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Abstract
Background: Given the highly heterogeneous biology of breast cancer, a more effective noninvasive diagnostic tool that
unravels microscopic histopathology patterns is urgently needed.
Objective: This study aims to identify cancerous regions in ultrasound images of breast cancer via convolutional neural
network based on registered grayscale ultrasound images and readily accessible biopsy whole slide images (WSIs).
Methods: This single-center study prospectively included participants undergoing ultrasound-guided core needle biopsy
procedures for Breast Imaging Reporting and Data System category 4 or 5 breast lesions for whom breast cancer was
pathologically confirmed from July 2022 to February 2023 consecutively. The basic information, ultrasound image data,
biopsy tissue specimens, and corresponding WSIs were collected. After core needle biopsy procedures, the stained breast
tissue specimens were sliced and coregistered with an ultrasound image of a needle tract. Convolutional neural network
models for identifying breast cancer cells in ultrasound images were developed using FCN-101 and DeepLabV3 networks. The
image-level predictive performance was evaluated and compared quantitatively by pixel accuracy, Dice similarity coefficient,
and recall. Pixel-level classification was illustrated through confusion matrices. The cancerous region in the testing dataset was
further visualized in ultrasound images. Potential clinical applications were qualitatively assessed by comparing the automatic
segmentation results and the actual pathological tissue distributions.
Results: A total of 105 participants with 386 ultrasound images of breast cancer were included, with 270 (70%), 78 (20.2%),
and 38 (9.8%) images in the training, validation, and test datasets, respectively. Both models performed well in predicting the
cancerous regions in the biopsy area, whereas the FCN-101 model was superior to the DeepLabV3 model in terms of pixel
accuracy (86.91% vs 69.55%; P=.002) and Dice similarity coefficient (77.47% vs 69.90%; P<.001). The two models yielded
recall values of 54.64% and 58.46%, with no significant difference between them (P=.80). Furthermore, the FCN-101 model
had an advantage in predicting cancerous regions, while the DeepLabV3 model achieved more accurate predictive pixels in
normal tissue (both P<.05). Visualization of cancerous regions on grayscale ultrasound images demonstrated high consistency
with those identified on WSIs.
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Conclusions: The technique for spatial registration of breast WSIs and ultrasound images of a needle tract was established.
Breast cancer regions were accurately identified and localized on a pixel level in high-frequency ultrasound images via an
advanced convolutional neural network with histopathologic WSI as the reference standard.

JMIR Med Inform 2026;14:e81181; doi: 10.2196/81181
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Introduction
Breast cancer heterogeneity has induced challenges in
treatment planning and follow-up management, which leads
to unfavorable outcomes [1,2]. Currently, ultrasound is a
widely used diagnostic tool for breast cancer management,
particularly valuable in screening, positive diagnosis, and
treatment response assessment [3]. However, the biological
heterogeneity of breast cancers leads to varied morphologi-
cal features on ultrasound [4], often resulting in malignancy
underestimation and overestimation. Furthermore, there is a
heterogeneous response to treatment among patients with
breast cancer [5-7]. Curative effect assessment secondary
to preoperative neoadjuvant treatment is largely based on
cancer volume changes [8], as well as biopsy for further
validation [9]. A more accurate noninvasive diagnostic tool
that indicates living cancer cells in breast cancer is urgently
needed [10-12].

Hematoxylin and eosin (H&E) staining of breast tissue
captured via core needle biopsy (CNB) has been introduced
to reflect the underlying cellular and molecular information
[13-15]. Preoperative diagnosis and curative effect assess-
ment of breast cancer can be undermined by insufficient
and nonrepresentative tissue owing to the heterogeneous
distribution of breast cancer [16]. Likewise, the partial
samples obtained by CNB may not represent the entire
lesion [17]. There remains a need for standardized methods
or imaging biomarkers available for accurately localizing
histopathological cancerous subregions.

The convolutional neural network (CNN), a developed
type of deep learning algorithm, has shown remarka-
ble performance in correlating macroscopic imaging and
microscopic histopathologic microstructure. A previous study
showed that a multimodal radiomics model combining
ultrasound and whole slide image (WSI) can effectively
distinguish between luminal and nonluminal breast cancers
[18]. Other studies have explored using the deep learn-
ing algorithm for correlation between magnetic resonance
imaging (MRI) and whole-mount specimen images to localize
prostate cancer [19]. Theoretically, these approaches may also
be applicable in the ultrasound identification and localiza-
tion of cancerous regions in breast cancer. Nonetheless,
few studies have focused on this aspect. The correlation
of ultrasound modality and readily accessible biopsy WSI
remains open to question.

