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Abstract

Background: Venous thromboembolism (VTE) is a common and severe complication in intensive care unit (ICU) patients with
sepsis. Conventional risk stratification tools lack sepsis-specific features and may inadequately capture complex, nonlinear
interactions among clinical variables.

Objective: This study aimed to develop and validate an interpretable machine learning (ML) model for the early prediction of
VTE in ICU patients with sepsis.

Methods: This multicenter retrospective study used data from the Medical Information Mart for Intensive Care IV database for
model development and internal validation, and an independent cohort from Changshu Hospital for external validation. Candidate
predictors were selected through univariate analysis, followed by least absolute shrinkage and selection operator regression.
Retained variables were used in multivariable logistic regression to identify independent predictors, which were then used to
develop 9 ML models, including categorical boosting, decision tree, k-nearest neighbor, light gradient boosting machine, logistic
regression, multilayer perceptron, naive Bayes, random forest, and support vector machine. Performance was evaluated by
discrimination (area under the curve [AUC]), calibration, and clinical use (decision curve analysis). A subgroup analysis stratified
by the Sequential Organ Failure Assessment score was conducted in the external cohort to assess model stability across sepsis
severity levels. Model interpretability was assessed using Shapley Additive Explanations (SHAP) to quantify the contribution of
features to the predicted risk.

Results: A total of 25,197 patients from the Medical Information Mart for Intensive Care IV cohort and 328 patients from the
external cohort were included, with VTE incidences of 844 out of 25,197 (3.4%) and 30 out of 328 (9.2%), respectively. The
light gradient boosting machine model performed best, achieving an AUC of 0.956 in internal validation. Despite the higher VTE
incidence and clinical severity in the external validation, the model maintained robust generalization with an AUC of 0.786.
Notably, the model achieved enhanced discriminative ability in the severe sepsis subgroup (Sequential Organ Failure Assessment
score >6) with an AUC of 0.816, compared with 0.769 in the mild to moderate sepsis subgroup. Calibration curves indicated
strong agreement between predicted and observed outcomes, and decision curve analysis showed superior net benefit across
clinically relevant thresholds. SHAP analysis identified central venous catheterization, serum chloride and bicarbonate levels,
arterial catheterization, and prolonged partial thromboplastin time as the most influential predictors. Partial dependence plots
revealed both linear and nonlinear associations between these variables and VTE risk. Individual-level force plots further enhanced
interpretability by visualizing personalized risk profiles.

Conclusions: We developed a high-performing and interpretable ML model for predicting VTE in ICU patients with sepsis.
The model demonstrated robustness across cohorts and enhanced performance in the severe sepsis population. By integrating
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diverse clinical data and leveraging SHAP for transparent explanations, this tool may support personalized prophylaxis and early
diagnostic strategies.

(JMIR Med Inform 2026;14:e80969) doi: 10.2196/80969
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Introduction

Sepsis is a life-threatening condition characterized by acute
organ dysfunction resulting from a dysregulated host response
to infection and remains a leading cause of mortality in the
intensive care unit (ICU) [1]. According to the Global Burden
of Disease Study, approximately 48.9 million cases of sepsis
occur annually worldwide, resulting in an estimated 11.0 million
deaths, which accounts for 19.7% of all global deaths [2].
Venous thromboembolism (VTE), comprising deep vein
thrombosis and pulmonary embolism (PE), is a common and
severe complication of sepsis that significantly worsens patient
outcomes. Despite adherence to guideline-recommended
thromboprophylaxis, the incidence of VTE in patients with
sepsis remains high at 37.2%, up to 10-fold greater than in ICU
populations with no sepsis [3]. Previous studies have shown
that the presence of VTE is associated with a 28-day mortality
rate of 28.6% among patients with sepsis, and the occurrence
of PE nearly doubles the risk of in-hospital death (odds ratio
[OR] 1.94) [4,5]. These findings underscore the urgent need for
early and accurate VTE risk stratification in sepsis to guide
timely clinical interventions and reduce morbidity and mortality
in this high-risk population.

Current clinical methods for predicting VTE in patients with
sepsis have notable limitations. Traditional biomarkers such as
D-dimer, although widely used, lack specificity in the context
of sepsis, as the condition itself activates coagulation pathways
and elevates fibrin degradation products [6,7]. Furthermore,
commonly used scoring systems such as the Wells and Autar
scores were primarily developed and validated in trauma or
postoperative populations. These tools do not account for
sepsis-specific indicators, such as the Sequential Organ Failure
Assessment (SOFA) score or lactate levels, thereby limiting
their predictive use in patients with sepsis [8-10]. Although
multivariable logistic regression (LR) models that incorporate
clinical and laboratory variables have shown promise, with
reported area under the curve (AUC) values reaching up to 0.87,
these models are inherently linear and may fail to capture the
complex and nonlinear interactions among sepsis-related risk
factors [11,12].

Machine learning (ML) techniques have emerged as powerful
tools for handling high-dimensional data, uncovering nonlinear
associations, and automating feature selection. In recent years,
ML models have demonstrated superior performance in
predicting complications such as septic shock and acute kidney
injury (AKI) in ICU patients, with reported AUC values
reaching up to 0.90 [13-15]. However, earlier generations of
ML models often functioned as “black boxes,” which limited
their adoption in clinical settings due to the lack of
interpretability. Explainable ML approaches, such as Shapley

Additive Explanations (SHAP), have been developed to address
this challenge. By quantifying the contribution of each feature,
SHAP enhances model transparency and facilitates clinical
understanding [16]. For instance, Liu et al [17] developed an
interpretable ML model for septic shock prediction, whose
explanatory outputs aligned closely with hemodynamic
mechanisms described in the Sepsis-3 guidelines, thereby
reinforcing its clinical relevance [18].

Therefore, this study aimed to develop an interpretable ML
model that integrates clinical features and laboratory indicators
to predict the risk of VTE in ICU patients with sepsis. By
applying SHAP to interpret model outputs and identify key
predictors, we sought to create a decision support tool that
combines high predictive accuracy with strong clinical
interpretability, ultimately facilitating personalized prevention
strategies.

Methods

Data Sources
The training and internal validation datasets were extracted from
the Medical Information Mart for Intensive Care IV version 3.0
(MIMIC-IV v3.0) database, which contains comprehensive and
high-quality data from 65,366 patients admitted to the ICU at
Beth Israel Deaconess Medical Center between 2008 and 2022.
One of the authors (YZ) completed the Collaborative
Institutional Training Initiative examination (record ID:
60227322) and was granted access to the database for research
purposes.

