheless included 236 consensus-labeled
triage cases in the final study to improve the precision of
performance estimates and enhance generalizability.

Data Sources and Participants
The test set comprised ED triage cases collected at PMH
between January 1 and December 31, 2023. All ED visits during
this period were eligible regardless of age, sex, or presenting
problem. To ensure temporal representativeness and reflect
real-world variation in case mix, we used a stratified sampling
strategy in which 1 calendar day was randomly selected from
each month and 20 cases were sampled from that day. Within
each sampled day, triage categories were sampled to
approximate overall category distributions while modestly
oversampling rare categories to improve precision for
high-acuity strata. Four cases were excluded because
case-number identification errors prevented data retrieval,
yielding a final test set of 236 triage cases.

Reference labels were assigned using a blinded, multirater
consensus process. Two advanced practice nurses with more
than 10 years of emergency experience independently reviewed
each case. Raters were blinded to the original nurse-assigned
triage category and saw only information available at the time
of triage: presenting complaint, condition on arrival, vital signs,
and relevant past medical history when documented.
Downstream data, including investigations, diagnoses,
treatments, and ward progress, were withheld so that labels
reflected only the initial triage decision context and matched
the information provided to the LLMs. Disagreements were
adjudicated by a third senior triage nurse to obtain a final
consensus category for each encounter.

For retrieval, we constructed a separate database of 3000
anonymized ED visits to PMH between January 1 and December
31, 2024. All encounters in 2024 were eligible, with no clinical
exclusion criteria, to preserve the natural diversity of
documentation and presentations. Days were randomly sampled
from each month, and cases were then drawn from those days
to achieve broad temporal coverage; modest oversampling of
rare triage categories (categories 1, 2, and 5) ensured sufficient
representation while maintaining the real-world skew toward
categories 3 and 4. The final database contained 94/3000 (3.1%)
category 1, 120/3000 (4.0%) category 2, 1705/3000 (57.0%)
category 3, 1035/3000 (34.5%) category 4, and 46/3000 (1.5%)
category 5 encounters, with detailed monthly and
category-specific sampling shown in Table S1 in Multimedia
Appendix 1. To stress-test temporal robustness and reduce bias
from contemporaneous documentation habits, 2023 test cases
were evaluated against a 2024 retrieval database using the same
triage guideline version; the full rationale is provided in Textbox
S1 in Multimedia Appendix 1.

Preprocessing
Raw, unstructured triage documentation for both test cases and
retrieval-database cases was exported from the electronic
medical record, deidentified, and converted into a structured,
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machine-readable text format. We retained only nurse-entered
information available at the time of triage (eg, demographics,
presenting complaint, condition on arrival, vital signs, and
relevant past medical history) and excluded any downstream
assessments, investigations, treatments, and outcomes. The
latest version of the HKAETG (version 6, revised 2022) was
similarly digitized and segmented into retrievable guideline
sections. Both triage notes and guideline sections were then
processed for semantic retrieval; further preprocessing and
summarization details are provided in Textbox S2 in Multimedia
Appendix 1.

LLM and RAG System Description
For all primary analyses, we used DeepSeek-V3 as the base
LLM, accessed via a commercial API without any additional
fine-tuning or architectural modification. In what follows, we
refer to the DeepSeek-V3 model without retrieval as the
“baseline LLM” and the dual-source retrieval-augmented
configuration as MECR-RAG. Within each experimental
configuration, the same LLM instance handled all stages of the
pipeline (preprocessing, retrieval, and generation) with
deterministic generation (temperature=0) to minimize stochastic
variability. A separate embedding model was used to generate
vector representations for semantic retrieval, and the same
embedding configuration was applied during database
construction and at query time to ensure consistency.

The pipeline was implemented in Python and executed on a
standard desktop workstation without graphics processing unit
acceleration. End-to-end processing time for the full
MECR-RAG configuration was approximately 1 minute per

case, including preprocessing, retrieval, and triage prediction,
suggesting that near-real-time decision support would be
technically feasible. Detailed model versions, libraries, and
runtime benchmarks are provided in Section A1 in Multimedia
Appendix 1.

MECR-RAG System Architecture
The MECR-RAG system follows a 5-stage pipeline designed
to mirror how expert triage nurses combine protocol knowledge
with experiential reasoning. First, the raw triage note is
summarized into a concise, structured representation optimized
for retrieval. Second, the model selects the most relevant
sections of the HKAETG using an agentic reasoning step that
prioritizes life-threatening conditions and documented
physiologic abnormalities. Third, the system predicts the most
likely attending specialty (eg, medicine, surgery, and
orthopedics) to constrain subsequent case retrieval. Fourth, a
hybrid retrieval module identifies similar past triage cases by
combining metadata filters (age group and predicted specialty)
with vector similarity search. Finally, the model applies a
structured, MECR prompt that integrates guideline excerpts,
retrieved cases, and the index presentation to assign a 5-level
urgency category and provide a textual rationale.

The overall architecture is orchestrated using a modular,
node-based workflow that preserves intermediate states, supports
full audit trails, and enables systematic component ablation. A
schematic overview of the MECR-RAG pipeline is shown in
Figure 1, and additional implementation details are provided in
Section A2 in Multimedia Appendix 1.

Figure 1. Overview of the Multi-Evidence Clinical Reasoning retrieval-augmented generation system architecture. MECR-RAG: Multi-Evidence
Clinical Reasoning retrieval-augmented generation.

The MECR-RAG pipeline consists of 5 sequential processing
stages: clinical case summarization, agentic guideline section
selection, specialty prediction for metadata filtering, hybrid
past-case retrieval combining metadata and vector similarity
search, and multievidence reasoning for the final triage
assessment. LangGraph nodes manage state transitions and data
flow throughout the pipeline.

Indexing and Database Construction
To support efficient retrieval, both historical triage cases and
guideline content were converted into structured,
machine-readable representations and indexed in a vector
database. Historical cases were transformed into standardized
triage-time summaries that captured presenting complaints, key
vital signs, and brief clinical context, while preserving links to
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metadata such as age group, triage category, and attending
specialty. The same summarization template was applied to
both database cases and incoming test cases to ensure that
queries and indexed documents occupied a comparable
embedding space.

The HKAETG document was similarly segmented into discrete
sections and summarized to highlight the spectrum of
presentations covered by each rule set. Each guideline section
was stored with a short synopsis and structural metadata (eg,
system, chief complaint, and red-flag criteria) to facilitate
targeted retrieval during triage. The combined indexing strategy
was designed to balance retrieval quality, computational
efficiency, and scalability to larger case repositories. Details of
prompt templates, sectioning rules, and indexing parameters
are described in Section A3 in Multimedia Appendix 1.