Therefore, this study aims to identify and localize
cancerous regions in breast cancer based on a CNN algorithm
that integrates high-frequency ultrasound (HFUS) images
with WSI histopathology. The predictive performance of the
model will be assessed.

Methods
Study Population
Consenting participants were recruited between July 2022 and
February 2023 and were included as the training, valida-
tion, and test population. The eligibility criteria included
the following: (1) index lesion was defined as category 4
or 5 according to the fifth edition of the American College
of Radiology Breast Imaging Reporting and Data System
(BI-RADS) of ultrasound [20]; (2) index lesion was visible on
HFUS, and complete imaging data were stored; (3) underwent
ultrasound-guided breast lesion biopsy and the histopathol-
ogy indicated breast cancer. Participants were excluded if
(1) the biopsy specimen was incomplete or inaccessible; (2)
the breast ultrasound images were incomplete; (3) there was
a history of treatment for breast cancer (surgery, antihor-
monal therapy, immunotherapy, and radiation therapy); (4)
the pathologic diagnosis was incomplete. The study sample
included 163 consecutive participants undergoing ultrasound-
guided breast biopsy for suspicion of cancer. Of these,
three participants whose ultrasound images had poor quality
and one who did not provide research consent were exclu-
ded. Participants with incomplete, fractional tissue speci-
mens (n=2) and benign histology reports (n=52) were also
excluded.
Ultrasound and CNB Examination
The overall design of this study is shown in Figure 1.
Expert radiologists with at least 10 years of experience
performed breast ultrasound examinations and ultrasound-
guided CNB procedures following the standard practice
protocol. Location, number, and morphologic characteristics
(size, shape, orientation, margin, echo pattern, vascularity,
and calcifications) of lesions were identified and categoriza-
tions were assigned by the expert radiologists according to
the fifth edition of ultrasound BI-RADS [20]. An Aplio i900
Ultrasound System (Canon) with an i24LX8 high-frequency
linear probe (frequency range: 8.0‐18.0 MHz) was used to
generate breast ultrasound images. All images were stored in
DICOM format for subsequent analysis.
WSI Acquisition
When breast cancer was suspected, an ultrasound-guided
CNB procedure was performed by expert radiologists to
determine the diagnosis. MAGNUM biopsy instruments
(BARD) with disposable core tissue biopsy needles (16G, 22
mm, MN1620, BARD) were adopted. During the proce-
dure, the needle tip was positioned approximately 0.5 cm
from the target biopsy region. The radiologists aligned the
ultrasound probe and needle to visualize the entire needle
tract. Subtle needle deflections were occasionally observed.
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These deflections were dynamically corrected in real time by
adjusting the needle trajectory. The radiologists captured two
B-mode HFUS images per biopsy for subsequent registra-
tion, including one pre-fire and one post-fire. To ensure
the specimens were representative, biopsies were taken by
the radiologist from different regions of the lesion, typically
4‐6 samples, focusing on solid areas on B-mode ultrasound
or areas with abundant vascularity on color Doppler flow
imaging. When multiple lesions were encountered, the most

suspicious lesion for malignancy was chosen for analysis.
To facilitate the follow-up spatial registration of ultrasound
and histopathologic images, the needle tip side of the biopsy
specimen from the index lesion was stained with biological
tissue dye (BIOGNOST), depicted in Figure S1 in Multime-
dia Appendix 1. After 2 to 5 minutes of coloration, the biopsy
specimens were placed in 10% neutral buffered formalin for
fixation and sent for histopathologic examination.

Figure 1. Workflow of the proposed cancerous regions identification protocol in this study. First, we got cropped HFUS images and corresponding
spatially aligned biopsy WSIs. Second, a registration process was applied to achieve anatomic correlation. Third, the segmentation model was
constructed using the FCN-101 and DeepLabV3 architectures. AI: artificial intelligence; HFUS: high-frequency ultrasound; ROI: region of interest;
WSI: whole slide image.

