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Abstract

Background: In recent years, the incidence of cognitive diseases has also risen with the significant increase in population
aging. Among these diseases, Alzheimer disease constitutes a substantial proportion, placing a high-cost burden on health care
systems. To give early treatment and slow the progression of patient deterioration, it is crucial to diagnose mild cognitive
impairment (MCI), a transitional stage.

Objective: In this study, we use autobiographical memory (AM) test speech data to establish a dual-modal longitudinal
cognitive detection system for MCI. The AM test is a psychological assessment method that evaluates the cognitive status of
subjects as they freely narrate important life experiences.

Methods: Identifying hidden disease-related information in unstructured, spontaneous speech is more difficult than in
structured speech. To improve this process, we use both speech and text data, which provide more clues about a person’s
cognitive state. In addition, to track how cognition changes over time in spontaneous speech, we introduce an aging trajectory
module. This module uses local and global alignment loss functions to better learn time-related features by aligning cognitive
changes across different time points.

Results: In our experiments on the Chinese dataset, the longitudinal model incorporating the aging trajectory module achieved
area under the receiver operating characteristic curve of 0.85 and 0.89 on 2 datasets, respectively, showing significant
improvement over cross-sectional, single time point models. We also conducted ablation studies to verify the necessity of the
proposed aging trajectory module. To confirm that the model not only applies to AM test data, we used part of the model to
evaluate the performance on the ADReSSo dataset, a single time point semistructured data for validation, with results showing
an accuracy exceeding 0.88.

Conclusions: This study presents a noninvasive and scalable approach for early MCI detection by leveraging AM speech
data across multiple time points. Through dual-modal analysis and the introduction of an aging trajectory module, our
system effectively captures cognitive decline trends over time. Experimental results demonstrate the method’s robustness and
generalizability, highlighting its potential for real-world, long-term cognitive monitoring.
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Introduction

Alzheimer disease (AD) is a neurodegenerative disorder
often associated with memory decline, language impair-
ment, and a diminishing capacity to perform daily activi-
ties independently. However, AD remains incurable. Current
research indicates that approximately 47 million people were
diagnosed with dementia in 2015 [1], and it is expected that
the number will triple by 2050 [2]. Such forecasts pose a
significant burden on both patients’ families and health care
systems.

Within the spectrum of cognitive health, an intermediary
stage exists between a state of normalcy and the onset of
AD, denoted as mild cognitive impairment (MCI). Patients
with MCI do not exhibit significant cognitive symptoms
compared with those with AD. Those patients are still capable
of performing daily activities independently. According to
the study by Petersen et al [3], an estimated 16% of individ-
uals with MCI progress to dementia within a year. There-
fore, early identification of MCI holds significant value
in instigating interventions aimed at impeding the advance-
ment of dementia. However, the detection of MCI presents
a notable challenge due to the subtle manifestation of its
symptoms.

While biomarkers have demonstrated sensitivity in
identifying MCI, such as positron emission tomography and
magnetic resonance imaging [4,5], many of them necessitate
invasive procedures. The associated costs of data collection
for such methods are relatively high. Conversely, leveraging
voice data for cognitive assessment offers a simpler and
more suitable approach for long-term monitoring of cogni-
tive status. Our approach relies on using autobiographical
memory (AM) test data as the primary input [6], wherein
interviewers engage participants in a series of questions
and answers regarding their life experiences. This method,
resembling a casual conversation, is more approachable than
other psychological test methods because it reduces the
testing stress experienced by participants.

Longitudinal analysis for MCI detection based on speech
data remains relatively unexplored compared with other
data types, such as magnetic resonance imaging, resulting
in a scarcity of research in this area. The research pro-
posed by Al-Hameed et al [7] focuses on extracting solely
acoustic features from speech data collected across multi-
ple visits from DementiaBank, which primarily pertains to
speech associated with picture description tasks. They aim
to predict participants’ Mini-Mental State Examination scores
and cognitive labels. Following feature selection, they used
support vector machine or stochastic gradient descent for
prediction. Integrating data from 3 visits achieved a 90%
accuracy in distinguishing between healthy control (HC) and
MCI in a binary classification task. However, due to label
imbalance in the dataset, accuracy as a metric may not be
entirely equitable. This study demonstrates that incorporating
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features from previous visits enhances prediction accuracy for
subsequent visits.

Using the same dataset, another survey by Ammar et
al [8] concentrates on extracting a wide range of linguistic
features related to fluency and richness for Mini-Mental State
Examination score prediction. However, unlike the former
study, they do not leverage the correlation between previous
visits. In the research proposed by Laguarta and Subirana
[9], 16 physiological biomarkers were identified from speech
data, represented in a personalized subject feature map.
This feature map is capable of illustrating and monitoring
cognitive changes over time. Achieving 93.6% accuracy in
the ADReSS datasets, this study is the only one among them
that visually depicts cognitive decline.

Yamada et al [10] used phone calls for long-term
participant tracking, manually transcribing the conversations
to extract linguistic features. They focused on extracting
topic and word repetition features across different calls.
Their model achieved an area under the receiver operating
characteristic curve (AUROC) of 0.91 in classifying between
AD and HC. In our previous work proposed by Chang et al
[11], the author first extracted traditional acoustic feature sets,
extended Geneva Minimalistic Acoustic Parameter Set [12],
from AM audio files collected across multiple visits. The
author then used TabNet [13] to learn the cognitive informa-
tion embedded within these feature sets. To further enhance
the model, an aging alignment loss was applied, encouraging
cognitive representations in the latent space to be closer to
each other. The approach achieved an accuracy of 0.66 and an
F1-score of 0.64.

In this work, we use AM data as the primary input
for our model. We analyze the AM data from both lin-
guistic and acoustic perspectives and further establish an
aging trajectory module (ATM). By introducing the ATM,
which captures cognitive decline across different time points
through direction embeddings, our framework provides more
representative modeling of longitudinal changes. The key
contributions of this work are summarized as follows:

1. Unlike most studies focusing on single time point
analysis, this work introduces a longitudinal framework
using AM speech data to track cognitive changes over
time.

2. The system jointly analyzes linguistic and acoustic
features from unstructured AM speech, offering a
richer representation of cognitive status than unimodal
approaches.

3. Proposed ATM, which models cognitive decline by
aligning temporal features across visits through a
specially designed alignment loss applied to direction
embeddings.
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Methods
Problem Setting

There are 2 problem settings in this work: longitudinal type
and cross-sectional type. The longitudinal problem setting is
our main focus. The cross-sectional problem setting evaluates
whether our model is general enough to tackle different tasks
of detecting cognitive impairment disease detection tasks.

Longitudinal Problem Setting

In our problem setting, we have the dataset D = {D,D,, ..., Dy}
with the corresponding label set L ={L,L,,...,L,}, where V
means the total visit times, and D; means the dataset at
the kth visit. Each Dy is expressed as Dy = {x; , X2 1 s Xn.k}»
where N represents the number of the subjects involved
in the test, andx; = {x}\, xs, ...,x}} represents the M stories
provided by subject i at the kth visit; note that the number of
M may vary across different visits. The corresponding labels
set Ly ={lL i L - Iy} shows the cognitive status of each
subject, with each [; ; indicating whether the subject is an HC
or has MCI.