Retrieval System Design
The retrieval layer implements a dual-source strategy that
distinguishes authoritative protocol knowledge from experiential
case patterns. Guideline retrieval is performed via an agentic
selection step: given the summarized index case and a list of
guideline section titles and synopses, the LLM selects up to 2
sections it deems most relevant, explicitly favoring conditions
associated with high short-term risk or abnormal vital signs.
This approach avoids purely lexical matching and aligns
guideline selection more closely with clinical reasoning.

Past-case retrieval uses a multistage, hybrid approach. The
model first predicts 1 or 2 likely specialties using
triage-available information only, then filters the case database
by age group and specialty to construct a clinically plausible
candidate pool. Within this subset, vector similarity search
identifies the closest matches based on the summarized clinical
text. A small number of top-ranked cases are returned, along
with similarity scores and metadata, for use in the final reasoning
step. Similarity thresholds, top-k values, and fallback strategies
were chosen empirically and are reported in Section A4 in
Multimedia Appendix 1.

Generation and Prompting Strategy
The generation stage uses an MECR prompt that extends
conventional chain-of-thought reasoning for the specific
demands of triage. Rather than a single undifferentiated
reasoning path, the prompt enforces a 3-tier structure: (1) a
clinical risk assessment aligned with formal triage category
definitions, (2) integration of condition-specific
recommendations from the retrieved HKAETG sections, and
(3) comparison with retrieved past cases to identify contextual
factors that may support escalation or de-escalation (eg, frailty,
social circumstances, and borderline physiology). Each evidence
source produces an independent provisional triage
recommendation.

The model is then instructed to reconcile these recommendations
into a single final category, explicitly justifying the choice and
indicating which sources carried the most weight. Outputs
include the predicted triage category, a structured explanation,
and a coarse confidence label (high, medium, or low), enabling
clinicians to audit the reasoning process and gauge when

additional scrutiny is warranted. The complete MECR prompt
details are provided in Section A5 in Multimedia Appendix 1.

Ablation Configurations
To isolate the contribution of individual retrieval components,
we implemented 3 reduced configurations alongside the full
MECR-RAG system. The baseline configuration used the same
triage definition table and reasoning structure but removed all
retrieval, relying only on the index case description. The
guideline-only configuration added agentic guideline selection
but did not use past-case retrieval, whereas the case-only
configuration retrieved similar past cases without guideline
sections. In all ablation variants, preprocessing steps, LLM
model, and evaluation procedures were held constant to ensure
that performance differences could be attributed to the presence
or absence of specific retrieval sources rather than to
implementation artifacts. The details are provided in Section
A6 in Multimedia Appendix 1.

Outcome Definition and Label-Based Evaluation
The primary outcome was the 5-level triage category (categories
1-5) predicted by each LLM configuration, compared with
consensus labels assigned by expert triage nurses. Two
configurations were evaluated: the MECR-RAG system, which
incorporated both the HKAETG and retrieval of past triage
cases, and a prompt-only baseline model with no retrieval
component. Model outputs were assessed against the final
adjudicated triage category for each case.

The primary performance metric was QWK, chosen because it
accounts for the ordinal nature of triage categories and penalizes
larger discrepancies more heavily, in line with their greater
clinical consequence. Overall accuracy was reported as a
complementary measure summarizing the proportion of exact
matches between model predictions and consensus labels.

To provide a more clinically grounded view of performance,
we also calculated precision, recall, and F1-score for each triage
category and for a post hoc grouping of triage levels into 3
urgency bands: immediate (categories 1 and 2), urgent (category
3), and nonurgent (categories 4 and 5). This mapping reflects
local operational workflows, in which small changes in urgency
assignment can translate into large differences in waiting time
and risk exposure. These group-level metrics were used to
characterize overtriage and undertriage patterns beyond
aggregate QWK and accuracy estimates.

Because LLM outputs are probabilistic, all primary comparisons
between MECR-RAG and the baseline LLM were repeated
across 5 independent runs using identical test cases, prompts,
retrieval databases, and API settings. For these analyses, we
summarized performance as mean values with 95% CIs
calculated across runs. For analyses based on a single
representative run—for example, evaluations using the
median-performing prediction set or post hoc subgroup
comparisons—95% CIs were obtained via nonparametric
case-level bootstrapping (1000 resamples). The specific CI
method used is reported alongside each result, and full
resampling details are provided in Textbox S3 in Multimedia
Appendix 1.
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Secondary Outcome-Based Validity Analysis
Because there is no universally accepted gold standard for “true”
acuity at ED presentation, triage tools are typically judged
against surrogate outcomes such as hospitalization, ICU
admission, revisits, and short-term mortality [15,16]. Large
observational studies have shown that nurse-assigned categories
can substantially underestimate or overestimate severity, with
mis-triage affecting up to one-third of patients in some cohorts
[17,21]. To complement our consensus label-based evaluation,
we therefore derived outcome-based severity tiers and a
disposition-safety composite (DSC) and re-examined how
MECR-RAG, the baseline LLM, and initial nurse triage aligned
with downstream clinical courses.

For all encounters with sufficient follow-up, we assigned an
ordinal outcome-based severity tier (R1-R3) adapted from the
multilevel reference standard used in MTS validation work, in
which a multidisciplinary expert panel defined 3 urgency levels
[15]. R1 represented high-acuity courses analogous to the
“immediate or very urgent” reference category and was defined
by the presence of any marker of life-threatening illness, such
as markedly abnormal vital signs with modified early warning
score ≥5 or depressed consciousness, emergency surgery or
other high-intensity interventions shortly after ED arrival, or
death in the ED, ICU, or during the index admission. R2
corresponded to an “urgent” course and included patients who
did not meet R1 criteria but required substantial acute treatment
(eg, intravenous medication, fluids, and nebulizers) or
hospitalization. R3 comprised lower-acuity courses in which
none of the R1 or R2 markers were present. Patients who left
without being seen (LWBS) were coded separately and excluded
from outcome-based binary analyses. Full operational definitions
and mapping of specific outcome elements to R1-R3 are
provided in Table S2 in Multimedia Appendix 1.

To capture sentinel deterioration events that may reflect
underrecognition of severity at triage, we additionally defined
a DSC based on components commonly used as ED quality and
safety indicators. DSC was coded as positive if any of the
following occurred after the index ED visit: (1) unplanned ICU
transfer within 72 hours of ward admission, (2) ED revisit within
72 hours resulting in unplanned hospital admission (including
ICU admission when present), or (3) all-cause death within 7
days [22-24]. A binary variable, DSC_any, was set to 1 if at
least one component was present. Outcome adjudication for
R1-R3 and DSC_any was performed using routinely collected
outcome data and was fully blinded to the index triage category
and all model outputs.