Ethical Considerations
Ethical approval for the use of MIMIC-IV data was granted by
the institutional review boards of Beth Israel Deaconess Medical
Center and the Massachusetts Institute of Technology, with a
waiver of informed consent due to the use of deidentified data.
The data were handled in accordance with the Health Insurance
Portability and Accountability Act standards to ensure patient
privacy and confidentiality. In addition, ICU patients admitted
to Changshu Hospital affiliated to Soochow University between
January 2019 and August 2024 were included as an external
validation cohort. Ethical approval for this component of the
study was obtained from the ethics review committee of
Changshu Hospital (number L2024055). As the study was
observational in nature and used routinely collected clinical
data, the requirement for written informed consent was waived.
All electronic data were anonymized before analysis, and access
to the dataset was restricted to the primary research team to
maintain strict confidentiality. All procedures conformed to the
ethical standards set forth in the Declaration of Helsinki. No
compensation was provided to any participants involved in this
study.
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Study Population
This study included adult ICU patients (aged 18 years and older)
with sepsis. For patients with multiple ICU admissions, only
the first admission was analyzed. Sepsis was defined according
to the Third International Consensus Definitions for Sepsis and
Septic Shock (Sepsis-3), which require a suspected or confirmed
infection accompanied by an increase in the SOFA score of 2
points or more [18]. VTE was defined as an acute episode of
deep vein thrombosis (either upper or lower extremities),
superficial vein thrombosis (either upper or lower extremities),
or PE. VTE diagnoses were identified based on either the ICD-9
(International Classification of Diseases, Ninth Revision; codes
45119, 4512, 45181, 45182, 45183, 45184, 45189, 4519, 4532,
4538, 45381, 45382, 45383, 45384, 45385, 45386, 45387,
45389, 4539, 4150, 41511, 41512, 41513, 41519, 45340, 45341,
45342, 4510, 452, 4530, 4531, and 4533) or the ICD-10
(International Statistical Classification of Diseases, Tenth
Revision; codes I808, I809, I8290, I82890, I2699, I2692, I2690,

I2602, I2609, I8000, I8001, I8002, I81, I820, and I821) in the
MIMIC-IV database, or through diagnostic imaging reports
from Changshu Hospital, including duplex venous
ultrasonography and contrast-enhanced computed tomography.
In the Changshu Hospital cohort, the ICU implemented a routine
lower limb venous ultrasound screening protocol for all patients
with sepsis meeting high-risk criteria. Patients were excluded
meeting any of the following criteria: (1) ICU stay of less than
24 hours, (2) a documented VTE diagnosis prior to sepsis onset,
and (3) VTE events occurring within 24 hours following the
sepsis diagnosis.

Patients from the MIMIC-IV cohort were randomly split into
a training set and an internal validation set in a 7:3 ratio. The
training set was used for variable selection and model
development, while the internal and external validation sets
were used to assess model performance. The overall study
workflow is illustrated in Figure 1.

Figure 1. Flowchart of patient enrollment and cohort selection. CatBoost: categorical boosting; DT: decision tree; ICU: intensive care unit; KNN:
k-nearest neighbor; LGBM: light gradient boosting machine; LR: logistic regression; MIMIC: Medical Information Mart for Intensive Care Unit; MLP:
multilayer perceptron; NB: naive Bayes; RF: random forest; SHAP: SHapley Additive exPlanations; SVM: support vector machine; VTE: venous
thromboembolism.
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Data Extraction and Processing
Data from the MIMIC-IV database were extracted using
Structured Query Language via pgAdmin 4 (version 6.21;
pgAdmin Development Team). All clinical and laboratory
variables were collected within the first 24 hours of ICU
admission, with only the initial measurement included for
variables with multiple readings. A set of variables was extracted
for each patient, encompassing (1) demographics: age (years),
sex, race (Asian, Black, White, Hispanic, and other), height

(cm), weight (kg), BMI (kg/m2), and insurance (Medicare or
other); (2) vital signs: heart rate (HR, times per minute),
respiratory rate (RR, times per minute), systolic blood pressure
(mm Hg), diastolic blood pressure (mm Hg), temperature (°C),
and oxygen saturation (SpO2, %); (3) severity scores: Glasgow
Coma Scale, SOFA score, and simplified acute physiology score
II (SAPS II); (4) laboratory data: white blood cell count (K/μL),
hemoglobin (g/dL), platelet (PLT, K/μL), C-reactive protein
(mg/dL), alanine aminotransferase (U/L), aspartate
aminotransferase (U/L), albumin (g/dL), creatinine (mg/dL),
sodium (mEq/L), potassium (mEq/L), chloride (mEq/L), calcium
(mg/dL), blood urea nitrogen (mg/dL), hematocrit (%), glucose
(mg/dL), international normalized ratio, prothrombin time (PT,
seconds), partial thromboplastin time (PTT, seconds), pH, partial
pressure of oxygen (PaO2, mm Hg), partial pressure of carbon
dioxide (PaCO2, mm Hg), base excess (mEq/L), lactic acid

(mEq/L), and bicarbonate (HCO3
-, mEq/L); (5) ventilation

parameters: positive end-expiratory pressure (PEEP, cmH₂O),
fraction of inspired oxygen (FiO₂, %), and PEEP/FiO₂ ratio;
(6) comorbidities: hypertension, diabetes, myocardial infarction
(MI), chronic obstructive pulmonary disease (COPD), asthma,
pancreatitis, acute respiratory failure (ARF), AKI, acute
respiratory distress syndrome (ARDS), and malignant cancer;
and (7) therapeutic interventions: arterial catheterization, central
venous catheterization, cardiopulmonary bypass, continuous
renal replacement therapy (CRRT), ventilation, heparin, aspirin,
and vasopressors use. The same set of variables was extracted
from the external validation cohort at Changshu Hospital
affiliated with Soochow University, ensuring consistency
between the datasets.

For missing data, variables with less than 5% missingness were
imputed using mean substitution. For those with 5%-30%
missing values, multiple imputation methods were used.
Variables with more than 30% missing data were excluded from
analysis to minimize bias and preserve model robustness.
Outliers were identified and treated as missing values and
subsequently handled using the same imputation strategies.

Statistical Analysis
All statistical analyses were performed using Stata software
(version 16.0; StataCorp LLC), R software (version 4.1.2; R
Foundation for Statistical Computing), DecisionLinnc (version
1.0; DecisionLinnc Corp), and Python (version 3.9.12; Python
Software Foundation). The Kolmogorov-Smirnov test was used
to assess the normality of continuous variables. Variables with
a normal distribution were expressed as means and SDs, and
group comparisons were conducted using the 2-tailed
independent samples t test. Non–normally distributed variables

were presented as median and IQR and analyzed using the
Mann-Whitney U test. Categorical variables were summarized
as counts (percentages) and compared using the chi-square test.
Two-sided P values of <.05 were considered statistically
significant.

Variable Selection and Model Development
Variables that showed statistically significant differences in the
univariate analysis were considered candidate predictors. These
variables were further refined using the least absolute shrinkage
and selection operator regression to minimize overfitting and
reduce multicollinearity. Predictors with nonzero coefficients
were subsequently entered into a multivariate LR model.
Independent predictors identified through this process were
incorporated into the ML models.

Following variable selection, the Synthetic Minority
Oversampling Technique (SMOTE) preprocessing algorithm
was applied to address class imbalance between VTE and
non-VTE cases in the training cohort. In the training cohort,
VTE cases (576/17,637, 3.27%) were highly unbalanced
compared with non-VTE cases (17,061/17,637, 96.73%). After
SMOTE application, the VTE class was balanced to match the
non-VTE class, resulting in a 50:50 distribution with a total of
34,122 samples used for model training. This oversampling
method helped ensure that the models were trained on a balanced
dataset, thereby improving their ability to detect minority class
events. A total of 9 ML algorithms were trained on the
development cohort, including categorical boosting (CatBoost),
decision tree, k-nearest neighbor, light gradient boosting
machine (LGBM), LR, multilayer perceptron, naive Bayes,
random forest (RF), and support vector machine. For all ML
models, we used a 5-fold cross-validation strategy, combined
with Grid Search, for hyperparameter optimization and model
selection. Notably, SMOTE was applied exclusively to the
training folds of the cross-validation process to prevent data
leakage into the validation folds or the internal validation set.

