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Abstract
Background: Opioids are a widely prescribed class of medication for pain management. However, they have variable efficacy
and adverse effects among patients, due to the complex interplay between biological and clinical factors. Pharmacogenetic
testing can be used to match patients’ genetic profiles to individualize opioid therapy, improving pain relief and reducing
the risk of adverse effects. Despite its potential, the pharmacogenetic testing uptake (use of pharmacogenetic testing) remains
low due to a range of barriers at the patient, health care provider, infrastructure, and financial levels. Since testing typically
involves a shared decision between the provider and patient, predicting the likelihood of a patient undergoing pharmacogenetic
testing and understanding the factors influencing that decision can help optimize resource use and improve outcomes in pain
management.
Objective: This study aimed to develop machine learning (ML) models, identifying patients’ likelihood of pharmacogenetic
uptake based on their demographics, clinical variables, medication use, and social determinants of health.
Methods: We used electronic health record data from a single center health care system to identify patients prescribed
opioids. We extracted patients’ demographics, clinical variables, medication use, and social determinants of health, and
developed and validated ML models, including a neural network, logistic regression, random forest, extreme gradient boosting
(XGB), naïve Bayes, and support vector machines for pharmacogenetic testing uptake prediction based on procedure codes.
We performed 5-fold cross-validation and created an ensemble probability-based classifier using the best-performing ML
models for pharmacogenetic testing uptake prediction. Various performance metrics, uptake stratification analysis, and feature
importance analysis were used to evaluate the performance of the models.
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Results: The ensemble model using XGB and support vector machine–radial basis function classifiers had the highest
C-statistics at 79.61%, followed by XGB (78.94%), and neural network (78.05%). While XGB was the best-performing model,
the ensemble model achieved a high accuracy (32,699/48,528, 67.38%), recall (537/702, 76.50%), specificity (32,162/47,826,
67.25%), and negative predictive value (32,162/32,327, 99.49%). The uptake stratification analysis using the ensemble model
indicated that it can effectively distinguish across uptake probability deciles, where those in the higher strata are more likely
to undergo pharmacogenetic testing in the real world (320/4853, 6.59% in the highest decile compared to 6/4853, 0.12% in
the lowest). Furthermore, Shapley Additive Explanations value analysis using the XGB model indicated age, hypertension, and
household income as the most influential factors for pharmacogenetic testing uptake prediction.
Conclusions: The proposed ensemble model demonstrated a high performance in pharmacogenetic testing uptake prediction
among patients using opioids for pain. This model can be used as a decision support tool, assisting clinicians in identifying
patients’ likelihood of pharmacogenetic testing uptake and guiding appropriate decision-making.
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Introduction
Opioid prescribing presents a complex therapeutic challenge
due to variable efficacy and the risk of adverse effects,
often resulting in a trial and error approach for prescrip-
tion. These variations in opioid response often arise from
interindividual differences in pharmacokinetics and pharma-
codynamics, influenced in part by genetic variations [1].
Over recent decades, pharmacogenetic testing has emerged as
a promising strategy to tailor opioid therapy to an individ-
ual genetic profile, with the goal of enhancing pain relief,
minimizing adverse effects, and improving overall patient
outcomes. Several opioids, including codeine, tramadol,
hydrocodone, and oxycodone, are metabolized to varying
extents by cytochrome P450 family 2 subfamily D member
6 (CYP2D6), which is an enzyme involved in the metab-
olism of many drugs [2]. A pragmatic trial demonstrated
improved composite pain intensity outcomes with CYP2D6-
guided pain management, highlighting the potential benefits
of personalized therapy based on pharmacogenetic testing [2].
Based on the current evidence, the Clinical Pharmacogenet-
ics Implementation Consortium (CPIC) provides guidelines
on using CYP2D6 genotype results for prescribing tramadol,
hydrocodone, and codeine [2]2 yet their real-world impact
depends on whether patients offered pharmacogenetic testing
actually complete it. In opioid prescribing contexts, uptake
hinges on perceived use and timing, out-of-pocket costs,
health literacy, trust, social context, and clinician offering
practices, as well as workflow constraints that differ across
acute, perioperative, and chronic pain settings.