Using these constructs, we prespecified 4 binary analytic
“lenses” for sensitivity analyses. A classic lens defined
outcome+ as R1 only and outcome– as R2 or R3, with test+ as
triage categories 1-2 versus 3-5, mirroring conventional MTS
validation [15]. An operational lens defined outcome+ as R1
or R2 versus R3 and test+ as categories 1-3 versus 4-5, reflecting
the separation between patients who should not wait in the
lowest-priority stream and those who can safely do so. Two
augmented lenses incorporated DSC_any: an augmented classic
lens (outcome+=R1 or DSC_any; test+=categories 1 and 2) and
an augmented operational lens (outcome+=R1 or R2 or

DSC_any; test+=categories 1-3). These lenses were intended
to test robustness across different, clinically motivated
definitions of high severity and to align with prior
recommendations on composite triage outcomes. Full definitions
are provided in Textbox S4 in Multimedia Appendix 1.

For each lens and each triage method (nurse triage, baseline
LLM, and MECR-RAG), we constructed 2×2 tables of test+
versus outcome+ and calculated sensitivity, specificity, and
95% CIs, along with positive and negative likelihood ratios
(LR+ and LR–) and diagnostic odds ratios (DORs). To compare
models on the same patients, we used paired McNemar tests to
assess differences in sensitivity (within outcome+ cases) and
specificity (within outcome– cases). As additional clinically
interpretable summaries, we examined (1) the proportion of R1
cases assigned to immediate (categories 1 and 2), (2) the
proportion of R2 cases assigned to nonurgent (categories 4 and
5), and (3) a weighted harm index per 100 patients that assigns
higher penalties to more dangerous errors (R1 or R2 assigned
to nonurgent) than to overtriage of R3 cases. Case-level harm
scores were compared between models using paired signed tests.
Detailed formulas for likelihood ratios, DORs, CIs, and harm
index computation are provided in Textbox S5 in Multimedia
Appendix 1.

Statistical Analysis
All analyses were conducted using R (version 4.5.0; R Core
Team). Interrater agreement and kappa statistics were calculated
using standard packages for reliability analysis. Classification
metrics were obtained using established machine learning
libraries, and nonparametric CIs were estimated using bootstrap
resampling. Between-model comparisons used tests appropriate
to the data structure, including Friedman tests with Nemenyi
post hoc procedures for repeated-run summary metrics and
Cochran Q and McNemar tests for paired binary outcomes.
Exploratory subgroup, scaling, and cross-model generalizability
analyses were treated as descriptive and were not formally
powered for hypothesis testing. Full details of the statistical
workflow, including package names, resampling schemes,
handling of multiple runs, and exploratory analyses, are provided
in Textbox S6 in Multimedia Appendix 1.

Ethical Considerations
This study was approved by the Hospital Authority Central
Institutional Review Board (reference number
CIRB-2024-561-4). Because this was a retrospective analysis
of anonymized patient records with no impact on clinical care,
the Central Institutional Review Board granted a waiver of
informed consent. All data used in this study were fully
anonymized prior to analysis, and no identifiable patient
information was retained or accessible to the study team. No
compensation was provided, as no participants were recruited
or contacted for this study.

Results

Participants
The final test set comprised 236 ED triage encounters from
2023. After expert consensus adjudication, the distribution of
triage categories was 23/236 (9.7%) category 1, 23/236 (9.7%)
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category 2, 82/236 (34.7%) category 3, 98/236 (41.5%) category
4, and 10/236 (4.2%) category 5. The mean patient age was
55.1 (SD 26.2; range 0.3-98.0) years. Overall, 131/236 (55.5%)
patients were male and 105/236 (44.5%) were female. The most
common clinical specialties were medicine (115/236, 48.7%),
orthopedics (36/236, 15.3%), surgery (33/236, 14.0%), and
pediatrics (13/236, 5.5%), with the remaining 39/236 (16.5%)
classified as other specialties.

The retrieval database used by the MECR-RAG system
consisted of 3000 anonymized ED encounters from 2024. The
triage category distribution was constructed to reflect real-world
attendance patterns, which are typically skewed toward

lower-acuity presentations, with modest upsampling of
categories 1, 2, and 5 to ensure adequate representation of rare
but clinically important groups. The mean age in the retrieval
database was 56.7 (SD 25.6; range 0.2-104.0) years, with an
equal sex distribution (1500/3000, 50.0% male and 1500/3000,
50.0% female). The specialty mix was similar to the test set,
with medicine accounting for 1395/3000 (46.5%) encounters,
followed by orthopedics (441/3000, 14.7%), surgery (435/3000,
14.5%), pediatrics (210/3000, 7.0%), and other specialties
(519/3000, 17.3%). Baseline characteristics of both datasets are
summarized in Table 1, and characteristics of the 1000- and
2000-case retrieval subsets used in the scaling analysis are
provided in Table S3 in Multimedia Appendix 1.

Table 1. The demographic and triage category distribution of the test set and 3000-case retrieval-augmented generation database.

3000-case database (N=3000)Test set (N=236)Characteristic

56.7 (25.6; 0.2-104.0)55.1 (26.2; 0.3-98.0)Age (years), mean (SD; range)

Sex, n (%)

1500 (50.0)131 (55.5)Male

1500 (50.0)105 (44.5)Female

Triage categories, n (%)

94 (3.1)23 (9.7)Category 1

120 (4.0)23 (9.7)Category 2

1705 (57.0)82 (34.7)Category 3

1035 (34.5)98 (41.5)Category 4

46 (1.5)10 (4.2)Category 5

Specialty, n (%)

1395 (46.5)115 (48.7)Medicine

441 (14.7)36 (15.3)Orthopedics

435 (14.5)33 (14.0)Surgery

210 (7.0)13 (5.5)Pediatrics

519 (17.3)39 (16.5)Others

Age is presented as mean (SD). Triage category and specialty
values are reported as percentages of total cases within each
dataset. Other specialties include dentistry; dermatology; ear,
nose, and throat; neurosurgery; obstetrics and gynecology;
oncology; ophthalmology; and psychiatry. Both datasets were
constructed to reflect real-world triage distributions, with modest
oversampling of rare categories (eg, categories 1, 2, and 5) to
ensure sufficient representation for model evaluation. Full
sampling rationale is provided in the “Methods” section. The
test set and retrieval database exhibited broadly comparable
distributions in age, sex, and specialty.