Model Evaluation and Interpretation
Model performance was assessed using the internal and external
validation datasets. Discrimination was evaluated by plotting
receiver operating characteristic curves and calculating the
AUC. Calibration curves were used to compare predicted
probabilities with observed outcomes. Clinical use was assessed
using decision curve analysis, which estimated the net benefit
across a range of probability thresholds. In addition, several
evaluation metrics were computed, including accuracy,
sensitivity, specificity, and the Youden index, to offer a
comprehensive assessment of model performance.

The best performing model was selected based on
comprehensive evaluation of these metrics. To assess the
model’s stability and performance in different risk populations,
a stratified analysis was conducted on the external validation
cohort based on the SOFA score. Patients were divided into 2
subgroups: mild to moderate sepsis (SOFA score ≤6) and severe
sepsis (SOFA score >6). To enhance model interpretability,
SHAP analysis was conducted. SHAP values were computed
to quantify the contribution of individual features to the model’s
predictions and to explore feature interactions. Visualization
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tools from the SHAP package in Python, including feature
importance plots, bee swarm plots, force plots, and partial
dependence plots (PDPs), were used to provide an intuitive
understanding of the model’s decision-making process.

Results

Baseline Characteristics
A total of 25,197 patients from the MIMIC-IV cohort and 328
patients from the external validation cohort were included in
the study. Among them, 844 out of 25,197 (3.4%) patients in
the MIMIC-IV cohort and 30 out of 328 (9.2%) patients in the
external cohort developed VTE. The baseline characteristics of
all patients are summarized in Table 1. In the MIMIC-IV cohort,
patients who developed VTE were younger and exhibited
significantly higher HRs and RRs than those with no VTE (all

P<.001). Laboratory parameters revealed higher PLT counts,
serum chloride levels, and PTT in the VTE group (all P<.05).
In addition, patients with VTE had higher illness severity scores,
as indicated by elevated SOFA and SAPS II scores (both P<.05).
Comorbidities such as ARF, AKI, and ARDS were significantly
more common in the VTE group (all P<.001). Furthermore,
these patients were more likely to have undergone invasive
procedures, including arterial and central venous catheterization
(both P<.001). In the external validation cohort, similar patterns
were observed. Patients with VTE demonstrated higher rates
of ARDS and more frequent use of mechanical ventilation than
patients with no VTE (both P<.001). These findings highlight
significant differences in demographics, clinical severity,
comorbidities, and therapeutic interventions between patients
with and with no VTE across both cohorts, emphasizing the
relevance of these factors in VTE risk stratification.
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Table 1. Baseline characteristics of the MIMIC-IVa and external validation cohorts.

External Validation cohort (N=328)MIMIC-IV cohort (N=25,197)Variables

P valueVTE (n=30)Non-VTE (n=298)P valueVTE (n=844)Non-VTEb (n=24,353)

Demographic data

.1975.90 (9.88)73.33 (12.60)<.00163.83 (16.75)66.61 (16.28)Age (years), mean (SD)

.7422 (73)210 (70.5).46502 (59.5)14173 (58.2)Sex (male), n (%)

.2021.93 (3.45)22.78 (2.59).1128.06 (6.15)27.71 (6.20)BMI, mean (SD)

N/AN/AN/A.14N/AN/AcRace, n (%)

N/AN/AN/AN/A80 (9.5)1994 (8.2)Asian

N/AN/AN/AN/A568 (67.3)15812 (64.9)Black

N/AN/AN/AN/A27 (3.2)806 (3.3)White

N/AN/AN/AN/A147 (17.4)5038 (20.7)Hispanic

N/AN/AN/AN/A22 (2.6)703 (2.9)Other

.09N/AN/A.02N/AN/AInsurance, n (%)

N/A4 (13)83 (27.9)N/A166 (19.7)4,027 (16.5)Other

N/A26 (87)215 (72.2)N/A678 (80.3)20326 (83.5)Medicare

Vital signs

.68104.73 (23.56)102.86 (24.64)<.00194.38 (21.12)90.00 (20.58)HRd, mean (SD)

.3523.97 (6.39)22.81 (5.97)<.00120.38 (6.42)19.53 (6.44)RRe, mean (SD)

.95119.00 (29.08)119.34 (28.29).29122.17 (25.61)121.21 (24.40)SBPf, mean (SD)

.9666.00 (14.80)66.14 (14.18).2968.01 (19.08)67.30 (18.12)DBPg, mean (SD)

.9137.40 (2.31)37.45 (1.71).8836.81 (0.84)36.81 (0.77)Temperature, mean (SD)

.1891 (87-98)92 (88-97).00598 (95-100)98 (95-100)SpO2
h, median (Q1-Q3)

Severity scoring system

.3214 (11-15)15 (12-15).3815 (13-15)15 (13-15)GCSi, median (Q1-Q3)

.876 (4-8)6 (5-8).045 (3-8)5 (3-8)SOFAj, median (Q1-Q3)

.3642.43 (15.58)39.69 (14.19).0141.70 (15.31)40.31 (14.22)SAPSk II, mean (SD)

Laboratory data

.4313.26 (5.50)14.13 (6.88).1013.05 (7.38)12.62 (6.81)WBCl, mean (SD)

.039.71 (2.64)10.87 (2.65).1310.62 (2.13)10.51 (2.24)Hemoglobin, mean (SD)

.94191.00 (103.37)189.43 (128.43).005206.41 (111.67)195.42 (100.25)PLTm, mean (SD)

.1127 (19-53)51 (25-81).0329 (17-63)26 (16-52)ALTn, median (Q1-Q3)

.872.30 (2.43)2.23 (1.82).121.41 (1.33)1.48 (1.46)Creatinine, mean (SD)

.41138.38 (5.86)137.45 (5.17).007138.43 (5.64)137.89 (5.59)Sodium, mean (SD)

.494.28 (0.84)4.17 (0.72)<.0014.14 (0.76)4.24 (0.77)Potassium, mean (SD)

.47105.38 (6.74)104.44 (7.00)<.001105.40 (6.80)104.04 (6.69)Chloride, mean (SD)

.9013 (6-21)14 (9-21).8521 (14-35)20 (14-34)BUNo, median (Q1-Q3)

.0729.36 (7.93)32.29 (9.06).8532.03 (6.41)31.99 (6.67)Hematocrit, mean (SD)

.908 (6-10)8 (6-11).14127 (105-162)130 (106-165)Glucose, median (Q1-Q3)

.421.2 (1.1-1.6)1.3 (1.2-1.5).811.3 (1.2-1.5)1.3 (1.2-1.6)INRp, median (Q1-Q3)

1.0014.9 (14.2-16.8)15.7 (14.4-17.6).9514.6 (13.0-17.1)14.6 (12.8-17.0)PTq, median (Q1-Q3)

JMIR Med Inform 2026 | vol. 14 | e80969 | p. 6https://medinform.jmir.org/2026/1/e80969
(page number not for citation purposes)

Zhang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


External Validation cohort (N=328)MIMIC-IV cohort (N=25,197)Variables

P valueVTE (n=30)Non-VTE (n=298)P valueVTE (n=844)Non-VTEb (n=24,353)

.1739.9 (35.1-46.8)31.9 (27.7-38.2)<.00132.2 (27.7-41.6)31.1 (27.3-37.6)PTTr, median (Q1-Q3)

.337.37 (0.11)7.40 (0.10).157.37 (0.10)7.36 (0.10)pHs, mean (SD)