Electronic health records (EHRs) contain rich informa-
tion relevant to testing acceptance: prior and current opioid
exposures, pain diagnoses, comorbidity burden, care setting,
prescriber specialty, monitoring and follow-up patterns,
previous laboratory or genetic testing, and engagement with
the health system. Machine learning (ML) such as neural
network (NN), random forest (RF), and logistic regression
(LR) can synthesize these heterogeneous and high-dimen-
sional features [3] to produce calibrated, patient-level
probability estimates of pharmacogenetic testing uptake at the
moment testing is offered. Such predictions could help health
systems, including patient care teams and insurers, tailor

communication (eg, language, framing, and channel), select
appropriate clinical checkpoints (such as before initiating
certain opioids or at dose escalation), and allocate resources
where they are most likely to improve test uptake with-
out adding unnecessary burden. These predictions may be
especially valuable for patients who are expected to benefit
most from testing (though this was not the focus of this
study), enabling patient care teams to dedicate additional
resources to support uptake in this population.

Prior work has developed ML predictive models to support
uptake for vaccines [4], cancer screening [5], and genetic
counseling [6]; however, pharmacogenetics-specific models
for opioid-related testing are scarce, and few studies evaluate
calibration, clinical use, fairness, and workflow integration
together. In this study, we aimed to predict the likelihood that
patients receiving opioid prescriptions will undergo pharma-
cogenetic testing after an offer in routine care. We hypothe-
sized that ML models could accurately predict the likelihood
of pharmacogenetic testing uptake among opioid-prescribed
patients by identifying patterns in demographic, clinical, and
health care use factors associated with testing behavior under
current practice conditions. Our objectives were to achieve
strong discrimination and predictive performance of the ML
models, and reliable model calibration through patients’
stratification in subgroups based on the predicted probabil-
ity of test uptake. We emphasized model explainability to
support clinician understanding and sought to identify factors
influencing the likelihood of pharmacogenetic testing uptake
in opioid therapy. Ultimately, we aimed to complement,
rather than replace, clinical judgment, potentially facilitat-
ing better use of pharmacogenetic testing for precision pain
management. By focusing on actionable predictions at the
point of offer, this paper may help programs deliver the
right message through the right channel at the right time:
improving test uptake, informing safer opioid prescribing, and
advancing equitable delivery of pharmacogenetic testing.

Methods
Overview
The overall ML pipeline for pharmacogenetic testing uptake
prediction is shown in Figure 1. The pipeline involves 4
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steps, including study design, data preprocessing and feature
selection, model development, and comprehensive evaluation.
Each step involves several tasks that are critical to building

and evaluating the final predictive model. The details of each
step are described in this section.

Figure 1. Overall machine learning pipeline for pharmacogenetic testing uptake prediction. CPIC: Clinical Pharmacogenetics Implementation
Consortium; ROC: receiver operating characteristic; SDoH: social determinants of health; SHAP: Shapley Additive Explanations; SVM: support
vector machine; SVM-RBF: support vector machine–radial basis function; XGBoost: extreme gradient boosting.

Ethical Considerations
We used real-world deidentified EHR data available from
the University of Florida Health Integrated Data Repository
(IDR) to develop the models. These data included information
on patients’ demographics, clinical variables, and medica-
tion use from 2011 to 2023. The study was conducted in
compliance with ethical standards and was approved by the
University of Florida Institutional Review Board under the
reference number IRB202301927. This study is a secondary
analysis of existing deidentified EHR data, and the approved
IRB covers secondary analyses without additional consent.
Therefore, no informed consent was obtained.
Study Design
Patients’ age range was 1 to 89 years, and we did not exclude
any patients based on age. Patients were included if they
were aged between 18 and 89 years and had an opioid
prescription order for noncancer treatment from 2011 to 2023.
Patients were stratified into an intervention group (patients
with a minimum of one pharmacogenetic testing order) and
a control group (those with no history of pharmacogenetic
testing order). We used current procedural terminology codes