Comparative Performance of MECR-RAG and the
Baseline LLM, Benchmarked Against Expert Rater
Agreement
The MECR-RAG system showed substantially higher agreement
with consensus triage labels than the baseline LLM. Across 5
independent runs, MECR-RAG achieved a mean QWK of 0.902
(SD 0.0021; 95% CI 0.901-0.904), compared with 0.801 (SD
0.004; 95% CI 0.798-0.804) for the baseline model (mean paired

difference 0.101, SD 0.0058; 95% CI 0.097-0.106; P<.001).
Classification accuracy followed the same pattern, with a mean
accuracy of 0.802 (SD 0.0082; 95% CI 0.795-0.808) for
MECR-RAG versus 0.542 (SD 0.0073; 95% CI 0.536-0.548)
for the baseline LLM (mean paired difference 0.264, SD 0.0150;
95% CI 0.251-0.278; P<.001). Similar effect sizes were
observed when analyses were repeated using single median-run
prediction sets, indicating that MECR-RAG’s advantage was
robust to run-to-run variability.

To benchmark model performance against human experts, we
evaluated interrater reliability between the 2 professional triage
nurses who generated the reference labels; their QWK was
0.887. By comparison, MECR-RAG achieved a mean QWK of
0.902 (SD 0.0021; 95% CI 0.901-0.904). Using a prespecified
noninferiority margin of −0.05, MECR-RAG met criteria for
noninferiority to expert agreement, and this conclusion was
unchanged in sensitivity analyses restricted to single
median-performing runs. Taken together, these findings suggest
that MECR-RAG attains expert-comparable consistency in
5-level triage classification while clearly outperforming a
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prompt-only LLM. Confusion matrices comparing triage
classification performance between the baseline LLM and

MECR-RAG are shown in Figure 2. Results are shown for the
median-performing run across 5 stochastic trials in this figure.

Figure 2. Confusion matrices comparing 5-level triage classification performance between the baseline prompt-only large language model (panel A)
and the Multi-Evidence Clinical Reasoning retrieval-augmented generation system (panel B) on 236 emergency department triage encounters in the
test set. LLM: large language model; MERC-RAG: Multi-Evidence Clinical Reasoning retrieval-augmented generation.

Performance Using Clinically Grouped Triage
Categories
To reflect operational priorities in the ED, we conducted a post
hoc analysis collapsing the 5 triage categories into 3 clinically
meaningful groups: immediate (categories 1 and 2), urgent
(category 3), and nonurgent (categories 4 and 5). This schema
mirrors local workflows, in which immediate cases are seen

without delay, urgent cases typically wait approximately 32
minutes, whereas nonurgent cases typically wait approximately
240 minutes based on 2024 institutional data. All metrics in this
analysis were derived from the median-performing model run
to approximate single-run deployment. Confusion matrices for
grouped predictions are shown in Figure 3. Results reflect the
median-performing run across 5 stochastic trials in this figure.

Figure 3. Confusion matrices comparing triage group classification performance between the baseline prompt-only large language model (panel A)
and the Multi-Evidence Clinical Reasoning retrieval-augmented generation system (panel B) under a 3-group schema. LLM: large language model;
MERC-RAG: Multi-Evidence Clinical Reasoning retrieval-augmented generation.

Under this 3-group schema, MECR-RAG maintained high
overall performance, achieving a QWK of 0.882 (95% CI
0.840-0.920) compared with 0.759 (95% CI 0.700-0.813) for

the baseline LLM (paired difference 0.125, 95% CI 0.077-0.174;
P<.001). Accuracy similarly favored MECR-RAG (0.859 vs
0.695; paired difference 0.164, 95% CI 0.110-0.225; P<.001).
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Macrolevel precision, recall, and F1-score were also higher for
MECR-RAG (precision 0.848 vs 0.691; recall 0.873 vs 0.737;
F1-score 0.860 vs 0.713).

Error-pattern analysis showed that MECR-RAG slightly reduced
undertriage compared with the baseline LLM (3/236, 1.3% vs
4/236, 1.7%; McNemar P=.69), while substantially reducing
overtriage. Overtriage decreased from 68/236 (28.8%) with the
baseline LLM to 30/236 (12.7%) with MECR-RAG (McNemar
P<.001). Thus, the model reduced unnecessary escalation
without compromising detection of higher-acuity cases.

Performance advantages for MECR-RAG were consistent across
triage groups. For immediate cases, MECR-RAG had slightly
lower recall than the baseline LLM (0.935 vs 1.000) but
substantially higher precision (0.768 vs 0.535), yielding a higher

F1-score (0.842 vs 0.697). Overall correctness did not differ
significantly (McNemar P=.25), suggesting comparable
sensitivity with fewer false positives. In the urgent group,
MECR-RAG markedly outperformed the baseline model (recall
0.841 vs 0.488; precision 0.775 vs 0.588; F1-score 0.807 vs
0.532; McNemar P<.001), indicating improved discrimination
in this diagnostically challenging and operationally dominant
band. For nonurgent cases, MECR-RAG again showed higher
recall (0.843 vs 0.722) and F1-score (0.915 vs 0.823), with
perfect precision (1.000 vs 0.951; McNemar P=.01). These
patterns, summarized in Figure 4, suggest that MECR-RAG
delivers a more favorable balance between safety and
operational efficiency, particularly in the mid- and low-acuity
groups that account for most ED visits and drive waiting-time
differentials.

Figure 4. Comparative model performance across overall and triage group-specific metrics. LLM: large language model; MERC-RAG: Multi-Evidence
Clinical Reasoning retrieval-augmented generation. QWK: quadratic weighted kappa.

Comparative model performance across overall and triage
group-specific metrics. Performance is evaluated using a
clinically relevant 3-level grouping: immediate (categories 1
and 2), urgent (category 3), and nonurgent (categories 4 and 5),
corresponding to local time-to-physician targets and resource
prioritization. Panel A summarizes overall performance across
QWK, accuracy, precision, recall, and F1-score for the baseline
prompt-only LLM and the MECR-RAG system; MECR-RAG
achieved higher QWK (0.882) and accuracy (0.859) than the