During the data preprocessing, we extract the feature set

m,t o m,l 1

{xrie xpyt, xiy!} from the raw audio X[y, where X%, X%, x[%
represents the acoustic feature set, textual data, and linguistic
feature set, respectively. Subsequently, the model input is the
sequential visit data defined in equation 1, where x/\ € x;,
X(3€ x;5,and x{'V € x; .

feme, xS,

my,a _mp,t my,l
{xi,z > Xi2 s Xi2 },

(Y

my,a _my,t _my,l
{xi,v » Xy o Xy }

It is worth noting that stories from each visit are randomly
paired across visits within each subject. This design ensures
that the model learns subject-level temporal progression
rather than relying on similarities driven by specific story
topics or linguistic content. Random pairing is not an arbitrary
source of noise but a deliberate mechanism aligned with
our longitudinal modeling objective. Because story content
varies substantially across visits and participants, enforcing
semantic matching or averaging all embeddings within a
visit would bias the model toward topic-dependent features,
flatten meaningful variability in linguistic complexity, and
increase the risk of overfitting to specific story topics. In
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contrast, random pairing operates strictly within each subject,
preserving the temporal order while exposing the model to
multiple sampled transitions across training epochs. This
provides a richer distribution of temporal transitions, enabling
the framework to learn visit-level cognitive progression
directions that remain robust to story content and reflect each
subject’s distribution of linguistic changes over time.

Formally, our model can be viewed as a mapping function
f W where W represents the set of learnable parameters. The
function prrojects the input sequence {x/,x/%,...,x"} into
the label of the last visit [; ). In this study, the maximum

number of visits per subject, V, is 3, following the available
structure of the dataset.

Cross-Sectional Problem Setting

In the cross-sectional problem setting, the primary difference
from the longitudinal problem setting is that data collected
from the same subject at different interview visits are treated
as data from independent subjects. Thus, we have the dataset
D= {xl, X2,
L = {119 lz,
from all visits, and x; represents the raw audio for the subject
i with the cognitive label /;. The cognitive label /; indicates
that the subject is either an HC or under the targeted condition
(MCT or AD). During the data preprocessing, we extract the

cees XCN} with the corresponding label set
cees lCN}, where CN is the sum of all subjects

feature set {x?, xt, xf} from the raw audio x;. Our cross-sec-

tional model aims to map the model input {x?, xt, xf} into the
cognitive label /;.

Overview

The system overview is shown in Figure 1. The goal of
the system is to detect the cognitive condition of subjects,
specifically whether they have MCI, using speech data.
Before training, the speech data first undergo data preprocess-
ing, which involves converting the audio files to text using
automatic speech recognition (ASR), extracting additional
linguistic features, and deep learning—based acoustic feature
extraction. These steps generate additional text data and
acoustic data, which are then intertwined to form dual-modal
data pairs serving as the input for the model training. In
addition, to effectively capture the features of aging and
enhance the detection of potential MCI, the model input
should have speech data for this time as well as points
of follow-up data. This philosophy leads to our proposed
longitudinal analysis for MCI detection.
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Figure 1. Overall framework of the proposed longitudinal multimodal model. The model consists of two main modules: (1) encoder model,
combining a CNN-based acoustic encoder and a BERT-based linguistic encoder to generate fused multimodal embeddings; and (2) aging trajectory
module, which models longitudinal changes between consecutive visits using a direction encoder and cross-attention before classification. ASR:
automatic speech recognition; BERT: bidirectional encoder representation for transformer; CLF: classifier; CNN: convolutional neural network; HC:

healthy control; MCI: mild cognitive impairment.
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Data Preprocessing

Before the data are input into the model, they need to be
preprocessed to ensure data quality and to extract useful
features. After data collection is completed, given that the
data are based on the entire interview process of each subject
during a single visit, we first segment each story recording
from the interview. To prepare the audio file of each subject,
we segment the audio files based on the story topics provided
by the subject, cutting the corresponding recall and probing
audio files.

Acoustic Feature Extraction

The preprocessing of audio data is shown in Figure 2. First,
the notation xJj denotes a raw audio waveform, which

means the mth audio file of the subject i collected at the
kth interview visit undergoes basic processing, including
normalization and resampling. Normalization is done using
zero-mean unit-variance normalization. Next, the audio is

segmented into #-second clips with a 5-second overlap. Each

m, seg_num}
b

audio file can be denoted as x|} = {x{,”jcl, x{f’,;z, e Xi T

where S€g_num represents the number of clips to which
the raw audio file can be divided, and the total number of
segments varies for each audio file.

Figure 2. Overview of acoustic preprocessing. Each raw audio recording is divided into multiple fixed-length clips and processed by the wav2vec2.0
feature extractor to obtain frame-level representations. For each segment, the outputs from all clips are stacked and averaged to produce a single
clip-level feature. The averaged clip features are then pooled across segments to generate the final visit-level wav2vec2.0 embedding, which is used
as input to the acoustic encoder.

seq_num: length of outputs from the wav2vec2 model
seg_num: # of segments for each audio
clip_num: # of clips after segment

Resampling, .
I II || = | normalization, |™> * T Wav2vec 2.0 ]
Raw audio cutting '”lll
Audio clips 1
Stack and Average pool of the ﬁﬁ

outputs of each clip .
«— [T — :

- Outputs of clips
[clip_num, 1024] [clip_num, seq_len, 1024]

average all clips

Acoustic features
[1024]

https://medinform.jmir.org/2026/1/e80883 JMIR Med Inform 2026 | vol. 14 1 e80883 | p. 4

(page number not for citation purposes)


https://medinform.jmir.org/2026/1/e80883

JMIR MEDICAL INFORMATICS

In our research, wav2vec 2.0 model [14] is used as an
acoustic feature extractor, and we leverage the pretrained
model available on Hugging Face. Using the wav2vec
2.0 model in advance to extract deep acoustic representa-
tion features offers the advantage of saving memory space
and making the subsequent model structure lighter, thereby
increasing training efficiency. Each clip is fed into the
wav2vec 2.0 model, producing an output with dimensions
[seq_len, 1024], where seq_len is determined by the
convolution layer in wav2vec 2.0 and the clip length, which
is computed by dividing the clip length and the multiplication
of the stride length in the convolution layers. After obtaining
the output of each clip, the first average pooling is performed,
resulting in a 1024-dimensional acoustic feature for each clip.
Then, all clip outputs are stacked together, and a final average

pooling is conducted to obtain the final acoustic features X

of the entire raw audio file; hence, the dimension of x;;* is
1024.

Linguistic Feature Extraction

The preprocessing of linguistic data can be divided into
2 stages: generating the transcript and extracting features

Liao et al

from the generated text. Since not all audio files in the
dataset have manual transcripts, we use ASR to generate the
transcripts for our research. We use the open-source tool kit
“whisper-timestamped,” which provides both timestamps and
the corresponding text, as illustrated in Figure 3. Previous
research [15-17] has confirmed that pauses are an indicator
in AD-related diseases, where patients with MCI or AD tend
to exhibit more frequent and longer pauses. In our study,
we classify pauses based on the interval duration between
sentences into 3 types: short pause (duration <0.5 seconds),
medium pause (duration between 0.5 and 2 seconds), and
long pause (duration >2 seconds) [18]. In addition to pauses,
we calculate the mean length of utterance, which is defined
as the average number of words spoken in a sentence. In
this step, we will generate transcripts with pause information
and 4 numerical linguistic features. Besides pause informa-
tion, we provide additional syntax information to enrich the
linguistic features. Previous research [19] has shown that the
sentence structures used by individuals with AD and HC are
different. Therefore, we use part-of-speech (POS) tagging in
this study. After generating the text, we use the open-source
tool kit “ckipnlp” for word parsing and POS tagging. The text
segments are then categorized into 5 POS types: noun,

Figure 3. Example of how the result of whisper-timestamped, where the timestamp of the Mandarin speech is aligned with the transcript, is used for
the temporal segmentation to extract linguistic features. MFCC: mel frequency cepstral coefficients.