The tissue samples were fixed and oriented during the
embedding process to preserve the longitudinal axis. Each
3 μm histological slide was then sectioned parallel to the
initial needle trajectory, thereby ensuring that the analyzed
WSI represented the same gross anatomical plane captured
by HFUS. The tissue strips were very small, thus the
dimensional changes and distortion introduced by histological
processing were assumed to be limited. Each section was
stained with H&E. For each participant, all slides stained with
H&E were reviewed by two experienced breast pathologists
(with 5 y and 10 y of experience), and the histopathologic

type was reported. Scanning of the H&E slides was per-
formed using a KFBIO Digital Pathology Slide Scanner
(KF-PRO-020) with a 200X objective lens. Representative
heterogeneous cancer cell distribution of breast cancer in
biopsy WSI is depicted in Figure S2 in Multimedia Appendix
1.
Imaging Registration
The expert pathologist with 10 years of experience used
the open-source software QuPath (version 0.4.0) for digital
histopathology analysis. The maximal cross-section of the
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extracted core was used for analysis. Cancer cells were
identified based on nuclear atypia and mitotic figures. The
regions of interest (ROIs) of cancerous regions were manually
outlined on all high-resolution WSI slices, generating a
per-pixel cancer cell labeling (Figure 2).

For 4‐6 samples from one lesion, the expert pathologist
selected 1‐4 specimens for further registration processing.
The method for selecting was based on three criteria: (1)
intact and well-formed; (2) length matches the needle notch
(22 mm); (3) clear and distinguishable staining. For each
selected tissue sample, one radiologist with at least 5 years
of experience correlated the WSI to two captured B-mode
HFUS images. To ensure the spatial registration from WSI to

the HFUS images, the radiologist compares the pre-fire and
post-fire HFUS images using Photoshop software (version
CC 2019; Adobe Inc). In the software, the needle tip position
in the pre-fire image was taken as the starting point; actual
length of the biopsy specimen was determined by the needle
projection distance in the post-fire image. Then, the radiolog-
ist cropped the biopsy area in the pre-fire image for subse-
quent annotation and analysis. The detailed image cropping
process is demonstrated in Figure 2. The HFUS image of
the needle tract was then saved in JPG format. The ROIs
outlined in WSIs were converted to correlated HFUS images
via Labelme software, an open-source image annotation tool
(version 5.1.0).

Figure 2. Spatial registration and mapping protocol between HFUS and WSI. We compared the pre-fire image and post-fire image to crop the needle
tract in HFUS images. An experienced pathologist manually outlined the cancerous cells on WSI images using QuPath software (version 0.4.0 [21]),
which were transferred to the cropped HFUS images, creating the labeled dataset for training. HFUS: high-frequency ultrasound; ROI: region of
interest; WSI: whole slide image.

Data Preprocessing
The HFUS images and their ROIs annotation were obtained
to establish the CNN prediction model. Open-source libraries
including Python (version 3.8.11; Python Software Founda-
tion), Imgviz (version 1.5.1), and Numpy (version 1.21.6)
were used to convert the dataset into the standard VOC
format. To enhance the robustness and generalization
capability of the model, data augmentation strategies, such
as random horizontal flipping, rotation, and pixel transfor-
mations, were used to increase the generalizability of the
model. The dataset was randomly divided into training
(n=270, 70%), validation (n=78, 20.2%), and test (n=38,
9.8%) subsets using a 7:2:1 ratio with no overlap between the
subsets. Image pixel values were normalized using the z-score
method to reduce computation burden and accelerate model
convergence.
Model Development
The fully automated segmentation CNN model was designed
to identify cancerous regions in breast cancer based on
HFUS images, with the ROIs in WSI as the reference
standard. The independent CNN model was trained with
advanced FCN-101 [22] and DeepLabV3 [23] networks
as the backbone, separately. During training, the models
were adapted using the AdamW optimized algorithm and
CosineAnnealing learning rate adjustment curve to improve