baseline LLM (QWK 0.759; accuracy 0.695; both P<.001).
Panels B-D show precision, recall, and F1-score, respectively,
by triage group, with MECR-RAG consistently outperforming
the baseline LLM across all groups and particularly in the urgent
group (F1-score 0.807 vs 0.532). All results are based on the
median-performing model run.
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Outcome-Informed Validity Relative to Clinical
Severity
Among the 236 triage encounters, 226 (95.8%) had sufficient
follow-up information to assign an outcome-based severity tier
(R1-R3); the remaining 10 (4.2%) patients were LWBS and
were excluded from all outcome-based analyses but retained in
label-based performance summaries. Within the 226 encounters
with outcome labels, 13/226 (5.8%) met R1 criteria, 117/226
(51.8%) met R2 criteria, and 96/226 (42.5%) were classified as
R3. When high-severity outcomes were defined as R1+R2
(n=130) and triage “positive” as categories 1-3 versus 4-5,
MECR-RAG achieved the highest sensitivity for high-risk
courses at 124/130 (95.4%), compared with 117/130 (90.0%)
for initial nurse triage and 122/130 (93.8%) for the baseline
LLM. The gain versus nurses was statistically significant
(McNemar χ²₁=5.14; P=.02), whereas sensitivity did not differ
from the baseline LLM (χ²₁=0.17; P=.68). Specificity for
low-risk (R3) cases was 77/96 (80%) for MECR-RAG, 78/96
(81%) for nurses, and 66/96 (69%) for the baseline LLM. Thus,
MECR-RAG maintained nurse-level specificity (χ²₁=0.00;
P=1.00) while significantly improving specificity over the
baseline LLM (χ²₁=5.26; P=.02). All 3 systems correctly
avoided assigning nonurgent (categories 4 and 5) to any R1
cases (0/13 each). The DOR for distinguishing R1+R2 from R3
was 83.8 (95% CI 32.0-218.9) for MECR-RAG, 39.0 (95% CI
18.1-84.1) for nurses, and 33.6 (95% CI 14.6-77.4) for the
baseline LLM, consistent with a more favorable overall trade-off
between undertriage and overtriage for MECR-RAG, although
CIs overlapped because of limited event counts.

To examine clinically important undertriage, we focused on R2
patients assigned to nonurgent triage (categories 4 and 5).
Among 117 R2 encounters, 13/117 (11.1%) were initially
labeled nonurgent by nurses, compared with 8/117 (6.8%) by
the baseline LLM and 6/117 (5.1%) by MECR-RAG. In paired
analysis, MECR-RAG approximately halved R2 nonurgent
misclassification relative to nurses (13 to 6 cases; McNemar
χ²₁=5.14; P=.02), with a smaller, nonsignificant reduction
compared with the baseline LLM (8 to 6 cases; χ²₁=0.17;
P=.68). Considering the entire triage distribution, MECR-RAG
also produced the safest nonurgent queue in terms of hidden
high-risk patients: among patients predicted as nonurgent, the
proportion with R1+R2 outcomes was 6/83 (7%) for
MECR-RAG, compared with 13/91 (14%) for nurses and 8/74
(11%) for the baseline LLM. immediate groups were
correspondingly enriched for high-severity outcomes, with 47/47
(100%) R1+R2 for nurses, 56/56 (100%) for MECR-RAG, and
82/86 (95%) for the baseline LLM. These patterns suggest that
MECR-RAG reduces undertriage of R2 patients into the
lowest-priority stream while preserving a clear outcome-based
risk gradient across immediate, urgent, and nonurgent groups.

As a complementary summary of mis-triage burden, we
constructed a weighted harm index that assigns higher cost to
more dangerous errors: R1 assigned to nonurgent (categories 4
and 5) was weighted as 5, R2 assigned to nonurgent as 2, and
R3 assigned to immediate or urgent (categories 1-3) as 1. Across
the 226 cases with outcome labels, initial nurse triage
accumulated a weighted error sum of 44 (harm index 19.47 per
100 patients), the baseline LLM 46 (20.35 per 100 patients),

and MECR-RAG 31 (13.72 per 100 patients). At the individual
case level, the baseline LLM incurred higher harm scores than
MECR-RAG in 19 discordant cases and lower scores in 6, with
201 ties (2-sided sign test P=.02), indicating a statistically
significant net reduction in weighted harm with MECR-RAG.
Compared with nurses, harm scores were lower for MECR-RAG
in 14 cases and higher in 8 (204 ties; P=.29), suggesting a
numerically favorable but underpowered difference. Overall,
these outcome-based analyses indicate that MECR-RAG not
only improves high-severity sensitivity and reduces R2
undertriage but also yields the lowest aggregate mis-triage
burden when accounting for both the direction and severity of
errors.

To test robustness to alternative definitions of clinical severity,
we repeated binary analyses under classic and augmented
outcome “lenses” that defined outcome+ using R1 alone, R1
combined with the DSC, and R1 or R2 combined with the
composite (see Methods). Across all lenses, MECR-RAG
consistently showed the most favorable trade-off between
sensitivity and specificity, with the highest DORs and positive
likelihood ratios compared with nurses and the baseline LLM.
In a classic Manchester-style lens (outcome+=R1 only;
test+=categories 1-2 vs 3-5), all 3 systems achieved perfect
sensitivity for R1 cases, but MECR-RAG improved specificity
relative to the baseline LLM and approached nurse performance.
When the DSC (unplanned ICU transfer within 72 hours,
72-hour revisit with admission, or death within 7 days) was
incorporated into augmented lenses, MECR-RAG again
maintained the highest discrimination despite wide and
overlapping confidence intervals reflecting the small number
of sentinel events. Full 2×2 tables, effect estimates, CIs and
details for each lens are provided in Tables S4-S7 and Section
B in Multimedia Appendix 1. Complementary exploratory
analyses, including subgroup performance stratified by age and
sex and model behavior on adjudicated disagreement cases, are
reported in Sections C and D in Multimedia Appendix 1.

Component-Wise Ablation of Retrieval Mechanisms
To assess the contribution of individual retrieval components,
we conducted a component-wise ablation across four
configurations: (1) a prompt-only baseline LLM without
retrieval, (2) a guideline-only RAG model retrieving sections
from the HKAETG, (3) a case-only RAG model retrieving
similar past triage cases, and (4) the full MECR-RAG system
combining both guideline and case retrieval. Each configuration
used an identical preprocessing and generation pipeline and was
evaluated over 5 independent runs. QWK was the primary
outcome, with overall accuracy, macrolevel precision, and
macrolevel recall as secondary metrics.

Across configurations, MECR-RAG achieved the highest
agreement with expert consensus (mean QWK 0.902, SD
0.0021; 95% CI 0.901-0.904; accuracy 0.802, SD 0.0082),
followed by the case-only model, then the guideline-only model,
and finally the baseline LLM. Both guideline-based and
case-based retrieval improved performance relative to the
baseline, but their combined use in MECR-RAG produced the
largest and most consistent gains. Friedman tests on QWK and
accuracy across the 4 models were statistically significant, and
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post hoc Nemenyi comparisons identified MECR-RAG as the
only configuration with a statistically superior rank to the
baseline LLM under conservative multiple-comparison control.