to determine patients’ pharmacogenetic testing. To create the
cohort for ML model development, we defined the index
dates separately for intervention and control groups. The
index date for the intervention group was defined as the most
recent date of an opioid prescription prior to pharmacogenetic
testing. The index date for the control group was defined as
the earliest date of opioid prescription. All baseline covariates
were collected in the 1-year period prior to the index date.
The outcome was a binary target variable, indicating whether
the patient was in the intervention or control group based on
their pharmacogenetic testing record. If a patient was in the
intervention group, their outcome value was encoded as 1 and
otherwise 0.
Feature Selection and Data
Preprocessing
We selected four different categories of features for our
study sample: (1) demographics, (2) clinical history, (3)
medication use, and (4) social determinants of health
(SDoH). Demographics included age, sex, and race, where
age was continuous, sex was binary, and race was mul-
ticategory which was one-hot-encoded to get separate
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binary inputs for each racial group and prevent the ordi-
nality assumption by the model. We used the Interna-
tional Classification of Diseases, Ninth Revision (ICD-9)
and International Classification of Diseases, Tenth Revision
(ICD-10) codes to determine the clinical history variables,
including a diagnosis of AIDS/HIV, alcohol abuse, blood
loss anemia, cardiac arrhythmias, chronic pulmonary disease,
coagulopathy, systolic (congestive) heart failure, deficiency
anemia, depression, diabetes with complications, diabe-
tes without complications, drug abuse, fluid and electro-
lyte disorder, hypertension, hypothyroidism, liver disease,
lymphoma, metastatic cancer, neurodegenerative disorders,
obesity, paralysis, peptic ulcer disease, peripheral vascular
disease, psychosis, pulmonary circulation disorders, renal
failure, rheumatoid arthritis or collagen, solid tumor without
metastasis, valvular disease, and weight loss. Furthermore, we
included the Elixhauser comorbidity index [7] to calculate the
overall health care burden for each patient. In addition, the
SDoH information included the average household size, Gini
index as a measure of income inequality, median household
income, and median gross rent, all linked to the University
of Florida Health EHR based on year and ZIP code using the
Agency for Healthcare Research and Quality SDoH database
[8]. We removed all the missing data, so all patients had
complete information for model development.
Model Development and Hyperparameter
Optimization
We adopted a comprehensive strategy for model develop-
ment using LR, extreme gradient boosting (XGB) [9], RF
[10], support vector machine (SVM) [11] with linear and
radial basis function (RBF) kernels (ie, linear support vector
machine [LSVM] and SVM-RBF), and NN to capture
predictive performance across a wide range of models for
pharmacogenetic testing uptake prediction. LR was first
developed due to its ability to capture linear relationships
in the data and providing baseline performance. Similarly,
the naïve Bayes (NB) model was developed due to its
simplicity and effectiveness in high-dimensional spaces.
However, considering LR’s and NB’s limitations in captur-
ing complex nonlinear relationships, we trained tree-based
models, including XGB and RF, given their ability to capture
nonlinear interactions that may be critical to accurately
predicting the pharmacogenetic testing uptake. LSVM and
SVM-RBF were developed to capture high-dimensional
complex interactions among input features. Finally, the NN
was trained to explore more complex interactions among
features that may be missed by traditional models.

To train the models, we randomly partitioned the data
with a stratified 80/20 train/test split. To mitigate the risk of
overfitting and get the best performance out of ML models,
we conducted 5-fold cross-validation. For LR, we tuned the
hyperparameter C with values of 0.01, 0.1, 1, and 10. To
tune NB, we used smoothing parameters ranging from 10−9

to 10−5 with 10x increments. Both XGB and RF models were
tuned with 100, 200, 300, 400, and 500 trees to explore the
effect of different numbers of trees on performance. LSVM
and SVM-RBF were optimized with C values equal to 0.01,

0.1, 1, and 10. Finally, NNs were trained with all possi-
ble combinations of various optimizers and learning rates.
The optimizers included stochastic gradient descent [12],
Adam [13], and Nadam [14], and learning rates ranged from
10−5 to 10−1 with 10x increases. The best hyperparameters
were selected based on the highest area under the receiver
operating characteristic curve (AUC) or C-statistics achieved
on the training set during the cross-validation process.