.1785.5 (67.0-112.0)93.5 (74.3-121.0).006129.0 (84.0-239.5)140.0 (87.0-273.0)PaO2
t, median (Q1-Q3)

.7439.59 (17.02)38.51 (13.15).00341.04 (12.52)42.35 (12.06)PaCO2
u, mean (SD)

.49–2.76 (5.31)–2.05 (5.50).82–1.47 (5.44)–1.43 (5.24)BEv, mean (SD)

.822.0 (1.5-3.0)2.3 (1.5-3.5).551.8 (1.2-2.6)1.8 (1.2-2.7)Lacw, median (Q1-Q3)

.6222.27 (5.11)22.76 (5.11).00323.12 (4.81)22.62 (4.76)HCO3
-x, mean (SD)

Ventilation Variables, median (Q1-Q3)

.0015 (5-5)3 (2-5).145 (5-5)5 (5-5)PEEPy

.8240 (33-50)40 (33-500).0960 (50-100)60 (50-100)FiO2
z

.24203 (152-295)230 (168-307).52245 (146-345)247 (153-352)PEEPy/FiO2
z

Comorbidities, n (%)

.8321 (70)214 (71.8).09374 (44.3)10083 (41.4)Hypertension

.175 (17)85 (28.5)<.0010 (0.0)3521 (14.5)Diabetes

.874 (13)43 (14.4)<.00111 (1.3)1085 (4.5)Myocardial infarction

.603 (10)40 (13.4)<.0010 (0.0)1647 (6.8)COPDaa

.150 (0)19 (6.4).1478 (9.2)1912 (7.9)Asthma

.014 (13)10 (3.4)<.00138 (4.5)600 (2.5)Pancreatitis

.0424 (80)180 (60.4)<.001339 (40.2)8202 (33.7)ARFbb

.3116 (53)187 (62.8)<.001652 (77.3)16710 (68.6)AKIcc

<.00116 (53)54 (18.1)<.001260 (30.8)5604 (23.0)ARDSdd

.518 (27)64 (21.5).07152 (18.0)3829 (15.7)Malignant cancer

Therapeutic interventions, n (%)

<.00130 (100)55 (18.5)<.001166 (19.7)1595 (6.6)Arterial catheterization

<.00127 (90)45 (15.1)<.001218 (25.8)2028 (8.3)Central venous catheterization

.231 (3)30 (10.1).0277 (9.1)2888 (11.9)CPBee

<.00110 (33)30 (10.1).0296 (11.4)2175 (8.9)CRRTff

<.00125 (83)148 (49.7)1.00416 (49.3)12004 (49.3)Ventilation

.0829 (97)254 (85.2)<.001786 (93.1)21304 (87.5)Heparin

.027 (23)135 (45.3)<.001384 (45.5)12522 (51.4)Aspirin
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External Validation cohort (N=328)MIMIC-IV cohort (N=25,197)Variables

P valueVTE (n=30)Non-VTE (n=298)P valueVTE (n=844)Non-VTEb (n=24,353)

<.00125 (83)107 (35.9).04290 (34.4)7538 (31.0)Vasopressors

aMIMIC: Medical Information Mart for Intensive Care Unit.
bVTE: venous thromboembolism.
cN/A: not applicable.
dHR: heart rate.
eRR: respiratory rate.
fSBP: systolic blood pressure.
gDBP: diastolic blood pressure.
hSpO2: oxygen saturation.
iGCS: Glasgow Coma Scale.
jSOFA: Sequential Organ Failure Assessment.
kSAPS II: simplified acute physiology score II.
lWBC: white blood cell count.
mPLT: platelet.
nALT: alanine aminotransferase.
oBUN: blood urea nitrogen.
pINR: international normalized ratio.
qPT: prothrombin time.
rPTT: partial thromboplastin time.
spH: potential of hydrogen.
tPaO2: partial pressure of oxygen.
uPaCO2: partial pressure of carbon dioxide.
vBE: base excess.
wLac: lactic acid.
xHCO3

--: bicarbonate.
yPEEP: positive end-expiratory pressure.
zFiO2: fraction of inspired oxygen.
aaCOPD: chronic obstructive pulmonary disease.
bbARF: acute respiratory failure.
ccAKI: acute kidney injury.
ddARDS: acute respiratory distress syndrome.
eeCPB: cardiopulmonary bypass.
ffCRRT: continuous renal replacement therapy.

Selection of Predictors
Patients in the training set were divided into VTE and non-VTE
groups. Univariate analysis identified several variables
significantly associated with VTE, including admission age,
insurance, HR, RR, SAPS II, alanine aminotransferase,
potassium, chloride, glucose, PTT, PaO2, PaCO2, PEEP, and
comorbidities such as diabetes, MI, COPD, pancreatitis, ARF,
AKI, and ARDS (all P<.05). In addition, therapeutic
interventions including arterial catheterization, central venous
catheterization, cardiopulmonary bypass, CRRT, heparin use,
and aspirin use were significantly associated with VTE (all
P<.05; Table 2). Least absolute shrinkage and selection operator
regression identified 18 variables with nonzero coefficients at
the optimal lambda value of 0.0029. These included age,
insurance, HR, potassium, chloride, PTT, diabetes, MI, COPD,

pancreatitis, ARF, AKI, ARDS, arterial catheterization, central
venous catheterization, CRRT, heparin use, and aspirin use
(Figures 2A and 2B). These variables were subsequently entered
into a multivariate LR model, which revealed that potassium
(OR 0.8711, 95% CI 0.7541-0.9756; P=.02), chloride (OR
1.0206, 95% CI 1.0081-1.0326; P=.001), PTT (OR 1.0086, 95%
CI 1.0054-1.0115; P<.001), MI (OR 0.2851, 95% CI
0.1101-0.5999; P=.003), AKI (OR 1.5274, 95% CI
1.2166-1.9369; P<.001), arterial catheterization (OR 1.8985,
95% CI 1.4102-2.5648; P<.001), central venous catheterization
(OR 2.0805, 95% CI 1.5213-2.8382; P<.001), and heparin use
(OR 1.5509, 95% CI 1.1203-2.0851; P=.01) were independently
associated with VTE risk (Table 3). We noted instances of
complete separation in the training set for comorbidities such
as diabetes and COPD, where the VTE subgroup contained zero
cases, leading to extreme ORs in the multivariable LR.
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Table 2. Univariate analysis of the clinical features in the training set.