Full numerical results are shown in Figure 5 (QWK) and Figure
6 (accuracy) and are detailed in Table S8 in Multimedia
Appendix 1.

Figure 5. Quadratic weighted kappa performance of model variants and professional raters. LLM: large language model; MERC-RAG: Multi-Evidence
Clinical Reasoning retrieval-augmented generation; RAG: retrieval-augmented generation.

Figure 6. Accuracy performance across model variants. LLM: large language model; MERC-RAG: Multi-Evidence Clinical Reasoning retrieval-augmented
generation; RAG: retrieval-augmented generation.

To understand how retrieval affected different acuity levels, we
examined per-category accuracy and F1-scores for triage
categories 1-5. Guideline retrieval contributed most strongly to

category 1 (critical) performance, where the guideline-only
model achieved the highest accuracy and F1-score, consistent
with the value of structured, rule-based protocols for recognizing
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life-threatening presentations. In contrast, case retrieval had the
largest impact on categories 3 and 4, where the case-only and
MECR-RAG models substantially outperformed both the
baseline and guideline-only configurations, reflecting the
importance of experiential pattern recognition in diagnostically
ambiguous, midacuity presentations. For categories 2 and 5,
model differences were smaller and not statistically robust,

although MECR-RAG generally retained the highest F1-scores.
Overall, MECR-RAG delivered the best balance of precision
and recall across all categories, supporting the complementary
value of combining guideline-based and case-based retrieval
(Figure 7; detailed estimates in Table S9 in Multimedia
Appendix 1).

Figure 7. Component-wise ablation analysis of model performance across triage categories. LLM: large language model; MERC-RAG: Multi-Evidence
Clinical Reasoning retrieval-augmented generation.

As an exploratory scaling analysis, we also varied the size of
the past-case retrieval database from 1000 to 3000 cases and
observed monotonic gains in QWK and accuracy with reduced
between-run variability at larger retrieval pools (Tables S3 and
S10 in Multimedia Appendix 1).

In Figure 5, the mean QWK values with 95% CIs are shown
for the baseline and retrieval-augmented model variants. Points
represent mean QWK across 5 stochastic runs, and horizontal
error bars indicate 95% CIs across these runs. The professional
benchmark (QWK 0.887) reflects interrater agreement between
2 expert triage nurses. The figure includes both ablation
variants—a guideline-only RAG model and a 3000-case-only
RAG model—and scaling variants that combine guideline and
past case retrieval with databases containing 1000, 2000, and
3000 past triage cases. The MECR-RAG model (guideline plus
3000 past cases) achieved the highest mean QWK and was
statistically superior to the baseline prompt-only large language
model (LLM; mean paired difference 0.101, SD 0.0058; 95%
CI 0.097-0.106; P<.001), while demonstrating noninferior
agreement compared with professional raters.

In Figure 6, the mean accuracy values with 95% CIs are shown
for the baseline prompt-only LLM, RAG variants, and combined

retrieval configurations. The x-axis shows accuracy, with points
representing mean values across 5 stochastic runs and horizontal
error bars indicating 95% CIs. The figure includes ablation
variants (guideline-only and 3000-case-only RAG) and scaling
variants that combine guideline retrieval with 1000, 2000, or
3000 past cases. The MECR-RAG configuration (guideline plus
3000 past cases) achieved the highest accuracy and demonstrated
a statistically significant improvement compared with the
baseline LLM.

F1-scores for each triage category (categories 1-5) across 4
model configurations. Rows represent the baseline prompt-only
LLM, a guideline-only RAG model, a 3000-case-only RAG
model, and the MECR-RAG system, and columns represent
triage categories. Values reflect outputs from the
median-performing evaluation run. Guideline retrieval
contributed most prominently to performance in category 1,
while case retrieval improved performance in categories 3 and
4, where patient presentations are more heterogeneous and
require contextual interpretation. The MECR-RAG system
generally achieved the highest or near-highest F1-scores across
triage categories, illustrating the additive value of combining
structured guideline knowledge with experiential case-based
retrieval.
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Generalizability Across LLM Architectures
The primary model used for all prior evaluations was
DeepSeek-V3. To evaluate whether the MECR-RAG framework
generalizes beyond this development model, we conducted
exploratory assessments using 2 additional foundation models:
Claude 3.7 and GPT-4o. Each model was tested on the same
236-case triage dataset with the same 3000-case retrieval
database under 2 configurations: the MECR-RAG system and
a baseline, prompt-only LLM without retrieval augmentation.

In these single-run evaluations, MECR-RAG consistently
outperformed the corresponding baseline configuration. For
Claude 3.7, QWK improved from 0.840 under the baseline to
0.890 with MECR-RAG. Similarly, GPT-4o achieved a QWK
of 0.890 with MECR-RAG, compared with 0.778 without
retrieval. Although these results are based on single inference
runs and are not statistically powered for formal comparison,
they provide preliminary evidence that the dual-source retrieval
framework may confer similar relative gains across distinct
LLM back ends. A detailed breakdown of model predictions
versus consensus triage labels for Claude 3.7 and GPT-4o, under
both MECR-RAG and baseline conditions, is provided in
Figures S1 and S2 in Multimedia Appendix 1, respectively.

Taken together, these preliminary findings suggest that the
benefits of dual-source retrieval generalize beyond
DeepSeek-V3 and may confer cross-model robustness of
MECR-RAG across LLMs from different developers, supporting
its broader applicability in diverse clinical settings. Further
benchmarking across a wider range of model families, input
formats, and deployment environments is warranted to validate
robustness and assess trade-offs in latency, interpretability, and
resource efficiency for real-world clinical deployment.

Discussion

Principal Findings
This retrospective evaluation suggests that a dual-source,
retrieval-augmented LLM can achieve expert-comparable
agreement with consensus nurse triage labels while substantially
outperforming a prompt-only baseline model. MECR-RAG
improved QWK and accuracy over the baseline LLM under
both the 5-level and 3-group schemas and met prespecified
noninferiority criteria compared with professional triage nurses.
The largest gains occurred in Categories 3 and 4 and in the
urgent versus nonurgent grouping, which together accounted
for most ED visits and are operationally dominant, with large
differences in waiting times. Ablation analyses indicated that
both guideline retrieval and case retrieval contributed to
performance, with the full dual-source MECR-RAG
configuration consistently outperforming guideline-only and
case-only variants. Performance also improved as the retrieval
database increased from 1000 to 3000 cases, suggesting that
retrieval quality benefits from a richer case pool. Exploratory
cross-model experiments with Claude 3.7 Sonnet and GPT-4o
further suggested that these benefits generalize across different
LLM back ends.