We trained all the models using the best-performing
hyperparameters and evaluated their performance on the test
set. Notably, we used a balanced class weighting approach,
assigning proportionally higher weights to the minority class,
to decrease the risk of overfitting when training each of
the models. As an additional analysis, we used the syn-
thetic minority over-sampling technique (SMOTE) [15] with
a 1:1 class ratio between minority and majority samples,
creating a balanced dataset for model training and evalua-
tion. To improve the performance and enhance generalizabil-
ity of the models, we created a weighted probability-based
ensemble classifier. We used a grid search optimization
procedure, searching for the best combination of model
weights, conditioned on having a total sum of weights equal
to 1. The ensemble model achieving the highest AUC or
C-statistics was selected as the final best model for pharmaco-
genetic testing uptake prediction.
Comprehensive Evaluation
We followed TRIPOD+AI (Transparent Reporting of a
Multivariable Prediction Model for Individual Prognosis
or Diagnosis + Artificial Intelligence) guidelines [16] to
evaluate the performance of ML models. AUC or C-statis-
tics demonstrates the discriminative ability of the model,
considering the trade-off between sensitivity and specificity
at different threshold values. DeLong test [17,18] is used
to identify whether there is a statistically significant differ-
ence between AUC values. Accuracy provides the overall
performance of the model by calculating the proportion of
true negative and true positive cases compared to all the
samples in the data. However, this measure may be mis-
leading for rare events and not suitable for highly imbal-
anced datasets. To address this, we calculated specificity,
which measures the model’s ability to correctly identify true
negative cases and recall or sensitivity, indicating the model’s
performance for identifying true positive cases. Since model
performance may not be optimal, we used the Youden index
[19-21] to obtain the best performing classification threshold
for each model, where the highest value of “specificity+sen-
sitivity-1” is achieved. To further evaluate model perform-
ance for real-world applications, we calculated the number
needed to evaluate and predictive positives per 100 patients,
showing how many predictions must be made to identify
1 actual positive case and the number of pharmacogenetic
testing uptake predictions per 100 individuals, respectively.
Moreover, we did stratification analysis, where pharmaco-
genetic testing uptake probabilities were categorized into
10 deciles in ascending order and the percentage of actual
pharmacogenetic testing uptake in the data was identified in
each decile to evaluate the ability of the model in identify-
ing more uptakes in the higher strata. In addition, we used
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the Shapley Additive Explanations (SHAP) [22] analysis to
report feature importance and identify the features that are
most influential to pharmacogenetic testing uptake.

Results
Patient Characteristics
We used data from the University of Florida Health IDR
with patients from a wide range of demographic and
clinical backgrounds. The data included a total of 455,773
patients, 7645 (1.68%) with a recorded pharmacogenetic
testing and 448,128 (98.32%) without. After removing
160,914 further patients who had no opioid prescription,
there were 294,859 patients using opioids in the cohort.
We further excluded patients with no race information
and SDoH variables (after matching with the Agency
for Healthcare Research and Quality database). Overall,

the final cohort included 242,640 patients, where 3510
(1.45%) had a recorded pharmacogenetic testing uptake
and 239,130 (98.55%) did not. The cohort had an aver-
age age of 58 (SD 17.47) years, a gender distribution
comprising 41.49% (100,670/242,640) as male participants
and 58.51% (141,970/242,640) as female participants, and
a racial distribution of 64.94% (157,567/242,640) White
individuals, 28.77% (69,810/242,640) Black individuals, and
6.29% (15,263/242,640) belonging to other racial groups
(ie, Hispanic, White Hispanic, Black Hispanic, Asian,
Pacific Islander, American Indian, Multiracial, and other). In
addition, the cohort had an average household size of 2.58
(SD 0.28), a Gini index of 0.45 (SD 0.05), and an average
median income of US $46,324. Table 1 presents the key
sociodemographic characteristics of patients in the cohort.
Moreover, the distribution of patient characteristics in the
training and test sets is provided in Table 2.

Table 1. Sociodemographic summary of patients.
Characteristics Pharmacogenetic testing Nonpharmacogenetic testing P valuea

Number of individuals, n (%) 3510 (1.45) 239,130 (98.55) —b

Sex, n (%) <.001
  Male 1627 (46.35) 99,043 (41.42)
  Female 1883 (53.65) 140,087 (58.58)
Race, n (%) <.001
  American Indian 12 (0.34) 346 (0.14)
  Asian 30 (0.85) 2345 (0.98)
  Black 1010 (28.77) 68,800 (28.77)
  Black Hispanic 0 (0.00) 1 (0.00)
  Hispanic 1 (0.03) 168 (0.07)
  Multiracial 13 (0.37) 1165 (0.49)
  Pacific Islander 0 (0.00) 109 (0.05)
  White 2346 (66.84) 155,221 (64.91)
  White Hispanic 0 (0.00) 45 (0.02)
  Other 98 (2.79) 10,930 (4.57)
Age (y), mean (SD) 66.04 (12.99) 58.24 (17.51) <.001
Average household size, mean (SD) 2.60 (0.27) 2.58 (0.28) <.001
Gini indexc, mean (SD) 0.454 (0.051) 0.451 (0.052) <.001
Median household income (US $), mean (SD) 46,093.44 (15,015.22) 46,328.29 (15,538) .374
Median gross rentd, mean (SD) 898.12 (213.45) 905.81 (223.60) .034