H W oB|m ILfF

MFCC

Time (seconds)

verb, adjective, pronoun, and other. In this step, we count the
total number of these POS taggers.

In addition, due to the nature of the AM test, subjects can
share stories on unrestricted topics. To facilitate the model to
capture more meaningful information from the transcripts, we
apply the topic insertion technique proposed by our previous
work [11,18]. This technique is to add a sentence with the
mentioned topic at the beginning of the transcript, such as
“I'm going to share a story of..” The tester specifies the
topic during data collection. This step helps ensure that the
subsequent transcript is thematic. After the whole preprocess-

ing of linguistic data, from the raw audio x[%, we finally
obtain the transcripts with topics and pauses x{f‘,’{‘, along

with 9 additional linguistic features xir’”,’cl, which include mean

length of utterance; the number of short, medium, and long
pauses; and 5 types of POS tags.

https://medinform.jmir.org/2026/1/e80883

Encoder Module

Acoustic Encoder

During the data preprocessing stage, 1024-dimensional deep
learning—based acoustic features, denoted as x?f,’(a, were
extracted using the wav2vec 2.0 model. These high-level
representations were then passed to a lightweight convolu-
tional neural network—based acoustic encoder designed to
capture hierarchical temporal-spectral patterns. The encoder
consists of three 1D convolutional layers with kernel size 3
and stride 1, each followed by batch normalization, rectified
linear unit activation, and max-pooling with a kernel size
and stride of 2, progressively reducing the feature resolution
by a factor of 8. The convolutional layers use 16, 32, and
64 filters, respectively, to model increasingly abstract local
dependencies in the acoustic embedding. The resulting feature
maps are flattened and projected through a fully connected
layer that maps the representation to a 128-dimensional latent
space. This projection enhances computational efficiency,
mitigates overfitting, and provides a compact and informative

acoustic embedding a", for multimodal fusion.
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Linguistic Encoder

m,t

In the linguistic encoder, the ASR ftranscript X;; and

9-dimension features x{",’{l generated during data preprocess-
ing are sent to the BERT [20] model and a linear layer,
respectively, for initial encoding. During data preprocessing,
to ensure that the subjects’ speech has a thematic structure,
we add a topic at the beginning of the transcript. In BERT, we
borrow the concept of segment embeddings from the original
paper [20]. Here, we refer to it as “context embedding” to
enhance the model’s understanding of the topic and content.
We divide the transcript into 2 parts: topic and context. The
topic part is labeled as 0, and the context part as 1. These
values are then encoded into context embeddings E; and
E. through a learning embedding layer. This design helps

Liao et al

the model determine whether there is a sufficient correlation
between the topic and content. Research in AM tests indicates
that episodic memory significantly declines in patients with
cognitive impairments [21,22]. Therefore, we can assess the
subject’s cognitive state by examining whether the subject’s
story contains details related to the topic.

As illustrated in Figure 4, context embeddings are
element-wise added to the original BERT token embeddings
for further processing. A linear layer is used as a numerical
encoder for linguistic features xl-',",’(l. Finally, the output from
BERT and the learned numerical embeddings are concaten-
ated and processed through a projector to obtain the final

linguistic embedding ¢["%.

Figure 4. Overview of the BERT embedding. Each input token is first mapped to a token embedding, which is combined with additional context
embeddings to capture both semantic meaning and conversational context. BERT: bidirectional encoder representation for transformer.
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Fusion Layer

In this study, we adopt a self-attention fusion method to
enable the model to capture information between different
modalities more effectively. The concept is illustrated in

Figure 5. After obtaining the acoustic embedding aj"; and

the linguistic embedding ¢, these 2 embeddings are added

together to form a combined representation, which is then fed
into a multihead self-attention layer. Through the calculations
of the self-attention layer, we obtain the final integrated
embedding e/;. This design helps the model capture deeper
interrelated information between different features.

Figure 5. Overview of the fusion layer. Acoustic and linguistic embeddings are integrated through a multihead attention mechanism, producing a
joint embedding that captures cross-modal interactions and complementary cognitive cues.

Integrated embedding e

LI

Multihead
attention layer

Acoustic embedding
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Aging Trajectory Module

The ATM is a key component of our longitudinal model,
designed to capture cognitive changes across multiple visits.
The structure is shown in Figure 6. In our study, each subject
contributes up to 3 visits. Therefore, the model’s initial input

.. . m m m .
is in the form of a triplet, {xi’{, xi,ﬁ, xi,g}. After passing

them through the encoder model process, this becomes the

embedding triplet of the same form, {elm 1 eir,n 2, e{’" ;’} In
this module stage, the embeddings are fed in pairs, such as
{el], e 3}or {e/3, €3}, so that the model focuses on learning
the relationship between visits £ and k-1. To model these

relationships, we use a cross-attention mechanism, where the
embedding from the kth visit serves as the query (Q), and

Liao et al

the embedding from the (k-1)th visit serves as the key (K)
and value (V). This mechanism allows us to capture the
differences in feature values between 2 visits. The reason for
using the kth visit embedding as the query and the (k-1)th
visit embedding as the key and value is that, in practice,
we can retrieve information only from the past data and not
future data. This approach ensures that the model can access
information only from the previous visits, reflecting a realistic
scenario where future data are unavailable. By doing so, the
model learns to focus on the most relevant past information
that can be referenced by the current visit, enabling the
tracking of changes and peeking of patterns of cognitive
decline over time. This method effectively highlights the
differences and similarities between visits, providing a more
nuanced understanding of the subject’s cognitive progression.

Figure 6. Overview of the aging trajectory module. Consecutive visit embeddings are compared through cross-attention and a direction encoder to

capture cognitive differences between visits.
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The concept of contrasts is quite straightforward. We aim to
explore a deeper understanding of the relationship between
the (k-1)th and kth visits. To achieve this, we use a cross-
attention mechanism. In this setup, the embedding from the
kth visit is used as the query (Q), whereas the embedding
from the (k-1)th visit serves as the key (K) and value (V). This
mechanism allows us to capture the differences in feature
values between 2 visits. The reason for using the kth visit
embedding as the query and the (k-1)th visit embedding as the
key and value is that, in practice, we can retrieve information
only from the past data and not future data. This approach
ensures that the model can access information only from the
previous visits, reflecting a realistic scenario where future
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data are unavailable. By doing so, the model learns to focus
on the most relevant past information that can be referenced
by the current visit, enabling the tracking of changes and
peeking of patterns of cognitive decline over time. This
method effectively highlights the differences and similarities
between visits, providing a more nuanced understanding of
the subject’s cognitive progression.

To quantify the differences between visits, we introduce
a direction encoder fp, composed of several linear layers.
The difference between embeddings is projected into a
latent space to represent an aging-oriented change vector d,

formulated as equation 2, where d;}-}™ means the direction
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from mk_lth story in the (k-1)th visit to the m " story in
the kth visit. my = {1,2,...,M;}, where M, is the total
number of stories for subject i in the kth visit. Similarly,
mg_1 = {1,2,...,M; x_1}, where M; ; _, is the total number
of stories for subject i in the (k-1)th visit.

my _ 1, M, m, my —
dix 5™ = folelk —ekh @)
In addition, during the training process, motivated by the
research [11,23,24], we introduce 2 types of losses: sub-
ject alignment loss and group alignment loss. These align-
ment losses are designed to align both individual and group

targets, helping the direction encoder learn more accurate

Liao et al

aging-oriented changes. We expect that by applying these
losses, the resulting direction d will carry more representa-
tive meaning, aiding the longitudinal model in accurately
assessing the subject’s cognitive condition.