P valueVTE (n=576)Non-VTEa (n=17,061)Total (N=17,637)Variables

Demographic data

<.00164.10 (16.93)66.57 (16.27)66.49 (16.30)Age (years), mean (SD)

.91334 (58.0)9934 (58.2)10268 (58.2)Sex (male), n (%)

.5327.90 (6.04)27.74 (6.20)27.75 (6.20)BMI, mean (SD)

.42Race, n (%)

55 (9.6)1360 (8.0)1415 (8.0)Asian

378 (65.6)11,085 (65.0)11463 (65.0)Black

21 (3.7)583 (3.4)604 (3.4)White

104 (18.1)3538 (20.7)3642 (20.7)Hispanic

18 (3.1)495 (2.9)513 (2.9)Other

.004Insurance, n (%)

121 (21.0)2816 (16.5)2937 (16.7)Other

455 (79.0)14245 (83.5)14700 (83.4)Medicare

Vital signs

<.00193.50 (21.61)90.06 (20.57)90.17 (20.61)HRb, mean (SD)

.0220.18 (6.59)19.50 (6.46)19.52 (6.47)RRc, mean (SD)

.77121.45 (25.14)121.13 (24.38)121.14 (24.40)SBPd, mean (SD)

.8667.48 (19.10)67.34 (18.14)67.35 (18.17)DBPe, mean (SD)

.0636.74 (0.84)36.81 (0.77)36.81 (0.77)Temperature, mean (SD)

.0798 (95-100)98 (95-100)98 (95-100)SpO2
f, median (Q1-Q3)

Severity scoring system

.6715 (13-15)15 (13-15)15 (13-15)GCSg, median (Q1-Q3)

.125 (4-8)5 (3-8)5 (3-8)SOFAh, median (Q1-Q3)

.0142 (16)40 (14)40 (14)SAPSi II, mean (SD)

Laboratory data

.1913.04 (7.35)12.64 (6.82)12.65 (6.84)WBCj, mean (SD)

.4210.58 (2.11)10.50 (2.25)10.51 (2.25)Hemoglobin, mean (SD)

.08203.51 (113.05)195.06 (99.70)195.34 (100.17)PLTk, mean (SD)

<.00130 (17-62)26 (16-53)26 (16-53)ALTl, median (Q1-Q3)

.391.43 (1.28)1.48 (1.46)1.48 (1.45)Creatinine, mean (SD)

.13138.25 (5.65)137.89 (5.62)137.90 (5.62)Sodium, mean (SD)

<.0014.12 (0.73)4.24 (0.77)4.24 (0.77)Potassium, mean (SD)

<.001105.29 (6.73)104.06 (6.68)104.10 (6.68)Chloride, mean (SD)

.2022 (14-35)20 (14-34)20 (14-34)BUNm, median (Q1-Q3)

.6731.87 (6.37)31.98 (6.72)31.98 (6.71)Hematocrit, mean (SD)

.03125 (103-159)130 (106-165)130 (106-165)Glucose, median (Q1-Q3)

.541.3 (1.2-1.5)1.3 (1.2-1.6)1.3 (1.2-1.6)INRn, median (Q1-Q3)

.3514.6 (13.1-17.1)14.6 (12.8-16.9)14.6 (12.8-17.0)PTo, median (Q1-Q3)

<.00132.6 (27.9-42.2)31.2 (27.3-37.6)31.2 (27.3-37.6)PTTp, median (Q1-Q3)
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P valueVTE (n=576)Non-VTEa (n=17,061)Total (N=17,637)Variables

.377.36 (0.10)7.36 (0.10)7.36 (0.10)pHq, mean (SD)

.04129 (86-243)141 (87-275)140 (87-273)PaO2
r, median (Q1-Q3)

.0341.14 (13.06)42.36 (12.04)42.32 (12.07)PaCO2
s, mean (SD)

.87–1.51 (5.58)–1.47 (5.25)–1.47 (5.26)BEt, mean (SD)

.631.8 (1.2-2.7)1.8 (1.2-2.7)1.8 (1.2-2.7)Lacu, median (Q1-Q3)

.1422.87 (4.82)22.57 (4.75)22.58 (4.76)HCO3
-v, mean (SD)

Ventilation Variables, median (Q1-Q3)

.0455 (5-5)5 (5-5)5 (5-5)PEEPw

.1360 (50-100)60 (50-100)60 (50-100)FiO2
x

.84254 (149-357)246 (152-353)246 (152-353)PEEPw/FiO2
x

Comorbidities, n (%)

.11258 (44.8)7075 (41.5)7333 (41.6)Hypertension

<.0010 (0.0)2463 (14.4)2463 (14.0)Diabetes

<.0016 (1.0)787 (4.6)793 (4.5)Myocardial infarction

<.0010 (0.0)1142 (6.7)1142 (6.5)COPDy

.1654 (9.4)1327 (7.8)1381 (7.8)Asthma

<.00128 (4.9)421 (2.5)449 (2.6)Pancreatitis

<.001238 (41.3)5727 (33.6)5965 (33.8)ARFz

<.001451 (78.3)11,712 (68.7)12163 (69.0)AKIaa

<.001174 (30.2)3943 (23.1)4117 (23.3)ARDSbb

.11105 (18.2)2685 (15.7)2790 (15.8)Malignant cancer

Therapeutic interventions, n (%)

<.001115 (20.0)1150 (6.7)1265 (7.2)Arterial catheterization

<.001137 (23.8)1443 (8.5)1580 (9.0)Central venous catheterization

.0352 (9.0)2038 (12.0)2090 (11.9)CPBcc

.00472 (12.5)1533 (9.0)1605 (9.1)CRRTdd

.46276 (47.9)8442 (49.5)8718 (49.4)Ventilation

<.001536 (93.1)14943 (87.6)15479 (87.8)Heparin

<.001255 (44.3)8771 (51.4)9026 (51.2)Aspirin
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P valueVTE (n=576)Non-VTEa (n=17,061)Total (N=17,637)Variables

.09198 (34.4)5294 (31.0)5492 (31.1)Vasopressors

aVTE: venous thromboembolism.
bHR: heart rate.
cRR: respiratory rate.
dSBP: systolic blood pressure.
eDBP: diastolic blood pressure.
fSpO2: oxygen saturation.
gGCS: Glasgow Coma Scale.
hSOFA: Sequential Organ Failure Assessment.
iSAPS II: simplified acute physiology score II.
jWBC: white blood cell count.
kPLT: platelet.
lALT: alanine aminotransferase.
mBUN: blood urea nitrogen.
nINR: international normalized ratio.
oPT: prothrombin time.
pPTT: partial thromboplastin time.
qpH: potential of hydrogen.
rPaO2: partial pressure of oxygen.
sPaCO2: partial pressure of carbon dioxide.
tBE: base excess.
uLac: lactic acid.
vHCO3

-: bicarbonate.
wPEEP: positive end-expiratory pressure.
xFiO2: fraction of inspired oxygen.
yCOPD: chronic obstructive pulmonary disease.
zARF: acute respiratory failure.
aaAKI: acute kidney injury.
bbARDS: acute respiratory distress syndrome.
ccCPB: cardiopulmonary bypass.
ddCRRT: continuous renal replacement therapy.

Figure 2. Screening predictors of venous thromboembolism using least absolute shrinkage and selection operator regression. (A) Coefficient profile
plotted against the logarithm of the lambda sequence. Each colored line represents the coefficient path of an individual candidate predictor. (B)
Cross-validation plot for determining the optimal penalty term. The green dots represent the mean binomial deviance with error bars. The left red vertical
dashed line indicates the log lambda value that minimizes the deviance (log lambda minimum = –10.683), and the right blue vertical dashed line indicates
the log lambda value within 1 standard error of the minimum (log lambda 1se = –5.845).
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Table 3. Multivariate logistic regression analysis of the selected clinical features in the training set.