efficiency. The weighted Dice loss function was used to
mitigate the data imbalance during the training process, as
plotted in Figure S3 in Multimedia Appendix 1. The iteration
parameters with the lowest loss values were chosen, which
were 0.6626 for the FCN-101 model and 0.7285 for the
DeepLabV3 model. In the fine-tuned process, parameters
were selected to construct the segmentation model when
the best performance on the test dataset was achieved.
Finally, cancerous regions in breast cancer were localized.
More details on the CNN model are provided in Multime-
dia Appendix 1. The source code for our CNN models is
available on GitHub [24].
Statistical Analysis
All statistical analysis was conducted with IBM SPSS
Statistics 25.0 (version 25.0; IBM Corp), Python (version
3.8.11; Python Software Foundation), and R software (version
4.2.1, R Foundation for Statistical Computing). Continuous
variables were exhibited as means (SDs) or medians and
IQRs and compared using a 1-sample t test or Mann-Whit-
ney U test where appropriate. Categorical variables were
expressed as counts and percentages and compared through χ2

tests. To assess and compare the segmentation performance of
CNN models based on independent networks, pixel accuracy
(PA), Dice similarity coefficient (DSC), mean Intersection
over Union, precision, and recall were calculated. These
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metrics were computed separately for each test image, and
the final performance values were obtained by averaging
the image-level results across the entire dataset. To avoid
inflated degrees of freedom arising from multiple images
per participant, a paired-sample t test was performed at the
participant level to compare the performance of FCN-101
and DeepLabV3 models. Normality of the paired differen-
ces was confirmed using the Shapiro-Wilk test. Detailed
evaluation metrics were demonstrated in the Supplementary
Methods in Multimedia Appendix 1. The confusion matri-
ces were adopted to show the pixel-level classification of
cancerous regions and normal tissue based on aggregated raw
pixel counts. Two-tailed P<.05 was considered statistically
significant.
Ethical Considerations
This single-center prospective study involving human
participants was approved by the local institutional review
board of the First Affiliated Hospital of Sun Yat-sen
University (Ethics [2023]842). Written informed consent was
obtained from all participants prior to their inclusion in the
study. This study was conducted in accordance with the
Declaration of Helsinki and its subsequent amendments. All
data were deidentified before analysis to ensure participant
privacy. Participants did not receive any financial or material

compensation, as all procedures were part of routine clinical
care, and the analytical use of the resulting data was clearly
explained to participants during enrollment. No identifiable
images or personal information are included.

Results
Participant Characteristics
A total of 163 individual participants received ultrasound-gui-
ded breast biopsy, and 58 participants were excluded (Figure
3). The final prospective dataset contained 105 participants
(mean age, 53.7, SD 11.3 y old; all female) diagnosed as
breast cancer with 386 HFUS images of the needle tract.
All biopsies ultimately achieved successful targeting and
adequate sampling in the 105 participants. Among them, 64
(87.7%), 19 (95%), and 9 (75%) invasive breast cancer and
9 (12.3%), 1 (5%), and 3 (25%) ductal carcinomas in situ
were identified in the training, validation, and test subsets,
respectively. Characteristics were compared between three
subsets in Table 1 and no evidence of a statistical differ-
ence was observed, except for vascularity, where internal
vascularity of breast lesions was observed in the training
dataset (P=.03).