Subject Alignment Loss

In the subject alignment loss Lg, the concept is to ensure
that the same subject’s internal directions are similar. In our
problem setting, the stories of the input triplet are randomly
paired in different visits. Therefore, it is expected that the
directions from the same subject may vary in the latent
space. However, the cognitive decline of a subject should be
consistent. Figure 7 shows an illustration of the concept.

Figure 7. Illustration of the concept for subject alignment loss. It visualizes how the subject alignment loss ensures that the overall trajectory
directions of the subject remain consistent, although the internal trajectory of story-level embeddings for the same subject may show slight variations

across different visits.

Therefore, subject alignment loss aims to reduce the
differences in direction within the same subject. The loss
used here is cosine similarity loss. The process of calculating
the subject alignment loss is to first calculate the average
subject direction for each visit as shown in equation 2. We
then compute the subject alignment loss by summing the
alignment loss of all subjects as defined in equation 3. The
generalized subject alignment loss is defined as equation 3,

where di, k — 1 represents the average direction of every audio
file in the (k-1)th visit to kth visit from the subject i in the

https://medinform.jmir.org/2026/1/e80883

latent space, and N represents the total number of subjects.
Lg ; represents the subject alignment loss for subject 7, and
_ _A.B
cos (9(4,B)) = TrTa
our case, since the dataset contains 3 visits, our V is 3, and

the loss is applied to the pairs (first visit and second visit) and
(second visit and third visit).

is the cosine similarity function. In
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Group Alignment Loss

In the group alignment loss L, the concept is to ensure that
subjects with the same cognitive label have similar cogni-
tive progression changes as illustrated in Figure 8. Unlike
the subject alignment loss, which focuses on the internal
alignment of directions within a subject, the group alignment
loss emphasizes the external alignment of directions between

Liao et al

different subjects. Specifically, we compare the cognitive
change directions of subjects with the same label transitions.
Here, we use the Supervised Contrastive Loss (SupConLoss)
[25] to encourage the directions of subjects with the same
label changes to be closer to one another. The label transitions
considered are HC to HC, HC to MCI, and MCI to MCI.
The process of calculating the group alignment loss is using
equations 5 and 6, where N represents the total number of
subjects, and Lg; represents each group alignment loss for

subject i. SupConLoss( -, -) is the SupConLoss function. lfc —1,k1s

the label transition type of subject i from (k — 1)th visit to kth
visit.

Figure 8. Illustration of the concept for group alignment loss. It visualizes how the group alignment loss enforces consistency in progression
directions among subjects sharing the same cognitive label. Blue represents the group from healthy control (HC) to HC, yellow represents the group
from HC to mild cognitive impairment (MCI), whereas orange represents the group from MCI to MCI.

1,1 1,1
fA4 k-1 d

SupConLoss(d, (AL l,k) (5)

0, label is HC both in (k — 1) and k" visit
i1,k =11, label is HC in (k— l)th but later becomes MCI in k" visit
2, label is MCI both in (k — 1) and k' visit

)

To summarize, group alignment loss Lg aims to minimize
the distance between the cognitive progression directions of
different subjects with the same cognitive label transitions
types. This helps ensure that subjects exhibiting similar
cognitive changes have consistent representations, thereby
improving the model’s ability to generalize across different
subjects. By leveraging SupConLoss, we can effectively capture
and align these progression patterns, leading to more accurate
and robust cognitive state predictions.

Classifier and Overall Loss

After the ATM, the
(e ez e dim, di™), where e;y rtepresents the enhanced
latent representation after the cross-attention layer. These
representations are then concatenated and fed into a classifier.
The classifier comprises a batch normalization layer and a
fully connected layer to produce the final prediction. Finally,
the overall loss function can be formulated by equation 7,
where L, is the binary classification loss, and o, &, and
y are the hyperparameters of loss weight for Lg, Lg, and
Lg, respectively. The hyperparameters are fine-tuned, and the
optimal values are 0.01,0.001, and 0.001.

we  obtain final  outputs
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The encoder loss Lg is a contrastive loss designed to enhance
the representativeness of the embeddings generated by the
encoder and is defined by equation 8, where N is the total
number of the subjects, V is the total number of visits, and M},
is the total number of stories in the kth visit. This loss ensures
that embeddings with the same cognitive status are closer to
one another while pushing apart embeddings with different
labels.

n ME

SupConLoss(eiy," k) 8)
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Dataset

Dataset Collection

Our experiments primarily focus on comparisons using our
self-collected National Taiwan University Autobiographical
Memory Test (NTU-AM) dataset. Previous studies [6,11,
26,27] have confirmed that the AM test effectively tracks
changes in cognitive function by evaluating subjects’ memory
functions. It can be used as a tool for MCI testing. During
the test, subjects are asked to recall important life stories
from different periods in their past. Compared with formal
memory testing methods, this process resembles a general
conversation, which helps reduce the stress experienced by
subjects.

For the collected data used in this study, professional
psychologists conducted one-on-one interviews. During these

JMIR Med Inform 2026 | vol. 14 180883 | p. 9
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interviews, a microphone is used to record the conversa-
tion between the subject and the interviewer. Furthermore,
subjects are asked first to talk about the titles of the important
events they want to share (eg, “I want to share the story about
when I was admitted to college at the age of 18 and my test
result were announced”). The process of describing the events
can be divided into two stages, namely, recall and probing.

1. Recall: The subject is first asked to roughly describe
the events leisurely and then is encouraged to share as
many details of the event as possible.

2. Probing: The interviewer then asks even more detailed
questions based on what the subject mentioned in the
recall stage. These questions cover various categories,
such as “what,” “when,” “where,” emotion or thought,
and time integration.

2

During a single interview, the same subject can share multiple
stories as a matter of fact. To sum up, the overall process
of the AM interview test can be described as follows: (1)
the subject decides the number and content of stories to be

Liao et al

shared, (2) shares the recall content of each story, and then
(3) the interviewer probes each story with a series of detailed
questions.

Moreover, to track the cognitive changes of subjects over
a long term, they are invited to take the AM test again after
at least 6 months. In our current research, our longitudinal
data include up to 3 rounds of AM interview test data, that
is, each subject has 1 test data and 2 follow-up data. All data
were collected by professional psychologists with institutional
review board approval, ensuring high-quality data.

The National Taiwan University Autobiographical
Memory Test Cross-Sectional (NTU-AM-CS) dataset was
collected under a cross-sectional scenario, with the demo-
graphic distribution of participants shown in Table 1. This
dataset includes 111 subjects, consisting of 56 HC and 55
MCI participants. Each participant could provide multiple
important life stories during a single visit.

Table 1. The demographic distribution of participants in the National Taiwan University Autobiographical Memory Test Cross-Sectional dataset.

Age (years), mean MMSE
Group N Male Female ge ly ? Years of education, mean (SD) 2, mean
(SD)
(SD)
b (h—
HC" (n=56) 56 13 38 713 (5.4) 162 (9.8) 28.7
(1.6)
MCI€ (n=55) 55 17 38 70.7 (6.9) 13.1 (7.1) 27.1
(2.0)
Total (N=111) 111 35 76 71.0 (6.2) 14.6 (8.7) 279
(2.0

®MMSE: Mini-Mental State Examination.
PHC: healthy control.
“MCI: mild cognitive impairment.