P value95% CIOdds ratioZ valueβVariables

.52–0.0072 to 0.00370.9982–0.6384–.0018Admission age (years)

.06–0.4436 to 0.00840.8020–1.9143–.2206Insurance

.09–0.0006 to 0.00761.00351.6880.0035HRa

.02–0.2541 to –0.02440.8711–2.3558–.1380Potassium

.0010.0081 to 0.03261.02063.2561.0204Chloride

<.0010.0054 to 0.01151.00865.5201.0085PTTb

.94–162.9076 to –157.58690.0000–0.0766–15.8672Diabetes

.003–2.1976 to –0.51690.2851–2.9781–1.2549Myocardial infarction

.96–222.8419 to –215.78410.0000–0.0530–15.5638COPDc

.09–0.0786 to 0.73911.41811.6805.3493Pancreatitis

.23–0.0721 to 0.29571.11921.2010.1127ARFd

<.0010.2166 to 0.63691.52743.9539.4236AKIe

.06–0.0116 to 0.36891.19791.8616.1806ARDSf

<.0010.4102 to 0.86481.89855.5322.6411Arterial catheterization

<.0010.5213 to 0.93822.08056.8935.7326Central venous catheterization

.07–0.0240 to 0.52571.29311.8355.2571CRRTg

.010.1203 to 0.78511.55092.5944.4388Heparin

.34–0.2687 to 0.09170.9156–0.9590–.0882Aspirin

aHR: heart rate.
bPTT: partial thromboplastin time.
cCOPD: chronic obstructive pulmonary disease.
dARF: acute respiratory failure.
eAKI: acute kidney injury.
fARDS: acute respiratory distress syndrome.
gCRRT: continuous renal replacement therapy.

Development and Validation of Models
All selected variables were incorporated into the development
of 9 ML models to predict the risk of VTE in ICU patients with
sepsis. The 9 ML models exhibited varying degrees of predictive
performance in the training set (Figure 3A). Internal validation
based on receiver operating characteristic curve analysis
demonstrated that the LGBM model achieved the highest
predictive performance (AUC=0.956), followed by CatBoost
(AUC=0.924), RF (AUC=0.794), decision tree (AUC=0.704),

k-nearest neighbors (AUC=0.673), multilayer perceptron
(AUC=0.660), support vector machine (AUC=0.621), LR
(AUC=0.621), and naïve Bayes (AUC=0.588; Figure 3B).
Detailed performance metrics, including sensitivity, specificity,
accuracy, precision, F1-score, and AUC for each model, are
shown in Table 4. Notably, the LGBM model exhibited the
highest specificity (0.942), accuracy (0.910), precision (0.956),
and F1-score (0.921), consistently outperforming the other
algorithms across these key evaluation indicators.
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Figure 3. Receiver operating characteristic (ROC) curves of the test and validation sets of 9 machine learning models. (A) ROC curves of the training
set. (B) ROC curves of the internal validation set. (C) ROC curves of the external validation set. AUC: area under the curve; CatBoost: categorical
boosting; DT: decision tree; KNN: k-nearest neighbor; LGBM: light gradient boosting machine; LR: logistic regression; MLP: multilayer perceptron;
NB: naive Bayes; RF: random forest; SVM: support vector machine.

Table 4. Comprehensive evaluation of machine learning model performance.

AUCaF 1PrecisionAccuracySpecificitySensitivityMethods

0.9240.8390.7660.7910.5980.926CatBoostb

0.7040.7640.6750.6800.3940.881DTc

0.6730.7350.6740.6580.4440.809KNNd

0.9560.9210.9560.9100.9420.888LGBMe

0.6210.7500.6250.6330.1990.938LRf

0.6600.7470.6980.6800.5040.803MLPg

0.5880.4190.6550.4980.7690.308NBh

0.7940.7810.6940.7050.4380.893RFi

0.6210.7410.5920.5940.0270.991SVMj

aAUC: area under the curve.
bCatBoost: categorical boosting.
cDT: decision tree.
dKNN: k-nearest neighbor.
eLGBM: light gradient boosting machine.
fLR: logistic regression.
gMLP: multilayer perceptron.
hNB: naive Bayes.
iRF: random forest.
jSVM: support vector machine.

Calibration analysis revealed that the LGBM model
demonstrated strong alignment between predicted probabilities
and observed outcomes, reflecting robust reliability (Figure
4A). In the decision curve analysis, the LGBM model

consistently provided the highest net benefit across a broad
range of clinically relevant threshold probabilities, further
supporting its clinical applicability in decision-making scenarios
(Figure 4B).
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Figure 4. Calibration curve of the LGBM model in the internal validation set (A). Decision curve analysis of the LGBM model in the internal validation
set (B). CatBoost: categorical boosting; DT: decision tree; KNN: k-nearest neighbor; LGBM: light gradient boosting machine; LR: logistic regression;
MLP: multilayer perceptron; NB: naive Bayes; RF: random forest; SVM: support vector machine.

External validation using an independent test cohort further
confirmed the robustness and generalizability of the LGBM
model, which achieved an AUC of 0.786, outperforming all
other ML models in this cohort (Figure 3C). The consistent
performance observed across both internal and external
validation cohorts underscores the strong generalizability and
clinical potential of the LGBM model for predicting VTE in
ICU patients with sepsis.

Following stratification based on SOFA score, the LGBM model
demonstrated enhanced discriminative ability in the high-risk
group. The AUC for the severe sepsis group was 0.816, which
was higher than the AUC of 0.769 observed in the mild to
moderate sepsis group. The detailed performance metrics are
shown in Table 5.

Table 5. Subgroup analysis of LGBMa model performance stratified by SOFAb score.

AUCcSpecificitySensitivitySOFA CriteriaSubgroup

0.7690.8390.7222 ≤ SOFA ≤ 6Mild to moderate sepsis

0.8160.8560.667SOFA > 6Severe sepsis

aLGBM: light gradient boosting machine.
bSOFA: Sequential Organ Failure Assessment.
cAUC: area under the curve.

Explanation of the Model
Figure 5 displays the top 15 predictive features for VTE
incidence as identified by the LGBM model using SHAP
analysis. The feature importance plot, ranked by the mean
absolute SHAP values, highlights the variables with the greatest
overall impact on model predictions (Figure 5A). The 5 most
influential features were central venous catheterization, chloride,

bicarbonate, arterial catheterization, and PTT. The corresponding
SHAP beeswarm plot (Figure 5B) illustrates each feature’s
influence on individual predictions, where SHAP values to the
right of zero reflect increased predicted risk. It revealed that the
presence of central venous or arterial catheters, elevated chloride
and bicarbonate levels, and prolonged PTT consistently
contributed to a higher VTE risk.
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Figure 5. SHAP summary plot for clinical variables contributing to the light gradient boosting machine (LGBM) model. (A) Feature importance ranking
plot based on the LGBM model. (B) Scatter plot of variables for SHAP analysis based on the LGBM model. AKI: acute kidney injury; HCO3-:
bicarbonate; HR: heart rate; pH: potential of hydrogen; PLT: platelet; PTT: partial thromboplastin time; SHAP: SHapley Additive exPlanations.

To further examine the marginal effects of key predictors on
model output, PDPs were generated for the top-ranked features
(Figures 6A-6F). These plots depict how the predicted risk of
VTE changes on average with varying values of a single feature,
while holding others constant. For dichotomous variables such
as central venous (Figure 6A) and arterial (Figure 6D)
catheterization, the plots showed a marked increase in the
average predicted risk when catheters were present compared
with their absence. Continuous variables including serum

chloride (Figure 6B), bicarbonate (Figure 6C), and HR (Figure
6F) exhibited monotonic relationships, with risk increasing
steadily as the values rose. In contrast, PTT (Figure 6E)
exhibited a distinct threshold effect. The predicted risk remained
low and stable within the normal range and then increased
sharply for values beyond approximately 45 seconds before
plateauing at highly prolonged levels, confirming its nonlinear
risk association identified by SHAP.