Figure 3. Flowchart showing inclusion and exclusion criteria of participants. BI-RADS: Breast Imaging Reporting and Data System; US: ultrasound;
WSI: whole slide image.
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Table 1. Participants and breast cancer characteristics. Unless otherwise indicated, data are numbers of lesions, with the percentages in parentheses.
Characteristic Training set (n=73) Validation set (n=20) Testing set (n=12) P value
Age (y), mean (SD) 52.7 (SD 11.2) 57.8 (SD 13.2) 52.8 (SD 7.4) .21
Lesion number, n (%) .08
  Solitary 64 (87.7) 19 (95) 8 (66.7)
  Numerous 9 (12.3) 1 (5) 4 (33.3)
BI-RADSa categorization, n (%) .96
  BI-RADS 4a 5 (6.8) 1 (5) 1 (8.3)
  BI-RADS 4b 9 (12.3) 3 (15) 1 (8.3)
  BI-RADS 4c 18 (24.7) 3 (15) 2 (16.7)
  BI-RADS 5 40 (54.8) 13 (65) 8 (66.7)
Lesion location, n (%) .68
  Left breast 32 (43.8) 11 (55) 6 (50)
  Right breast 41 (56.2) 9 (45) 6 (50)
Quadrant, n (%) .30
  Upper outer quadrant 45 (61.6) 9 (45) 5 (41.7)
  Lower outer quadrant 10 (13.7) 1 (5) 2 (16.7)
  Upper inner quadrant 12 (16.4) 6 (30) 3 (25)
  Lower inner quadrant 6 (8.2) 4 (20) 2 (16.7)
Volume (mm3), mean (SD) 4.1 (SD 5.1) 3.4 (SD 2.8) 4.3 (SD 7.0) .82
Orientation, n (%) .22
  Parallel 82 (89.1) 15 (75) 11 (91.7)
  Not parallel 10 (10.9) 5 (25) 1 (8.3)
Echo pattern, n (%) .78
  Hypoechoic 86 (93.5) 20 (100) 12 (100)
  Heterogeneous 6 (6.5) 0 (0) 0 (0)
Margin, n (%) .52
  Circumscribed 6 (8.2) 2 (10) 2 (16.7)
  Not circumscribed 67 (91.8) 18 (90) 10 (83.3)
Shape, n (%) .47
  Oval/Round 3 (4.1) 0 (0.0) 1 (8.3)
  Irregular 70 (95.9) 20 (100.0) 11 (91.7)
Calcification, n (%) .40
  Absence 36 (49.3) 25 (59.5) 8 (66.7)
  Calcification in a mass 37 (50.7) 17 (40.5) 4 (33.3)
Vascularity, n (%) .03
  Absent 11 (15.1) 7 (35) 2 (16.7)
  Internal vascularity 56 (76.7) 11 (55) 7 (58.3)
  Vessels in rim 6 (18.2) 2 (10) 4 (33.3)
Histopathologic pattern, n (%) .13
  Invasive breast cancer 64 (87.7) 19 (95) 9 (75)
  Ductal carcinoma in situ 9 (12.3) 1 (5) 3 (25)

aBI-RADS: Breast Imaging Reporting and Data System.

Model Evaluation
The segmentation capacity of the image-based CNN model
based on FCN-101 and DeepLabV3 in the test dataset
is provided in Table 2. The table presents image-level
descriptive statistics, while all inferential comparisons were
conducted at the participant level (n=12). In the test dataset,

FCN-101 showed higher accuracy (PA: 86.91% vs 69.55%,
P=.002), similarity (DSC: 77.47% vs 69.90%, P<.001),
mean Intersection over Union (67.47% vs 60.29%, P<.001),
and precision (66.01% vs 56.15%, P<.001) compared to
DeepLabV3. There was no evidence of a difference in recall
(54.64% vs 58.46%, P=.80) between the two algorithms.
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Table 2. Comparison of prediction performance of FCN-101 and DeepLabV3 models in predicting cancerous regions in breast cancer in the test
dataset. All metrics reflect image-level performance and are expressed as percentages. Statistical comparisons (P values) were performed at the
participant level using paired analyses.
Evaluation metric FCN-101, % (95% CI) DeepLabV3, % (95% CI) P value
PAa 86.91 (80.30-94.77) 69.55 (65.82-73.99) .002
DSCb 77.47 (70.74-85.88) 69.90 (63.43-75.02) <.001
mIoUc 67.47 (59.70-75.54) 60.29 (54.19-66.57) <.001
Precision 66.01 (55.69-73.45) 56.15 (48.12-64.17) <.001
Recall 54.64 (45.57-63.75) 58.46 (49.03-65.66) .80

aPA: pixel accuracy.
bDSC: Dice similarity coefficient.
cmIoU: mean Intersection over Union.

The confusion matrix presented in Figure 4 evaluates the
pixel categorization capacity, providing further insight into
the per-pixel predictions of each model. The results indicated
that the FCN-101 model successfully predicted the majority
of cancerous pixels (5,846,319 vs 4,649,445 pixels; P<.05).
However, the DeepLabV3 model demonstrated more accurate

predictive pixels in background components (2,440,670 vs
1,895,664 pixels; P<.05). Based on the pixel-wise confusion
matrices, the recall and specificity of FCN-101 were 86.37%
and 43.07%, while those of DeepLabV3 reached 68.69% and
55.46%.

Figure 4. Confusion matrices for predicting cancerous regions. Confusion matrices were applied to summarize pixel-level classification outcomes
aggregated across the entire test dataset for (A) FCN-101 and (B) DeepLabV3, indicating discordance or concordance with the ground truth
(cancerous cell/background) from WSI results. WSI: whole slide image.