The longitudinal scenario dataset, National Taiwan University
Autobiography Memory Test Longitudinal (NTU-AM-LG),
involves 54 of the original 111 subjects who participa-
ted in follow-up studies, including 28 HC and 26 MCI
participants. The types of data collected are the same as in

the cross-sectional scenario, encompassing both recall and
probing audio files. The key difference is that NTU-AM-LG
includes story audio files from 3 visits. The demographic
distribution for this dataset is also shown in Table 2.

Table 2. The demographic information of the National Taiwan University Autobiography Memory Test Longitudinal dataset.

Age (years), mean

Years of education,

— a
Group (N=54) Male Female (SD) mean (SD) MMSE?, mean (SD)
HCP (n=28) 12 16 740 (5.9) 143 (2.7) 284 (1.5)
MCI€ (n=26) 7 19 72.5(64) 14.0 (9.6) 27.5(1.9)
Total 19 35 73.3 (6.1) 14.1 (7.0) 28.0 (1.8)

®MMSE: Mini-Mental State Examination.
PHC: healthy control.
°MCT: mild cognitive impairment.

Ethical Considerations

The collection of experimental data from human partici-
pants was reviewed and approved by the National Taiwan
University Hospital Research Ethics Committee B (proto-
col no. 202105013RINB, approved on June 18, 2021). All
participants provided written informed consent prior to data
collection. The original consent and institutional review
board approval explicitly permitted the secondary analysis of

https://medinform.jmir.org/2026/1/e80883

deidentified recordings and transcripts for research purposes,
without requiring additional consent. All data were fully
deidentified before analysis, and no personal or identifiable
information was retained in the research dataset. Participant
privacy was protected by storing all files on secure, access-
restricted servers, and only aggregated results are reported.
Participants received NTD 160 (equivalent to US $5.09) per
hour as compensation for their time and contribution. No
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identifiable participant images are included in this manu-
script.

Experiment Dataset

The summary of the collected dataset can be provided. The
total number of datasets is shown in Table 3, where the unit
Table 3. Primary dataset statistics.

Liao et al

of measurement is the number of stories. Since each story
includes both recall and probing phases, the quantities are
identical for recall and probing data.

Visit 1 Visit 2 Visit 3 Total
Dataset HC? McCIP HC MCI HC MCI HC MCI
NTU-AM-CS¢ 134 122 N/Ad N/A N/A N/A 134 122
NTU-AM-LG® 44 30 50 40 76 54 170 124

8HC: healthy control.
PMCI: mild cognitive impairment.

°NTU-AM-CS: National Taiwan University Autobiography Memory Test Cross-Sectional.

dN/A: not applicable.

°NTU-AM-LG: National Taiwan University Autobiography Memory Test Longitudinal.

NTU-AM-CS is a cross-sectional dataset that includes a total
of 111 subjects (56 HCs and 55 with MCI). Each subject
participated in a single AM interview, during which they
could share multiple stories. Therefore, NTU-AM-CS does
not include repeated follow-up visits.

NTU-AM-LG is the longitudinal subset derived from
NTU-AM-CS. A portion of participants agreed to return for
additional follow-up interviews, resulting in up to 3 visits
per subject. As shown in Table 3, the number of stories
per visit varies because the volume of data depends on

how many stories participants chose to share during each
session. In some cases, more stories were collected in visit 3
than in earlier visits, which explains the higher data volume
observed.

To further clarify disease progression patterns, the number
of subjects transitioning across cognitive status categories
between visits, including stable (HC=HC, MCI=MCI) and
progressive or recovered (HC=MCI, MCI=HC) cases, is
shown in Table 4.

Table 4. Cognitive status transitions between consecutive visits in the National Taiwan University Autobiography Memory Test Longitudinal dataset

across visits 1 and 2 and visits 2 and 3.

Number of cases (subject based),

Transition n =108
HC? to HC 50

HC to MCIP 10
MCI to HC 8

MCI to MCI 40

2HC: healthy control.
PMCI: mild cognitive impairment.

For additional experiments, we primarily used a semi-
structured speech dataset. The National Taiwan University
Hospital Picture Description Test (NTUH-PIC) and National
Taiwan University Hospital Memory Test (NTUH-MEM)
datasets, which we collected ourselves, include speech data
from picture description and logical memory tests, respec-
tively. Both datasets feature 2 cognitive labels: HC and
MCI. In the picture description task, participants are required
to describe the scenario depicted in a specific picture as
accurately and detailed as possible. In the NTUH-PIC dataset,
the well-known “cookie theft” picture [28] is used. For
the logical memory test, participants first listen to a story

Table 5. Additional dataset statistics.

and then must repeat it from memory. The third dataset,
ADReSSo [29], was introduced as part of the cognitive
challenge at INTERSPEECH 2020. This dataset also involves
a picture description test, which also used “cookie theft”
[28] but differs from the other datasets in that it includes
only 2 cognitive labels: HC and AD. Due to data access
limitations, we used only the training set for evaluation in
this case. By incorporating these additional datasets, we aim
to comprehensively evaluate the robustness and generalizabil-
ity of our model across various types of speech data and
cognitive assessments. The statistics of the additional dataset
are shown in Table 5.

Dataset Total HC?

McCIP Language Test

NTUH-PIC® 80 40

40 Chinese Picture Description

Test

https://medinform.jmir.org/2026/1/e80883

JMIR Med Inform 2026 | vol. 14 1e80883 | p. 11
(page number not for citation purposes)


https://medinform.jmir.org/2026/1/e80883

JMIR MEDICAL INFORMATICS Liao et al
Dataset Total HC? MmcIP Language Test
NTUH-MEM¢ 104 52 52 Chinese Logical Memory Test
ADReSSo (Train) 166 79 87 English Picture Description

Test

4HC: healthy control.
PMCI: mild cognitive impairment.

°NTUH-PIC: National Taiwan University Hospital Picture Description Test.

INTUH-MEM: National Taiwan University Hospital Memory Test.

Experiments

We conducted a series of experiments to evaluate our
proposed longitudinal multimodal model under different data
conditions and to verify the contribution of each model
component.

Experiments on NTU-AM-LG

We evaluated the model on the longitudinal NTU-AM-LG
dataset using 2 speaking tasks: recall and probing. For each
task, we compared four variants of our model:
1. Ours (audio): acoustic branch only, wav2vec 2.0 to
acoustic encoder to classifier.
2. Ours (text): linguistic branch only, BERT to linguistic
encoder to classifier.
3. Ours (CS): cross-sectional problem setting
4. Ours (LG): full proposed longitudinal multimodal
model with direction encoding and alignment losses.

These models were compared against standard baselines
(BERT, wav2vec 2.0, and the prior AM-based work [11]),
and the corresponding results are reported in the “Results”
section.

An ablation study on NTU-AM-LG is made to examine
the contribution of the ATM, direction embedding, and the 2
alignment losses, and we performed ablation experiments by
removing (1) the direction, (2) the subject alignment loss, (3)
the group alignment loss, and (4) both alignment losses.

Experiments on NTU-AM-CS

To demonstrate that the proposed encoders and fusion
strategy also work without longitudinal information, we
trained the same acoustic and linguistic encoders in the
cross-sectional problem setting (Our [CS]) and compared
them with BERT, wav2vec 2.0, and the prior AM method
[11]. An ablation study is also conducted to highlight the
importance of linguistic features and context embeddings.

Experiments on Additional Datasets

We further tested whether our proposed model transfers
to other cognitive-speech datasets (NTUH-PIC and NTUH-
MEM). We compared our method with that of Lin et al [18].