aP values were calculated using a chi-square test for categorical variables and independent 2-tailed t test with equality of variance analysis for
continuous variables.
bNot applicable.
cThe Gini index ranges from 0 to 1, where 0 represents perfect equality and 1 represents perfect inequality.
dThe median gross rent is per month in US $ and is based on rented cash-paid housing units.
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Table 2. Distribution of patient characteristics in the training and test sets.
Characteristics Training (n=194,112) Testing (n=48,528)
Sex, n (%)
  Male 80,519 (41.48) 20,151 (41.52)
  Female 113,593 (58.52) 28,377 (58.48)
Race, n (%)
  American Indian 273 (0.14) 85 (0.18)
  Asian 1877 (0.97) 498 (1.03)
  Black 55,993 (28.85) 13,817 (28.47)
  Black Hispanic 1 (0.00) 0 (0.00)
  Hispanic 128 (0.07) 41 (0.08)
  Multiracial 919 (0.47) 259 (0.53)
  Pacific Islander 89 (0.05) 20 (0.04)
  White 125,938 (64.88) 31,629 (65.18)
  White Hispanic 33 (0.02) 12 (0.02)
  Other 8861 (4.56) 2167 (4.47)
Age, mean (SD) 58.36 (17.48) 58.32 (17.45)
Average household size, mean (SD) 2.58 (0.28) 2.58 (0.28)
Gini index, mean (SD) 0.45 (0.05) 0.45 (0.05)
Median household income (US $), mean (SD) 46,327.05 (15,529.07) 46,316.28 (15,536.70)
Median rent (US $), mean (SD) 905.64 (223.38) 905.92 (223.78)

Model Performance
The ROC curves of all models and their corresponding AUC
or C-statistics with 95% CIs are provided in Figure 2. The
ensemble model achieved the highest C-statistics of 79.61%
using 0.7 and 0.3 weights for XGB and SVM-RBF, respec-
tively. In contrast, NB achieved the lowest C-statistics at
72.49%. Other models had comparable C-statistics, equal

to 75.38% (RF), 76.72% (LR), 76.46% (LSVM), 77.73%
(SVM-RBF), 78.05% (NN), and 78.94% (XGB). Addition-
ally, the DeLong test results indicated that there was
a statistically significant difference (P<.05) between the
C-statistics of the ensemble model and all other classifiers,
showing its higher performance is less likely to be due to
chance.
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Figure 2. Receiver operating characteristic curves of developed models. AUC: area under the receiver operating characteristic curve, LR: logistic
regression, LSVM: linear support vector machine, NB: naïve Bayes, NN: neural network, RF: random forest, SVM-RBF: support vector machine–
radial basis function, XGB: extreme gradient boosting.

Since model performance was not optimal, we used the
Youden index [19-21] to obtain the best performing clas-
sification threshold for each model. Figure 3 portrays the
confusion matrices for all developed models based on
their Youden index threshold. Table 3 provides a sum-
mary of performance for all developed models. Accuracy

representing the proportion of correctly classified cases was
highest for XGB (35,201/48,528, 72.54%), followed by RF
(34,603/48,528, 71.31%), LSVM (34,504/48,528, 71.10%),
and SVM-RBF (34,260/48,528, 70.60%). Other classifiers
had 65% to 70% accuracy with the ensemble model having
an accuracy of 67.38% (32,699/48,528).

JMIR MEDICAL INFORMATICS Yaseliani et al

https://medinform.jmir.org/2026/1/e81048 JMIR Med Inform 2026 | vol. 14 | e81048 | p. 7
(page number not for citation purposes)

https://medinform.jmir.org/2026/1/e81048


Figure 3. Confusion matrix of models based on Youden index: (A) neural network; (B) logistic regression; (C) random forest; (D) gradient boosting;
(E) naïve Bayes; (F) linear support vector machine; (G) support vector machines-radial basis function; and (H) Ensemble model.