Model Visualization
In the test dataset, the automatic segmentation results of
cancerous regions based on the two networks were visually
displayed and qualitatively compared with the gold stand-
ard to evaluate the predictive performance of the mod-
els. Cancerous regions in the CNB biopsy area of three
different participants’ breast HFUS images were identified

and localized in Figure 5, as generated by the FCN-101
and DeepLabV3 models. Cancerous region predictions by
the two CNN models align closely with the actual histopa-
thology. Additionally, even in challenging cases with unclear
boundaries and mixed internal echoes, as represented in
Example 2, both models were able to accurately predict the
specific distribution of cancerous regions within the lesions.
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Figure 5. Examples of identifying cancerous regions in three participants with invasive breast cancer. (A) Original HFUS images, with biopsy needle
(white arrow) pointing to the needle tract area (red frame). (B) Annotation of ground truth labels by an expert pathologist. (C) Prediction results of the
FCN-101 model (gray area). (D) Prediction results of the DeepLabV3 model (gray area). HFUS: high-frequency ultrasound.

Discussion
Principal Results
Breast cancer is a group of highly heterogeneous diseases
with varying imaging features. Thus, differential diagno-
sis through imaging is limited [25,26]. Development and
validation of a fast and noninvasive method equal to
histologic results is urgently needed. Here, we developed a
cancerous region classifier using a deep learning network
with true labels from radiology-pathology registration. The
FCN-101 model was superior to the DeepLabV3 model
in terms of PA (86.91% vs 69.55%; P=.002) and DSC
(77.47% vs 69.90%; P<.001). Recall values were 54.64%
and 58.46%, with no significant difference observed between
them (P=.80). The FCN-101 model excelled in identifying
cancerous regions (5,846,319 vs 4,649,445 pixels; P<.05),

whereas DeepLabV3 was more accurate for normal tis-
sue (2,440,670 vs 1,895,664 pixels; P<.05) in pixel-level
predictions. In the clinical workflow, the model could
segment cancerous regions in grayscale ultrasound images
of the breast. The results highlight the model’s potential for
advancing breast cancer assessment at the microscopic level
via ultrasound imaging.

Efforts have been made to establish a methodology
pertaining to image-histopathology registration [27-32]. For
example, Ward et al [27] and Kwak et al [28] demonstra-
ted accurate alignment between MRIs and digital histopatho-
logic analyses in patients with prostate cancer. In addition,
Wildeboer et al [29] established a multiparametric machine
learning on ultrasound for histopathology localization of
prostate cancer. However, similar research in breast imag-
ing remains limited. In our study, WSIs from CNB provi-
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ded accessible clinical data suitable for state-of-the-art deep
learning algorithms.

Thus, a strength of this study is that we combined
accessible CNB tissue samples with real-time ultrasound
imaging to facilitate the registration process. The biopsy
needle targeted the desired section plane while the tissue
sample was obtained at the same level, which was cru-
cial for registration. Moreover, HFUS offers spatial tissue
distribution data, enhancing dynamic biopsy procedures and
clinical utility. However, subtle registration errors existed; for
example, the biopsy needle was deflected when encountering
small breast tumors or rigid glandular tissue [33]. To address
this, our skilled operators actively mitigated needle deflec-
tions. Pre-fire and post-fire ultrasound images were compared
to ensure that the extracted tissue precisely corresponded to
the visualized ultrasound plane.

Studies have investigated the biopsy efficacy between
existing methods. Currently, three image-guided breast biopsy
techniques are used: stereotactic-, ultrasound-, and MRI-gui-
ded biopsies. Stereotactic biopsy is indicated for calcifica-
tions, and MRI-guided biopsy is indicated for lesions visible
only on MRI; both primarily assess ductal proliferative
lesions. Ultrasound-guided biopsy, however, applies to a
broader range of breast lesions [34]. Yashima et al [35]
retrospectively compared the positive biopsy rate in 453
patients with 500 lesions that underwent ultrasound-guided
core needle biopsy or vacuum-assisted biopsy and repor-
ted positive biopsy rates of 61.9% and 72.4% (P=.032),
respectively. Unrepresentative CNB specimens might not
fully reflect the overall characteristics of the tumor [17].
Although multipoint sampling and repetitive biopsy increased
the detection rate, they also increased complications like
bleeding, infection, and tumor spreading [36]. Based on
this, our model may generate real-time cancer prediction
heatmaps, where suspicious regions are highlighted to assist
biopsy site selection during CNB sampling. However, prior to
clinical use, the proposed approach should undergo rigorous
supervision and ethical evaluation to ensure its safety and
reliability in guiding biopsy decisions.