Ground Truth Validity and Construct Interpretation
In this study, the primary reference standard was expert nurse
consensus at the time of presentation, which reflects routine
clinical decision-making but is an imperfect proxy for
underlying acuity. Large US data on ESI version 4 report
mis-triage in 32.2% of encounters (3.3% undertriage and 28.9%
overtriage), underscoring that nurse-level labels are imperfect
proxies for “true” acuity [17]. Even with trained emergency
staff, approximately 17% of triage assignments may be
inaccurate [21]. To address these limitations, we complemented
consensus labels with outcome-informed constructs, ordinal
severity tiers (R1-R3) and a DSC, adapted from MTS validation
work and recommendations on triage outcome selection
[15,22,24].

Within these outcome-based frameworks, MECR-RAG showed
higher sensitivity for R1+R2 courses than initial nurse triage at
comparable specificity, reduced misclassification of R2 patients
into the nonurgent stream, and yielded the lowest weighted
harm index, suggesting closer alignment between assigned
urgency and downstream clinical course. At the same time,
event counts for the most severe outcomes were modest, and
both nurse consensus and the composite outcomes remain
pragmatic proxies rather than definitive measures of “true”
severity. We therefore interpret these findings as supportive
evidence that MECR-RAG performs well against clinically
grounded, outcome-informed constructs of acuity, rather than
as proof that it fully captures an underlying severity state.

Comparison With Prior Work
To our knowledge, this is the first study to evaluate a
dual-source, RAG-enhanced LLM for emergency triage using
raw triage documentation paired with expert-consensus reference
labels and complementary outcome-informed severity
constructs. Prior RAG studies in emergency care have shown
that retrieval can improve triage or referral performance on
simulated exam-style cases or curated ED datasets but have
relied on structured scenarios or routine triage labels without
independent adjudication [13,14]. Our design addresses the
broader evidence gap noted in a recent systematic review, in
which only 5% of 519 published evaluations of health care
LLMs used real patient care data for testing [25]. This provides
a more realistic and stringent test of RAG-enhanced triage than
has been reported previously.

Masanneck et al [4] established an early benchmark by
evaluating LLM triage performance against expert assessments,
but their dataset consisted of physician-curated vignettes from
a single day, with selected patient attributes adjusted according
to predefined standard operating procedures. In contrast, our
study applies dual-source RAG to a year-long sample of
anonymized triage notes without manual editing or
reinterpretation, preserving the fidelity of frontline
documentation and temporal variation. Zaboli et al [3] and Paslı
et al [7] have likewise emphasized the importance of handling
unstructured narratives and integrating local triage frameworks;
our dual-retrieval design directly addresses these needs by
combining structured guideline content with real-world case
patterns.
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Our findings also align with broader work on nurse triage
systems, showing that midacuity presentations are both the most
common and the most difficult to classify. In a large cohort of
over 5.3 million adult ED encounters using ESI version 4, Sax
et al [17] found that approximately 29% of visits were
overtriaged and that the sensitivity of ESI version 4 for
identifying low-acuity, low-resource patients (correctly
assigning ESI 4-5 among patients using <2 resources and with
no critical interventions) was only 50%. A majority of
encounters were assigned to the midlevel category ESI 3,
highlighting poor differentiation between lower- and
higher-acuity patients. Validation of the HKAETG has similarly
shown the lowest interrater agreement for categories 3 and 4,
reflecting the intrinsic difficulty of distinguishing “urgent” from
“semiurgent” presentations [26]. In our cohort, categories 3 and
4 comprised about three-quarters of all cases, and the
prompt-only LLM reproduced the overtriage patterns
documented in both human and LLM triage studies. In contrast,
MECR-RAG substantially reduced overtriage and improved
precision and recall specifically in these mid- and low-acuity
strata, suggesting that dual-source retrieval may help address a
long-standing bottleneck in emergency triage performance.

Clinical and Operational Implications
Although we did not directly measure ED length of stay (LOS),
boarding, or mortality, several findings suggest how
MECR-RAG could plausibly influence safety and flow if
implemented as decision support. Under a 3-group schema
(immediate, urgent, and nonurgent), MECR-RAG achieved
higher agreement and accuracy than the prompt-only LLM, with
markedly less overtriage and similarly low undertriage. Gains
were concentrated in the urgent and nonurgent tiers, which
dominate the case mix and are associated with substantially
longer waits for lower-priority patients at our center. In
outcome-based analyses, MECR-RAG showed higher sensitivity
for R1+R2 courses than initial nurse triage at nurse-level
specificity, reduced misclassification of R2 patients into the

nonurgent stream, and yielded the lowest severity-weighted
harm index. Together, these patterns indicate fewer high-risk
patients “hidden” in the longest-wait queue and fewer low-risk
patients unnecessarily occupying high-acuity resources, aligning
urgency assignments more closely with downstream clinical
course.

These redistributions of risk are clinically relevant because
prolonged ED LOS, crowding, and boarding have been
repeatedly linked to delayed treatment, longer inpatient stays,
and higher short-term mortality. More efficient separation
between urgent and nonurgent queues could, in principle, help
decompress monitored areas, reduce avoidable time in
high-acuity spaces for low-risk patients, and support more timely
care for those with high-severity courses. However, our
evaluation was retrospective and did not include LOS, crowding,
or mortality as prespecified end points. Any potential
contribution of MECR-RAG therefore remains
hypothesis-generating and must be tested in prospective,
outcome-focused studies.

As illustrated in the proposed human-in-the-loop workflow
(Figure 8), MECR-RAG is intended to function as a background
triage decision-support layer: triage nurses retain primary
responsibility for assigning categories, while a secure,
deidentified copy of the triage note is analyzed in parallel, with
the system remaining silent for most encounters and surfacing
alerts only for predefined safety-relevant discordances (eg,
potential undertriage of urgent or immediate cases). Alerts and
explanations can then be reviewed by a senior nurse, who may
confirm or upgrade the triage category, while all alerts,
decisions, and associated operational metrics are logged to
support ongoing quality assurance and research on ED LOS,
crowding, and downstream outcomes. A staged implementation
strategy, beginning with shadow-mode deployment and
progressing to focused pilots of discordance alerts with
monitoring for automation bias, alert fatigue, throughput, and
equity, will be essential before wider rollout.
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Figure 8. Conceptual human-in-the-loop workflow for Multi-Evidence Clinical Reasoning retrieval-augmented generation as a background triage
decision-support layer in the emergency department. ED: emergency department; LLM: large language model; LOS: length of stay; MECR-RAG:
Multi-Evidence Clinical Reasoning retrieval-augmented generation; RAG: retrieval-augmented generation.