Table 3. Performance metrics of developed models based on Youden index.
Model Accuracy Recall Specificity NPVa PPVb AUCc

NNd 65.75 77.78 65.57 99.51 3.21 78.05
LRe 68.12 72.22 68.06 99.40 3.21 76.72
RFf 71.31 66.67 71.37 99.32 3.31 75.38
XGBg 72.54 70.23 72.57 99.40 3.62 78.94
NBh 68.38 66.24 68.41 99.28 2.99 72.49
LSVMi 71.10 67.38 71.16 99.33 3.32 76.46
SVM-RBFj 70.60 71.23 70.59 99.41 3.43 77.73
Ensemble 67.38 76.50 67.25 99.49 3.31 79.61

aNPV: negative predictive value.
bPPV: positive predictive value.
cAUC: area under the receiver operating characteristic curve.
dNN: neural network.
eLR: logistic regression.
fRF: random forest.
gXGB: extreme gradient boosting.
hNB: naïve Bayes.
iLSVM: linear support vector machine.
jSVM-RBF: support vector machine–radial basis function.

To assess the model performance in identifying true positive
cases (ie, those with a recorded pharmacogenetic testing
uptake) and true negative cases (ie, those without a recorded
pharmacogenetic testing uptake), recall and specificity were
calculated. Recall values ranged from 66.24% (465/702) to
77.78% (546/702) with the NN model achieving the highest

recall and the ensemble model achieving 76.50% (537/702).
Specificity values ranged from 65.57% (31,359/47,826) to
72.57% (34,708/47,826), with the XGB model achieving the
highest specificity. To further assess models’ performance
in distinguishing between true positives and true negatives,
negative predictive value (NPV) and positive predictive value
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(PPV) were calculated. NPV values ranged from 99.28%
(32,716/32,953) to 99.51% (31,359/31,515) with the NN
model having the highest NPV, while PPV values ranged
from 2.99% (456/15,575) to 3.62% (493/13,611) with XGB
achieving the highest value. To evaluate model fairness, we

used the ensemble model to calculate the performance metrics
across different racial groups (Table 4). All the metrics,
except NPV, exhibited notable variations across different
racial groups with AUC ranging from 74.31% to 83.29%, and
accuracy from 65.11% (20,592/31,629) to 79.15% (205/259).

Table 4. Performance metrics of developed models across racial groupsa.
Race group Accuracy Recall Specificity NPVb PPVc AUCd

White 65.11 75.27 64.95 99.44 3.11 77.73
Black 70.34 81.59 70.18 99.61 3.88 83.29
Multiracial 79.15 75.00 79.22 99.51 5.36 74.31
Asian 74.90 66.67 75.00 99.46 3.15 82.69
Other 78.27 60.87 78.45 99.47 2.94 82.32

aThe performance metrics were reported using the testing data for the racial groups with at least 4 samples in the positive class (ie, pharmacogenetic
testing uptake)
bNPV: negative predictive value.
cPPV: positive predictive value.
dAUC: area under the receiver operating characteristic curve.

The SMOTE results, including ROC curves and perform-
ance metrics measured at the Youden index are provided
in Multimedia Appendix 1. The results did not show any
improvement, and the overall performance significantly
reduced. The best-performing model was the ensemble model
with 73.63% AUC, which is lower than the AUC without
SMOTE (ie, 79.61%). All other models demonstrated a
notable decrease in AUC and other performance metrics,
especially accuracy, specificity, and NPV.

Stratification analysis results are presented in Figure
4. The analysis was performed by dividing the predicted

probabilities of pharmacogenetic testing uptake into deciles
and calculating observed uptake rates within each to assess
performance across the probability groups. The lowest decile
was decile 1 with the lowest probability values, while decile
10 represented the highest probability values. Within each
decile, observed uptake rates were calculated to plot against
the probability deciles. The observed event rates demonstra-
ted an increasing trend across the probability deciles (except
for the 5th). The event rate in the highest probability decile
was 6.59% (320/4853) while 0.12% (6/4853) in the lowest
decile.

Figure 4. Stratification analysis for the probability of pharmacogenetic testing uptake.

Figure 5 demonstrates the plots of recall values against
predictive positives per 100 and the number needed to
evaluate. Predictive positives per 100 represent the num-
ber of individuals per 100 who are predicted to undergo

pharmacogenetic testing across different recall values. The
number needed to evaluate indicates the number of individ-
uals that need to be assessed by the model to find 1 true
positive (ie, recorded pharmacogenetic testing uptake).
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Figure 5. Recall versus (A) predicted positives per 100 and (B) number needed to evaluate.