Finally, to enable comparison with existing AD or MCI
speech work on a public dataset, we evaluated our model on
the ADReSSo corpus.

https://medinform.jmir.org/2026/1/e80883

Experimental Setup

In the subsequent experiments, due to the limitations of the
dataset size, we will present the averaged performance of
10-fold cross-validation. To avoid data leakage, we will split
the training set and validation set by subject for the NTU-
AM-CS and NTU-AM-LG datasets. It ensures that audio files
from different visits of the same subject will not appear in the
training set and validation set simultaneously.

For the NTUH-PIC, NTUH-MEM, and ADReSSo
datasets, since each subject provides only 1 audio file, there
is no need to split the data by subject. We will perform
down-sampling on the majority class in the training set during
the experimental process to stabilize the model’s learning
capability. All experiments are conducted on an NVIDIA
RTX 4090 GPU.

Evaluation Metrics

In the experimental section, we will use 6 different eval-
uation metrics to measure the performance of the model:
accuracy, F-score, precision, sensitivity (recall), specificity,
and AUROC. These are common indicators used to assess the
predictive ability of a model. Each metric provides a different
perspective on the effectiveness of the model.

In the NTU-AM dataset, since the dataset is split by
subject, each evaluation set from every fold may have a
similar number of subjects, but the number of audio files
provided by each subject can vary. This can result in label
imbalance in the final soft-voting results. Therefore, the
most critical metrics in the subsequent experiments will be
Fi-score and AUROC. These 2 metrics provide a fairer
assessment in situations with label imbalance. As for other
experiments, the primary metrics of interest will be accuracy
and F-score.

Baseline

In the subsequent experiments in the NTU-AM dataset, we
will use a fine-tuned BERT model and the wav2vec 2.0
model as baselines. Since these 2 models are the backbones
of our proposed model, in the NTU-AM-LG dataset, the
baseline model will be composed of these 2 main models
as encoders. The embeddings generated from the 3 visits will
be concatenated and passed through the same classifier. For
the NTU-AM-CS dataset, the backbone model will serve as
the encoder, followed by a classifier. However, these models
will not have additional loss functions to assist training during
the training process, relying only on the basic binary cross-
entropy loss.

JMIR Med Inform 2026 | vol. 14 1 e80883 | p. 12
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Implementation Details

The probing data are interview data, which include both the
interviewer’s and the subject’s voices. Since our study aims to
determine whether the subject has a tendency for MCI based
on their audio data, the interviewer’s speech is considered
noise during training. To remove the interviewer’s portion,
we use the tool kit “pyannote” to split the audio into different
speaker segments. This process results in audio files without
the interviewer’s voice. These cleaned files are then used to
generate the linguistic features during the data preprocessing
stage.

We used the “openai/whisper-large-v2” version from
Hugging Face for the ASR tool. For data preprocessing,
the pretrained Wav2vec 2.0 model used for the English
dataset is “facebook/wav2vec2-base-960h,” while for the

Table 6. Hyperparameters used for implementation.

Liao et al

Chinese dataset, we used “jonatasgrosman/ wav2vec2-large-
xlsr-53-chinese-zh-cn,” which are also from HuggingFace.
We used a 15-second clip segmentation with a 5-second
overlap. Considering the limitations of the Wav2vec model,
we resampled the audio files to 16,000 Hz and standardized
them to mono-channel.

For the linguistic model, the BERT model used for
the English dataset is “google-bert/bert-base-uncased,” and
for the Chinese dataset, it is “hfl/chinese-bert-wwm-ext,”
which is also the version used for the BERT baseline.
In the Wav2vec baseline model, we used “jonatasgros-
man/wav2vec2-large-xlsr-53-chinese-zh-cn.” The hyperpara-
meters used for implementing the proposed model are shown
in Table 6.

Hyperparameters Value
BERT? attention dropout rate 03
BERT linear layer dropout rate 03
Maximum sentence (token) length 512
Dimension of audio embedding 128
Dimension of text embedding 128
Dimension of direction embedding 32
Learning rate le-5
Number of layers for attention-fusion 1
Number of layers for cross-attention 1
Batch size for training 8
Batch size for evaluation 8
Maximum epoch number 150
Early stop 10

a for encoder loss 0.01
9 for group alignment loss 0.001
v for subject alignment loss 0.001

4BERT: bidirectional encoder representation for transformer.

Results
Results of NTU-AM-LG

We experiment with the model’s effectiveness on both recall
and probing data. Given the limited research on longitudinal
speech, we primarily compare our model against baselines
such as BERT, Wav2vec 2.0, and the unimodal model
within our longitudinal framework. In addition, we present an
ablation study to demonstrate the necessity of each compo-
nent in our model. We discuss the results for recall data
and probing data separately. It is important to note that both
the cross-sectional (CS) and longitudinal (LG) models are
trained on the same NTU-AM-LG dataset, sharing identical

https://medinform.jmir.org/2026/1/e80883

subjects and feature representations. The difference lies only
in the problem formulation: the CS model performs single-
visit classification, while the LG model performs a prog-
nostic task that leverages prior visit embeddings to predict
the final cognitive state. Thus, the performance difference
reflects the use of incorporating longitudinal context rather
than architectural or data disparities.

Table 7 shows the performance of our proposed model
and the baselines for the recall data. First, when the input
consists only of audio data, our proposed model “Ours
(audio)” outperforms the previous work [11] on most metrics.
Notably, there are improvements of 5% and 6% in Fj-score
and AUROC, respectively.
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Table 7. Results of recall data on National Taiwan University Autobiography Memory Test Longitudinal dataset.

AURO

Method Accuracy F-score Precision Sensitivity Specificity ca
Audio only

Chang et al [11] 0.66 0.64 0.74 0.67 0.65 0.63

Wav2Vec2 0.59 0.58 0.53 0.78b 043 0.60

Ours (audio) 0.67 0.69 0.73 0.73 0.66 0.69
Text only

BERT® 0.73 0.65 0.77 0.64 0.82 0.73

Ours (text) 0.75 0.72 0.33 0.73 0.72 0.73
Text + Audio

Ours (CSY) 0.72 0.72 0.68° 0.76° 0.74 0.66

Ours (LG®) 0.82° 0.78> 0.95° 0.72> 0.97° 0.85"

2AUROC: area under the receiver operating characteristic curve.
bHighest value for each metric.

“BERT: bidirectional encoder representation for transformer.
4CS: cross-sectional.

°LG: longitudinal.

As for the model using only linguistic data as input, our
proposed linguistic longitudinal model, denoted as “Ours
(text),” outperforms BERT, demonstrating that including
extra-linguistic features and context embedding helps
improve the model’s performance with 7% increase in the
Fq-score.

Finally, our model, which is denoted as “Ours (LG)” in
Table 7, significantly outperforms other models across most
metrics for the dual-modal longitudinal model that combines
both data types. Specifically, there is up to a 16% improve-
ment in accuracy, a 14% improvement in Fj-score, and
a 22% improvement in AUROC. Since the previous work
used only unimodal data, examining AM data from differ-
ent perspectives benefits MCI detection. We also compare
the cross-sectional setting results of NTU-AM-LG, denoted

as “Ours (CS)” in Table 7, with the longitudinal settings,
confirming that long-term tracking of subjects’ cognitive
trajectories in NTU-AM-LG helps improve the model’s
prediction accuracy. Specifically, there are improvements of
10% in accuracy, 6% in F-score, and 19% in AUROC.