Patients follow the routine care pathway shown in the top row:
arrival and registration in the ED, initial face-to-face triage by
a nurse, real-time triage documentation in the electronic health
record, allocation to an urgency-based waiting stream
(immediate, urgent, or nonurgent) with logging of ED LOS and
crowding metrics, and subsequent doctor’s assessment. In
parallel, a secure deidentified copy of the triage note is sent to
the MECR-RAG system, which operates as a background triage
decision-support layer. MECR-RAG generates its own triage
recommendation with cited reasoning and remains silent for
most encounters, but triggers an undertriage or other
safety-relevant discordance alert when its recommendation
conflicts with the nurse-assigned category. Alerts and
explanations are routed to a senior triage nurse, who may
confirm or upgrade the triage category; all alerts, decisions, and
outcomes are logged to support ongoing quality assurance and
research on ED LOS, crowding, and patient-centered outcomes.

Limitations and Future Directions
This study has several important limitations. First, within the
staged evaluation pathway outlined by DECIDE-AI
(Developmental and Exploratory Clinical Investigations of
Decision support systems driven by Artificial Intelligence), this
retrospective, offline prediction study represents preclinical (in
silico) validation and should not be interpreted as evidence of
real-world clinical effectiveness or safety [27]. Moreover, strong
offline discrimination does not reliably translate into clinical
benefit after implementation; prior early warning and sepsis
tools (including the Rothman Index and the Epic Sepsis Model)

have shown materially weaker performance and limited impact
in independent, postdeployment evaluations, partly due to
differences in data quality, missingness, case mix, alert logic,
and workflow across sites [28-32]. Retrospective deep learning
models are also vulnerable to dataset shift, class imbalance, and
missing data, further limiting transportability across settings
and time [33]. Randomized evaluations of AI-enabled
interventions similarly suggest that even high-performing
models may fail to improve primary clinical end points without
careful workflow integration and attention to system constraints
[34,35]. Accordingly, our retrospective, single-center results
for MECR-RAG should be viewed as predeployment evidence
and require prospective, multicenter evaluation before inferring
equivalent real-time performance or improved patient outcomes.

Second, the evaluation was conducted in a single ED using the
HKAETG; performance may differ under other triage
frameworks (eg, MTS and ESI), languages, documentation
practices, workflows, and patient case mix. Although the
retrieval-augmented design is modular and could, in principle,
be adapted by reindexing local guidelines and locally
representative triage notes without retraining the underlying
LLM, portability remains an empirical question and requires
external validation and prospective multicenter evaluation.

Third, the retrieval database and text summaries were
constructed automatically from routine triage notes without
manual adjudication, and prompts were generated without
clinician editing. This reflects realistic deployment conditions
and improves scalability, but some retrieved exemplars may be

JMIR Med Inform 2026 | vol. 14 | e82026 | p. 15https://medinform.jmir.org/2026/1/e82026
(page number not for citation purposes)

Wong & WongJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


mislabeled or incomplete, and clinically relevant nuances may
be lost during summarization. In addition, we did not directly
evaluate usability, interpretability, automation bias, or workflow
impact, which are increasingly recognized as critical
determinants of the safety and effectiveness of AI-enabled
clinical decision-support systems [32,36].

These limitations point to clear priorities for future work.
Prospective, multicenter studies across institutions using
different triage frameworks (HKAETG, MTS, and ESI) are
needed to assess generalizability and to determine how
MECR-RAG performs in real-time workflows. Consistent with
DECIDE-AI and recent guidance from major journals and
professional societies, future evaluations should move beyond
agreement metrics to prespecify patient-centered and operational
end points, including ED and hospital LOS, crowding and
boarding times, unexpected ICU transfer, time-critical treatment
delays, and short-term mortality [18,37-39].
Implementation-focused studies should also examine how
MECR-RAG is integrated into practice (eg, as a second reader
or discordance alert), its effects on clinician behavior, workload,
and equity, and unintended consequences such as alert fatigue
or overreliance on model outputs, ideally using pragmatic
randomized or quasi-experimental designs where feasible
[34,35]. Framing this work as an early-phase evaluation and
explicitly outlining the need for prospective, outcome-focused
trials in line with current AI evaluation guidance positions
MECR-RAG as a promising candidate for further study rather
than a tool ready for immediate widespread deployment.

Conclusions
In summary, this retrospective, single-center study provides
one of the first evaluations of a dual-source, retrieval-augmented
LLM for emergency triage on real triage notes with expert
consensus labels, extending prior work beyond simulated
scenarios and routine labels. MECR-RAG achieved agreement
comparable to expert nurses and clearly outperformed a
prompt-only LLM, particularly in the high-volume category
3-4 bands, while approximately halving overtriage and keeping
undertriage very low. In exploratory outcome-based analyses
within this cohort, MECR-RAG also showed higher sensitivity
for high-severity courses, a safer nonurgent queue, and the
lowest severity-weighted harm index compared with initial
nurse triage. These findings support the potential of
retrieval-augmented LLMs as clinically coherent
decision-support tools that function as background second
readers—surfacing guidelines and analogous cases, flagging
discordant or high-risk assignments for senior review—and
thereby potentially improving allocation of high-acuity resources
in ways that could, if replicated prospectively, help reduce ED
crowding, LOS, and related adverse outcomes. However, this
remains an early-phase, retrospective, single-center evaluation
based on proxy outcomes, and rigorous prospective multicenter
studies across different triage frameworks, with prespecified
patient-centered and operational end points and careful attention
to workflow, usability, and equity, are essential before such
systems can be recommended for routine clinical deployment.
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Abbreviations
AI: artificial intelligence
API: application programming interface
DECIDE-AI: Developmental and Exploratory Clinical Investigations of Decision support systems driven by
Artificial Intelligence
DOR: diagnostic odds ratio
DSC: disposition-safety composite
ED: emergency department
ESI: Emergency Severity Index
HKAETG: Hong Kong Accident and Emergency Triage Guidelines
ICU: intensive care unit
JAMA: Journal of the American Medical Association
LLM: large language model
LOS: length of stay
LWBS: left without being seen
MECR: Multi-Evidence Clinical Reasoning
MECR-RAG: Multi-Evidence Clinical Reasoning retrieval-augmented generation
MIMIC-IV: Medical Information Mart for Intensive Care IV
MTS: Manchester Triage System
PMH: Princess Margaret Hospital
QWK: quadratic weighted kappa
RAG: retrieval-augmented generation
TRIPOD-LLM: Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis
- Large Language Models
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