SHAP analysis for feature importance using the XGB model
has been shown in Figure 6. Age had the highest impact
on pharmacogenetic testing uptake, where older patients are
more likely to undergo pharmacogenetic testing. Hyperten-
sion and median household income were the next most
important features, both associated with a higher likelihood

of pharmacogenetic testing uptake. Other SDoH factors
were among the top 7 important factors for pharmacoge-
netic testing uptake. In contrast, racial group variables (ie,
Hispanic, Pacific Islander, and White Hispanic) had the
lowest influence on the outcome.
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Figure 6. Shapley Additive Explanations (SHAP) analysis for feature importance (the x-axis shows the impact on prediction and the color represents
the feature value, ie, red for high and blue for low). CPIC: Clinical Pharmacogenetics Implementation Consortium.
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Discussion
Principal Findings
ML has widely been used in pharmacogenetics, where
investigations focused on using genetic information to predict
drug response [23,24]. However, this is the first study to
develop ML models for predicting probability of the use of
pharmacogenetic testing using clinical and nonclinical factors
such as demographics, comorbidities, medication history, and
SDoH. It highlighted the potential of using ML methods to
improve the use of pharmacogenetic testing, especially in
pain management with opioid medications. The results of this
study demonstrated that the ensemble model achieved the
highest AUC compared to other models for pharmacogenetic
testing uptake prediction. Although the XGB model, when
evaluated at its Youden index, performed better than other
models in terms of accuracy, recall, specificity, and NPV, we
selected the ensemble model as the final classifier. This was
because the ensemble model harnesses the strengths of both
high-performing XGB and SVM-RBF models for prediction,
ultimately improving the performance for pharmacogenetic
testing uptake prediction. Overall, the ensemble model proves
to be a viable tool for accurately predicting pharmacoge-
netic testing uptake, supporting more informed, data-driven
decision-making.

Several methodological considerations must be addressed
when interpreting these promising results. The primary
goal of our study was to predict pharmacogenetic testing
uptake, which is a clinically favorable outcome. In this
scenario, NPV represents the ability of the model to cor-
rectly predict no pharmacogenetic testing uptake out of
all no-uptake predictions. While our study showed a very
high NPV (32,162/32,327; 99.49%), a low NPV could lead
to negative consequences, including resource misallocation,
alert fatigue, and missed clinical opportunities for those
who need pharmacogenetic testing uptake for more effec-
tive treatment. In contrast, PPV represents the accuracy of
the model in correctly predicting pharmacogenetic testing
uptake out of all positive predictions. Thus, a lower PPV
leads to lower trustworthiness of positive predictions and
inadequate resource allocation to patients who are wrongly
predicted to undergo pharmacogenetic testing. Since our data
was highly imbalanced with a low percentage of patients
having a recorded pharmacogenetic testing uptake, we used a
balanced class weighting approach for final model develop-
ment, assigning proportionally higher weights to the minority
class (ie, pharmacogenetic testing uptake). However, the
model achieved a much lower PPV compared to NPV. To
address this issue, threshold moving was used as a strategy to
balance clinical context and consequences of false positives
compared to false negatives. Since lowering and raising the
threshold can decrease or increase PPV and NPV, the optimal
threshold should be selected based on the trade-off between
minimizing the consequences of misallocated interventions
(ie, higher NPV) and maximizing clinical opportunities for
patient care (ie, higher NPV). Overall, the high NPV in our
study based on the Youden index could be advantageous
in decision-making, as it allows for the allocation of more

resources and encouragement plans for patients predicted not
to undergo pharmacogenetic testing.

We conducted a comprehensive feature importance
analysis to enhance model interpretability and clinical
acceptance. The SHAP value analysis using the XGB model
highlighted the contribution of each feature to individual
predictions, enhancing the model’s clinical credibility and
trustworthiness. The most influential features were age,
hypertension, and household income, suggesting that these
features require more attention for increasing pharmacoge-
netic testing uptake among patients. As mentioned, pharma-
cogenetic testing uptake is not necessarily due to opioid
prescribing and could be due to prescribing of other
medications and participation in a research project, poten-
tially affecting the study results. Thus, although the results
demonstrate the model’s transparency and clinical use, more
research is needed before integrating the model into a
real-world decision support system. While the SHAP diagram
ranks features based on their overall importance, it is crucial
to examine critical factors for each patient on a case-by-case
basis when making decisions.