Table 8 shows the results of the probing data. For the
audio data, our proposed model outperforms wav2vec 2.0 in
most metrics, with improvements of 9%, 18%, and 10% in
accuracy, F'1-score, and AUROC, respectively. This indicates
that instead of directly using wav2vec 2.0’s output representa-
tion for classification, extracting features using wav2vec 2.0
followed by a convolutional neural network—based acoustic
encoder structure can better capture the hidden cognitive
patterns in audio data.

Table 8. Result of probing data on National Taiwan University Autobiography Memory Test Longitudinal dataset.

AURO

Method Accuracy F-score Precision Sensitivity Specificity ca
Audio only

Wav2vec2 0.76 0.53 0.60 0.53 0.87 0.70

Ours (audio) 0.85 0.71 0.67 0.78 0.83 0.80
Text only

BERT® 0.85 0.72 0.83 0.71 0.94 0.82

Ours (text) 0.84 0.80 0.86 0.81 0.82 0.82
Text + Audio

Ours (CS°) 0.71 0.67 0.61 0.75 0.63 0.68

Ours (LGY) 0.89¢ 0.83¢ 0.90°¢ 0.82¢ 0.95¢ 0.89¢

2AUROC: area under the receiver operating characteristic curve.
PBERT: bidirectional encoder representation for transformer.
€CS: cross-sectional.

dLG: longitudinal.

®Values in boldface are the highest values for each metric.

For the linguistic data results, our model performs compara-
bly with BERT, with improvements of 8%, 3%, and 10%
in Fi-score, precision, and sensitivity, respectively. This

https://medinform.jmir.org/2026/1/e80883

suggests that the inclusion of linguistic features and the
context embedding layer can also aid in MCI detection on
probing data.
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Finally, in the dual-modal data tests, the proposed
longitudinal model achieved the best performance, excelling
in every metric. Specifically, it showed improvements of up
to 13%, 30%, and 19% in accuracy, F1-score, and AUROC,
respectively. Comparing the longitudinal model with the
cross-sectional model, it is evident that the longitudinal model
continues to perform better. This indicates that incorporating
input from multiple time points and considering the con-
cept of aging direction can enhance the model’s predictions,
resulting in performance increases of 12%, 16%, and 21% in
accuracy, Fi-score, and AUROC, respectively.

Liao et al

Ablation Study

In the longitudinal setting, the most crucial idea is the
alignment loss we proposed. Therefore, this section exam-
ines the contribution of alignment loss by removing each
loss individually. The results are shown in Table 9. In the
table, “Without direction” refers to not including direction

embedding as the classifier input; namely, the input would be

m m m: . . . .
e 1,¢ 5, ¢ 3 treating each time point’s data as independent.

Table 9. Result of the ablation study for our proposed model on National Taiwan University Autobiography Memory Test Longitudinal dataset.

Method Accuracy F1-score Precision Sensitivity Specificity 385
Recall data
Without direction 0.79 0.74 0.71 0.83 0.67 0.75
Ours (LG®) 0.82¢ 0.78¢ 0.95¢ 0.72 0.97¢ 0.85¢
Subject alignment loss 0.71 0.67 0.68 0.77 0.63 0.70
Group alignment loss 0.68 0.69 0.68 0.89¢ 0.47 0.68
Both alignment loss 0.65 0.59 0.64 0.62 0.63 0.63
Probing data
Without direction 0.79 0.70 0.68 0.76 0.78 0.77
Ours (LG) 0.89¢ 0.83¢ 0.9¢ 0.82°¢ 0.95¢ 0.89¢
Subject alignment loss 0.78 0.59 0.61 0.59 0.92 0.75
Group alignment loss 0.69 0.54 0.63 0.55 0.8 0.68
Both alignment loss 0.65 0.53 0.60 0.53 0.87 0.70

2AUROC: area under the receiver operating characteristic curve.
PLG: longitudinal.

CHighest value for each metric in recall data and probing data, respectively.

The results show that incorporating alignment losses with
direction embedding improves performance across both recall
and probing data. For instance, on recall data, our full model
improves AUROC by 10% (0.85 vs 0.75) and Fj-score by
4% compared with “Without direction.” On probing data,
the gains are even larger, with AUROC improved by 12%
(0.89 vs 0.77) and F|-score improved by 13% (0.83 vs 0.70).
Importantly, removing the group alignment loss results in the
sharpest performance drop, with AUROC decreasing by 17%
(0.68 vs 0.85) and 21% (0.68 vs 0.89) for recall and probing
data, respectively. Similarly, removing both alignment losses
further reduces AUROC to 0.63 (recall) and 0.70 (probing),
confirming their necessity.

Overall, these results highlight the complementary
importance of both alignment losses that rely on the
strong supervisory signal of ground-truth label transitions to
capture temporal progression patterns in longitudinal settings.

https://medinform.jmir.org/2026/1/e80883

Removing either the subject alignment loss or the group
alignment loss results in significant performance degrada-
tion, and removing both leads to the sharpest decline. This
indicates that while the subject alignment loss stabilizes
intrasubject trajectory consistency, the group alignment loss
aligns intersubject cognitive progression trends across similar
diagnostic groups.

Visualization

We visualize the latent space distribution of subjects across
different visits to better interpret the role of the alignment
loss. After passing through all modules, we extracted the
final embeddings, applied principal component analysis for
dimensionality reduction, and projected the results into a 2D
space. The arrows in Figures 9 and 10 represent the trajec-
tory of each subject’s embeddings across consecutive visits,
thereby illustrating how cognitive states evolve over time.
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Figure 9. Principal component analysis projection of subject embeddings without alignment loss. The x- and y-axes represent the first 2 principal
components. Colors denote diagnostic group and visit (blue tones = healthy control visits 1-3; red tones = mild cognitive impairment visits 1-3).
Arrows illustrate the trajectory of each subject’s embeddings. The scattered trajectories reflect high variability and weak temporal consistency

without alignment loss.
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Figure 10. Principal component analysis projection of subject embeddings with alignment loss. The x- and y-axes show the first 2 principal
components. Colors indicate diagnostic group and visit (blue tones = healthy control visits 1-3; red tones = mild cognitive impairment visits 1-3).
Arrows illustrate the trajectory of each subject’s embeddings. With alignment loss, trajectories become far more coherent and directionally consistent,
indicating improved temporal stability and clearer separation between healthy control and mild cognitive impairment progression patterns.
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As shown in Figure 9 (without alignment loss), the trajecto-
ries are scattered and inconsistent, with large variability both
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within and across groups. This makes it difficult to distin-
guish between HC and MCI or to capture stable temporal
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patterns. In contrast, Figure 10 (with alignment loss) reveals
more coherent trajectories: subjects within the same group
(HC or MCI) show consistent progression directions across
visits, while the separation between HC and MCI becomes
clearer. Importantly, this indicates that the alignment loss
encourages the model to capture cognitive progression trends
rather than random variability in story content, reflecting
interpretable patterns of decline (for MCI) and stability (for
HC).

These results demonstrate that the alignment loss not
only improves metrics but also enhances interpretability by
aligning temporal trajectories in a way that reflects clinically
meaningful differences in cognitive change. Feature-level
analyses could provide even more intuitive examples of how
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the ATM aligns specific cognitive markers in speech. Future
feature-level analyses could further enhance this by providing
more intuitive illustrations of how the ATM captures and
aligns specific cognitive markers in speech.

Results of NTU-AM-CS

In addition to the main longitudinal experiment, we conduc-
ted further evaluations in a cross-sectional setting to assess
the performance of our proposed model. Here, the primary
comparison is with our previous work [11], which also
used audio and text data. However, a key difference is that
the prior work relied on manual transcripts, which are less
scalable and require special preprocessing for the transcripts.
The results are shown in Tables 10 and 11.