The visualized cancerous map was used to enhance the
interpretability of the model. Here, we found that distribu-
tion maps facilitated the assessment of cancerous regions by
highlighting the hypoechoic area in HFUS images (illustrated
in Figure 5), which is in accordance with clinical routine.
Furthermore, areas of abnormal echogenicity or edges of
lesions often corresponded to cancerous regions identified
in histopathology, which was also correctly predicted by the
deep learning models. Guided by the ultrasound-based CNN
algorithm, doctors could identify suspicious regions based on
predicted cancerous regions, even in small lesions, helping
to ensure sufficient and representative CNB samples for
accurate histopathological assessment. However, the model is
intended to assist clinicians and cannot replace their judgment
in biopsy decision-making.

Notably, there is a discrepancy between the per-image
recall and the pixel-level aggregated recall, which can
be explained by the scale-dependent nature of these

two evaluation strategies. This scale-dependent discrepancy
indicates that the current model achieves higher sensitivity for
larger tumors, while the detection of small lesions remains
more challenging. It highlights an important direction for
future optimization aimed at improving detection stability
across different tumor sizes. Although the two models
had advantages in predicting cancerous regions, the confu-
sion matrix analysis revealed a relatively low specificity,
particularly for the FCN-101 model (43.07%). This indicates
the presence of false-positive segmentation, with a proportion
of normal background pixels being incorrectly segmented
as cancerous. Such oversegmentation may be acceptable in
identifying suspicious regions when emphasizing sensitivity.
However, in the context of biopsy guidance, such behavior
highlights the need for further optimization toward more
precise boundary discrimination. Future work will focus on
improving specificity through better loss function design,
boundary-aware learning, and postprocessing strategies.
Limitations
This study combined registered WSIs and HFUS images
to enhance cancerous region recognition in breast cancer,
which has not been well-established in the literature. Still,
we acknowledge the limitations of this study. First, it is
a single-center prospective study with a small and poten-
tially homogenous dataset, which undermines the model’s
generalizability and heightens the risk of overfitting. Besides,
the small sample size in the test set limits statistical power
and the generalizability of the prospective findings. To
address this, we plan to incorporate data from multiple centers
for robust external validation and conduct prospective studies
to explore the models’ role in assisting breast biopsy and
postoperative follow-up after neoadjuvant therapy. Second,
the relatively low recall indicates that some malignant regions
may be missed; future studies will focus on improving model
sensitivity through ensemble and data balancing approaches.
Besides, benchmarking against widely adopted baseline
models (eg, U-Net) could be performed in future research.
Third, there is an absence of molecular subtype or patho-
logical classification analysis and an imbalance of specific
subtypes with small sample sizes (ductal carcinoma in situ
in the test set). Given that different subtypes and cancer
types exhibit distinct morphological features, a subtype-spe-
cific analysis could reveal performance differences and lead
to refined models optimized for specific subtypes. Fourth,
other imaging modalities such as color Doppler flow imaging,
elastography, and contrast-enhanced ultrasound also play
paramount roles in breast cancer diagnosis. For example,
the lower prevalence of internal vascularity in the test set
compared with the training set may have influenced model
performance. Combining the information from multiple
modalities could potentially further improve the perform-
ance of the CNN model. Fifth, the ultrasound-histopathology
registration was based on biopsy WSIs and ultrasound images
of the needle tract. Spatial correspondence should be regarded
as approximate, and pixel-level metrics may overestimate the
physical precision, which necessitates further refinement and
validation via the whole-mount specimen.
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Conclusion
In conclusion, we have proposed and evaluated deep learning
models to identify cancerous regions in breast cancer in
HFUS images through spatial registration of breast biopsy

WSIs and HFUS images. This technique is potentially useful
in conventional ultrasound examinations and ultrasound-gui-
ded breast biopsy procedures.
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