Beyond individual prediction, we evaluated the model’s
ability to stratify patients into meaningful pharmacogenetic
testing uptake categories. The uptake stratification analysis
showed that the ensemble model effectively differentiated
patients across pharmacogenetic testing uptake deciles, with
higher uptake probabilities corresponding to higher observed
uptake rates. Such an analysis can assist decision-makers
in categorizing patients into different deciles based on their
likelihood of pharmacogenetic testing uptake and prioritize
those in lower deciles (less likely for the pharmacogenetic
testing uptake) for optimal resource allocation and improved
access to testing. It is important to recognize that stratification
analysis often relies on predefined thresholds (ie, 10% in this
study) to categorize probabilities into deciles, which may not
be optimal for real-world decision-making.

The implementation of the pharmacogenetic testing uptake
prediction model addresses the barriers to pharmacogenetic
testing in opioid therapy. Our models accurately predict the
likelihood of pharmacogenetic testing uptake but do not
identify patients who clinically require or should receive
testing (this was not the objective of this study). The
models capture associations between demographic, clinical,
and social determinants with testing behavior under current
practice patterns, not clinical appropriateness. This distinction
is important as the predictions reflect existing health care
access and use patterns rather than evidence-based treat-
ment recommendations. The predictive patterns we observed,
favoring older patients with multiple comorbidities and
greater health care access, largely reflect existing health care
use behaviors and socioeconomic factors rather than clinical
need or potential for improved outcomes. Consequently, this
model should not be interpreted as a clinical decision support
tool for determining which patients should receive pharma-
cogenetic testing. Rather, the primary applications of this
model lie in health care operations and policy rather than
direct clinical care. By providing the probability of phar-
macogenetic testing uptake at the individual patient level,
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health systems can identify patients less likely to receive
guideline-recommended testing and target barrier-reduction
efforts. Insurers can use uptake predictions to forecast costs,
allocate resources to underserved populations, and design
coverage policies that promote equitable access to precision
medicine. Such predictions could be particularly useful for
patients predicted to benefit from testing (not the focus of
this study), allowing care teams to prioritize resources to
promote uptake in this population. By quantifying uptake
likelihood, the model supports data-driven decisions about
resource allocation and coverage policies to move beyond
trial-and-error opioid prescribing toward more systematic,
evidence-based pain management.

Our study has several limitations. First, it is notable
that although the study used PPV as a performance met-
ric, it is highly dependent on outcome prevalence and
may not generalize across different patient populations or
clinical settings, reducing its applicability in decision-mak-
ing. Second, this study used various clinical and demo-
graphic variables to develop more-informed ML models.
However, the underrepresentation of certain racial groups,
such as Hispanic and Pacific Islander, could potentially
affect models’ outcomes. This raises concerns about the
bias and fairness issues, as ML models may exhibit lower
performance for these groups compared to others. Third,
while the study incorporated SDoH information as potential
predictors of pharmacogenetic testing uptake, this informa-
tion was based on ZIP code-level data, which may lack the
necessary granularity required for precise prediction. Detailed
individual-level data on variables such as income, education,
and household size could enhance the model’s reliability
and improve the accurate identification of each feature’s
contribution to the outcome. Fourth, the model’s performance
may not directly translate to external populations with

varying demographic and clinical backgrounds. Specifically,
the model was trained on data from a single EHR system,
including minority racial groups, and the results may not
be applicable to other racial groups. Therefore, caution is
warranted when interpreting the model’s outcomes for these
populations. Finally, some of the patients in the data who
had a recorded pharmacogenetic testing uptake were part
of a clinical trial where the cost of testing was covered.
This would potentially influence the ability of the model to
identify the true impact of patients’ economic and income
status on undergoing pharmacogenetic testing. To demon-
strate the model’s broader applicability, future work should
focus on external validation using independent datasets from
different health systems and identification of patients who are
more likely to benefit from testing. This would help evalu-
ate the model’s robustness and clinical use for real-world
decision-making.
Conclusions
Pharmacogenetic testing is a viable tool for matching
patients’ genetic profiles to suitable opioids for pain
treatment. This study proposed ML models for pharmaco-
genetic testing uptake prediction using data from an EHR
system. Results demonstrated that the ensemble ML model
combining XGB and SVM-RBF classifiers achieved the
highest AUC at 79.61%, making it a reliable prediction model
for pharmacogenetic testing uptake prediction. Additionally,
the uptake stratification and feature importance analysis using
SHAP values further indicated the model’s use for real-world
applications. Following further validation using an external
dataset, this model can be integrated into a data-driven
decision support system, enabling health systems and insurers
in resource planning and health equity assessment to optimize
pain management and improve patient outcomes.
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