Figure 6. SHapley Additive exPlanations feature PDP of the light gradient boosting machine model. (A) Partial dependence plot of central venous
catheter. (B) Partial dependence plot of chloride. (C) Partial dependence plot of bicarbonate. (D) Partial dependence plot of arterial catheter. (E) Partial
dependence plot of partial thromboplastin time. (F) Partial dependence plot of heart rate. HCO3-: bicarbonate; HR: heart rate; PDP: partial dependence
plot; PTT: partial thromboplastin time.
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Interpretation of Individual Prediction
To enhance case-level interpretability, SHAP force plots were
used to visualize the contribution of individual features to
specific predictions (Figure 7). In these plots, each feature was
represented as a colored bar that moves the predicted value

away from a baseline, which corresponds to the average
prediction across the dataset. Features that increase the predicted
risk are shown in red, while those that reduce the risk are shown
in blue. The length of each bar reflects the extent of the feature’s
influence. A longer bar indicates a stronger impact on the final
predicted probability.

Figure 7. SHapley Additive exPlanations (SHAP) force plots for explaining of individual’s prediction results according to the light gradient boosting
machine model. (A) SHAP force plot of a high-risk example. (B) SHAP force plot of a low-risk example. AKI: acute kidney injury; HCO3-: bicarbonate;
HR: heart rate; PT: prothrombin time; PTT: partial thromboplastin time; SAPS: simplified acute physiology score II; SBP: systolic blood pressure.

For example, in Figure 7A, the predicted VTE probability for
a specific patient was 0.11, which was higher than the baseline
value. This elevated risk was primarily attributed to the presence
of a central venous catheter, a markedly prolonged PTT of 81.9

seconds, and a high HR of 141 min−1. In contrast, Figure 7B
showed a patient with a predicted probability of 0.02, which
was lower than the baseline. In this case, protective features
including the absence of a central venous catheter, absence of
AKI, and a low SAPS II score collectively outweighed the
influence of risk factors such as elevated BMI and bicarbonate
level. These examples demonstrated that the model was capable
of producing clear and clinically relevant explanations for
individual predictions.

Discussion

Principal Findings
In this multicenter retrospective study, we developed and
validated several ML models to predict the risk of VTE in
critically ill patients with sepsis. Among the models tested, the
LGBM algorithm demonstrated the highest predictive accuracy
with an AUC of 0.956 in the internal validation set and
maintained strong generalizability with an AUC of 0.786 in an
external cohort. The observed VTE incidence in our external
validation cohort (30/328, 9.15%) was substantially higher than
the 3.35% (844/25,197) incidence recorded in the MIMIC-IV
development cohort. While this difference contributed to the
drop in the AUC during external validation, this discrepancy is
likely a consequence of multiple factors, including divergent
diagnostic practices, disparities in clinical risk profiles, and
racial composition differences between the 2 cohorts.

First, variations in VTE surveillance and diagnostic criteria
likely served as a primary driver. The MIMIC-IV cohort relied
on retrospective identification via ICD (International
Classification of Diseases) codes, a method known to carry a
risk of misclassification bias and potential underascertainment,

particularly of asymptomatic events. Conversely, the external
validation cohort used explicit diagnostic imaging reports and
implemented a routine lower limb venous ultrasound screening
program for high-risk patients with sepsis. This systematic,
active surveillance methodology inherently tends to yield a
higher VTE capture rate compared with passive, coding-based
case ascertainment. Second, the external validation group
exhibited a substantially higher baseline severity and utilization
of aggressive life support interventions. Patients with VTE in
this cohort showed markedly higher rates of established risk
factors such as mechanical ventilation (83.33% vs 49.29% in
MIMIC-IV VTE group), ARDS (53.33% vs 30.81%), and CRRT
(33.33% vs 11.37%) [19-21]. This heightened clinical severity
and iatrogenic risk profile provide a sound clinical explanation
for the elevated VTE incidence. Third, the inherent demographic
differences between the cohorts represent a major challenge to
model generalizability. The MIMIC-IV cohort is composed of
a racially diverse population, while the external validation cohort
is predominantly Asian, representing a geographically and
ethnically distinct cohort. Given that VTE risk is known to vary
significantly across different racial groups, this change in
demographic distribution may be a contributing factor to the
observed performance decrease [22].

Despite these significant differences in cohort characteristics
and VTE incidence, the LGBM model maintained the highest
predictive performance in both internal and external validation,
underscoring its inherent robustness and generalization capacity.
These performance advantages align with recent findings that
gradient boosting methods often outperform logistic models in
predictive accuracy when applied to large clinical datasets
[23,24]. Crucially, we applied SHAP to interpret the model’s
predictions. This analysis identified a set of key risk factors
driving VTE predictions, including the presence of central and
arterial catheters, serum chloride and bicarbonate levels, and
the PTT. By quantifying each feature’s contribution to individual
risk scores, SHAP facilitated insight into why certain patients
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were classified as high-risk. This combination of robust
performance and interpretability suggests that our model may
assist clinicians in identifying ICU patients with sepsis at an
increased risk of VTE, thereby supporting timely prophylaxis
or diagnostic evaluation. Conventional instruments such as the
Caprini, Padua, or Wells scores were primarily developed for
general medical or surgical populations and relied on a linear,
additive combination of risk factors [10,25]. These tools lack
the specificity required to capture the distinct pathophysiology
of sepsis which involves a complex interplay among
inflammation, endothelial dysfunction, and coagulopathy
collectively referred to as sepsis-induced coagulopathy [26,27].
The pathophysiology of sepsis-induced VTE is inherently
nonlinear. Complex interactions among organ failure, systemic
inflammation, and iatrogenic factors such as the use of catheters
and vasopressors jointly modulate VTE risk in a manner that
traditional linear models cannot fully capture [28,29]. In
contrast, our LGBM model is consistent with previous ML
applications in critical care and automatically captures complex
relationships and interactions among predictors while integrating
heterogeneous ICU data to generate a more accurate and
nuanced risk estimate [30]. Our study found that the LGBM
model significantly outperformed the LR model, achieving an
AUC value of 0.956 compared with 0.621, which underscores
the advantage of advanced ML algorithms in modeling the
complex relationships among multiple risk factors. We recognize
that prior studies have used advanced ML models for VTE
prediction in critically ill patients. For instance, Jin et al [31]
developed an RF model for VTE prediction in ICU patients that
achieved an AUC of 0.788 in their validation dataset. Our model
demonstrates equivalent predictive power in a challenging,
sepsis-specific cohort. This robust performance likely stems
from 2 key strengths of our approach: first, the inherent
efficiency and predictive power of the LGBM algorithm
compared with other boosting techniques; second, and more
critically, our model’s unique inclusion of metabolic and
acid-base markers, such as serum chloride and bicarbonate, may
offer a more nuanced reflection of the prothrombotic state
induced by sepsis-associated organ dysfunction, thereby
enhancing predictive accuracy.

The comparative analysis between the LR findings and the
SHAP feature ranking reveals the core limitation of traditional
statistical approaches in septic VTE prediction. The discrepancy
observed for bicarbonate is illustrative. While bicarbonate was
not retained in the final LR model, suggesting that its linear
signal lacked statistical significance for VTE risk, the LGBM
model ranked it as the third most influential predictor overall.
This strongly suggests that bicarbonate’s predictive power does
not stem from a simple linear effect but from its complex
nonlinear relationship or crucial interaction with other factors,
reflecting the severity of systemic acid-base disturbances.
Similarly, MI appeared as a protective factor in the final
multivariable regression (OR 0.2851), but its marginal
contribution was deemed less vital by SHAP than core metabolic
and iatrogenic factors. This protective association in the linear
model was likely influenced by confounding or collinearity
among chronic conditions, potentially because patients with a
history of MI often receive stricter chronic anticoagulation
management, which may suppress their VTE risk and mask the

true underlying risk in the linear model. The issue of complete
separation for variables such as diabetes and COPD further
highlights the inherent defect of LR when processing sparse
data, as it led to unreliable, extreme coefficients. These findings
collectively validate the choice of the nonlinear LGBM model
and underscore the necessity of relying on its transparent SHAP
feature analysis to evaluate the true, complex VTE risk drivers
that are often obscured by the restrictive linearity of traditional
statistical methods. Furthermore, the finding that the LGBM
model achieved a higher AUC (0.816 vs 0.769) in the severe
sepsis subgroup is significant. This enhanced discriminative
power in the highest risk population confirms the model’s
clinical use, suggesting that it is particularly effective for
targeted VTE prophylaxis and early intervention in patients
with multiorgan dysfunction.

The interpretability enabled by SHAP analysis is essential for
clinical translation and offers valuable pathophysiological
insights. The top predictors identified by our SHAP analysis
are closely related to the pathophysiology of sepsis-associated
VTE and reinforce the model’s clinical plausibility. The
paramount importance of central venous catheterization aligns
with Virchow’s triad as the catheter can directly cause
endothelial injury and lead to local blood flow stasis, both of
which are potent triggers for thrombosis [32]. This finding is
consistent with numerous studies highlighting indwelling
catheters as a major iatrogenic risk factor for VTE in ICU
patients [33,34]. The contribution of arterial catheterization,
although less pronounced, further underscores the role of
endothelial disruption from invasive devices.

Beyond these established risk factors, the model identified the
predictive value of metabolic parameters such as serum chloride
and bicarbonate. Elevated serum chloride is frequently
associated with metabolic acidosis, which commonly develops
in severe sepsis and shock [35]. Acidosis has been shown to
enhance PLT aggregation and impair fibrinolysis, thereby
promoting a prothrombotic state [36]. The association with
bicarbonate likely reflects the severity of systemic acid-base
disturbances commonly observed in septic shock. These findings
suggest that fluid resuscitation strategies and acid-base
management may represent modifiable components of VTE
risk. The role of PTT is particularly noteworthy. Although a
prolonged PTT is traditionally associated with bleeding risk, in
sepsis it may paradoxically indicate consumptive coagulopathy
in which widespread microthrombosis rapidly consumes clotting
factors and leads to their depletion, a hallmark of disseminated
intravascular coagulation [37]. The PDP revealed a nonlinear
risk profile, where VTE risk increased markedly once PTT
exceeded approximately 45 seconds. This nonlinear relationship
would likely be overlooked in traditional linear analyses and
highlights the model’s capacity to identify clinically meaningful
physiological thresholds. The contribution of HR appears more
direct as its PDP showed a monotonic increase in predicted
VTE risk with rising HR. Tachycardia is a cardinal manifestation
of the systemic inflammatory response and catecholamine surge
in sepsis, reflecting physiological stress and a hyperdynamic
state that may promote endothelial dysfunction and a
prothrombotic environment [38,39].
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Strengths and Limitations
A major strength of our study lies in the integration of rigorous
model development with interpretability, which enhances its
potential clinical applicability. The model was developed using
the large, high-quality public MIMIC-IV database and externally
validated it in a geographically and ethnically distinct cohort
from our own center. This 2-tiered validation strategy is essential
for evaluating model generalizability, which remains a common
limitation in single-center ML studies [40]. The decline in AUC
from 0.956 to 0.786 during external validation, while still
maintaining the best performance among all models, underscores
the model’s robust generalizability. This performance gap likely
reflects intrinsic differences between the 2 cohorts, such as
patient genetics, local clinical practices, VTE screening
protocols, and data-recording standards. These findings
underscore the critical need for local calibration or model
retraining before deploying any predictive model in a new
clinical setting. In addition, our use of SHAP enhances model
transparency and interpretability rather than producing a purely
opaque prediction tool. By generating individualized
explanations through force plots, our model provides clinicians
with transparent and actionable insights that support clinical
decision-making and facilitate integration into routine
workflows. Such interpretability is essential for translating ML
tools from research settings to real-world clinical practice.

Despite these strengths, our study has several limitations. First,
its retrospective design allows for the identification of
associations but not the establishment of causality. The reliance
on ICD codes for VTE diagnosis in the MIMIC-IV database
may lead to some misclassification, as coding practices can vary
and may not capture all clinically recognized events [41].
Second, we included data from only the first 24 hours of ICU
admission. While this time frame is critical for early risk

stratification, VTE is a dynamic process, and models
incorporating time series data may provide greater predictive
accuracy [42]. Third, despite comprehensive data extraction,
some potential confounders, such as the specific type and dosage
of thromboprophylaxis, patient mobility status, or the specific
subtypes of malignancy, were not available. This includes the
lack of detailed or consistently documented data on heparin
dosage, such as prophylactic versus therapeutic, or duration,
which forced us to treat heparin use as a binary variable. Finally,
although the use of imputation for missing data is standard
practice, it may still introduce a small degree of bias.

Future research should aim to prospectively validate our LGBM
model in multicenter interventional trials to confirm its clinical
use and impact on patient outcomes. Further refinement of the
model may involve incorporating dynamic variables throughout
the ICU stay and integrating emerging biomarkers related to
coagulopathy and endothelial dysfunction. In addition, exploring
federated learning approaches could enable the development of
more robust and generalizable models across institutions while
preserving patient data privacy [43].

Conclusions
This study presents a high-performing and interpretable LGBM
model for predicting VTE in ICU patients with sepsis by
effectively integrating a broad spectrum of clinical and
laboratory data. By leveraging SHAP to enhance transparency,
the model extends beyond a simple predictive tool to function
as a decision support system capable of elucidating complex
risk profiles and enabling clinicians to implement more
personalized and effective VTE prevention strategies. This work
lays the foundation for the adoption of sophisticated yet
interpretable artificial intelligence–driven tools aimed at
reducing the burden of VTE in this high-risk patient population.
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ARDS: acute respiratory distress syndrome
ARF: acute respiratory failure
AUC: area under the curve
CatBoost: categorical boosting
COPD: chronic obstructive pulmonary disease
CRRT: continuous renal replacement therapy
FiO2: fraction of inspired oxygen
HR: heart rate
ICD: International Classification of Diseases
ICD-9: International Classification of Diseases, Ninth Revision
ICD-10: International Statistical Classification of Diseases, Tenth Revision
ICU: intensive care unit
LGBM: light gradient boosting machine
LR: logistic regression
MI: myocardial infarction
MIMIC-IV: Medical Information Mart for Intensive Care IV
ML: machine learning
OR: odds ratio
PaCO2: partial pressure of carbon dioxide
PaO2: partial pressure of oxygen
PDP: partial dependence plot
PE: pulmonary embolism
PEEP: positive end-expiratory pressure
PLT: platelet
PT: prothrombin time
PTT: partial thromboplastin time
RF: random forest
RR: respiratory rate
SAPS II: simplified acute physiology score II
SHAP: Shapley Additive Explanations
SMOTE: Synthetic Minority Oversampling Technique
SOFA: Sequential Organ Failure Assessment
SpO2: oxygen saturation
VTE: venous thromboembolism
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