Table 10. Results of recall data on National Taiwan University Autobiographical Memory Test Cross-Sectional dataset®.

AURO
Method Accuracy F1-score Precision Sensitivity Specificity c?
Audio only
Wav2vec2 0.65 042 041 048 047 0.51
Ours (audio) 0.57 0.60 0.52 0.72 045 0.58
Text only
BERTP 0.67 0.56 0.62 0.61 0.67 0.64
Ours (text) 0.69 0.66 0.65 0.68 0.69 0.69¢
Text + Audio
Chang et al [11] 0.75¢ 0.61 0.76¢ 0.55 0.85°¢ 0.68
Ours (CSY) 0.74 0.72¢ 0.74 0.69¢ 0.83 0.68
2AUROC: area under the receiver operating characteristic curve.
PBERT: bidirectional encoder representation for transformer.
“Highest value of each evaluation metric.
4CS: cross-sectional.
Table 11. Results of probing data on National Taiwan University Autobiographical Memory Test Cross-Sectional dataset.
AURO
Method Accuracy Fy-score Precision Sensitivity Specificity c?
Audio only
Wav2vec2 0.55 049 0.65 043 0.66 0.61
Ours (audio) 0.61 0.65 0.56 0.84 043 0.64
Text only
BERTP 0.69 0.64 0.66 0.72 0.67 0.69
Ours (text) 0.69 0.66 0.67 0.64 0.75¢ 0.65
Text + Audio
Changetal [11]  0.77¢ 0.64 0.62 0.73 0.68¢ 0.65
Ours (CSY) 0.73 0.71¢ 0.67¢ 0.77¢ 0.68 0.72¢

4AUROC: area under the receiver operating characteristic curve.
YBERT: bidirectional encoder representation for transformer.
“Highest value of each evaluation metric.

dCS: cross-sectional.

Our proposed method performs better or comparably on
critical metrics such as Fj-score and AUROC in the results
of recall data. Specifically, there is an 11% improvement in
F1-score. However, the precision is not as good as in the
study by Chang et al [11]; our sensitivity metric performs
better. For probing data, our method also yields better results
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in Fi-score and AUROC. However, the overall performance
of the NTU-AM-CS dataset is not as promising as that of
the NTU-AM-LG dataset. Detecting MCI features in AM data
is challenging and reinforces the idea that long-term data
relationships aid in model prediction.
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Ablation Study

We investigated the contributions of linguistic features and
context embedding in the encoder module for the predic-
tion ability. The results are shown in Table 12. It demon-
strates the impact of removing individual components on the
model’s predictions. For example, when linguistic features
are removed, there is a noticeable decrease in specificity
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and a 6% drop in Fi-score. The most significant impact
is seen when context embedding is removed, resulting in a
9% decrease in Fi-score and substantial declines in most
other metrics. Only the sensitivity metric performs better, but
overall, the original configuration still performs best in terms
of F'1-score, which balances sensitivity and precision.

Table 12. Results of the ablation study for recall data on the National Taiwan University Autobiographical Memory Test Cross-Sectional dataset.

AURO
Method Accuracy F-score Precision Sensitivity Specificity c?
Ours (CSP) 0.74¢ 0.72°¢ 0.74¢ 0.69¢ 0.83¢ 0.68¢
Linguistic features 0.62 0.66 0.57 0.84°¢ 045 0.62
Context embedding 0.59 0.63 0.53 0.80 045 0.60

2AUROC: area under the receiver operating characteristic curve.
bCS: cross-sectional.
“Highest values of each evaluation metric.

These results indicated that linguistic features provide
auxiliary information that aids the model’s decision-mak-
ing, particularly in identifying negative samples. Context
embedding supports the model’s understanding of the story
by distinguishing between the story topic and content through
embeddings.

Result of Additional Dataset

In the experiment with an additional dataset, our main goal
was to confirm whether the method our model uses to encode

Table 13. Results of the National Taiwan University Hospital dataset.

data is also applicable to other datasets related to cognitive
tests. This means whether the way we encoded each data
contributes to MCI detection. In Table 13, we present several
results related to the detection of MCI. Our primary compar-
ison targets in the NTUH-PIC and NTUH-MEM datasets
are as per the study by Lin et al [18], which use textual
information, including pauses, for MCI prediction. From the
NTUH-PIC experimental results, there was an improvement
of 11% in accuracy and 18% in F'{-score.

AURO
Dataset Method Accuracy F1-score Precision Sensitivity Specificity c2
NTUH-PICP Lin et al [18] 0.68 0.63 0.81¢ 0.58 0.78¢ N/A®
Ours (CSY) 0.79¢ 0.81 0.80 0.88¢ 0.7 0.79
NTUH-MEM! Lin et al [18] 0.68 0.66 0.75 0.7 0.65 N/A
Ours (CS) 0.78¢ 0.76¢ 0.82¢ 0.73¢ 0.83¢ 0.78

2AUROC: area under the receiver operating characteristic curve.

PNTUH-PIC: National Taiwan University Hospital Picture Description Test.

“Highest values for each evaluation metric in its respective dataset.
dCS: cross-sectional.
®N/A: not applicable.
fNTUH-MEM: National Taiwan University Hospital Memory Test.

Similarly, in the NTUH-MEM dataset, a 10% improvement
was observed in both accuracy and Fi-score compared with
the study by Lin et al [18], indicating overall better perform-
ance. This experiment demonstrates that our data-encoding
method effectively extracts latent representations suitable
for MCI detection. Viewing data from multiple modalities
provides consistent benefits for MCI detection. In addition,
the performance differences observed in the NTU-AM-CS
experiment indicate that using AM data for MCI detection is
relatively challenging.

Due to the nature of the self-collected dataset, making
comparisons with other works is challenging. Therefore,
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we present results on an open dataset in the final experi-
ment. However, the ADReSSo dataset provides only HC
and AD data. Table 14 shows our results alongside those of
other state-of-the-art methods. Overall, our approach yields
the best results, with a 4% improvement in both accuracy
and Fi-score. In addition, our precision achieves the best
performance. Once again, it confirms that our data-encoding
method contributes to predictive outcomes in AD and MCI
detection.
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Table 14. Result of the ADReSSo dataset®.

Liao et al

Method Accuracy F1-score Precision Sensitivity Specificity
Syed et al [30] 0.84 0.84 N/AP 0.79 0.90
Rohanian et al [31] 0.84 N/A N/A N/A N/A

Zhu et al [32] 0.83 0.83 0.83 0.84% N/A

Ying et al [33] 0.84 0.84 0.85 0.84% N/A

Ours (CS°) 0.88% 0.88% 0.93% 0.84% 0.922

#Highest value in each evaluation metric.
bN/A: not applicable.
€CS: cross-sectional.

Discussion

Principal Results

In this study, we proposed a longitudinal framework for MCI
detection using AM test speech data. The key innovation is
the ATM, which leverages direction embeddings with subject
and group alignment losses to model cognitive changes across
multiple visits.

Our experiments demonstrate that the longitudi-
nal framework substantially outperforms cross-sectional
approaches. Compared with single-visit models, the longitu-
dinal model achieved notable improvements, with AUROC
gains of up to 21%, F-score increases of 16%, and accuracy
improvements of 12%. These results confirm that incorporat-
ing multi—time point information provides a clearer picture
of subtle cognitive trajectories that cannot be fully captured
using only cross-sectional data.

The ablation studies further highlight the effectiveness of
the alignment mechanisms. Removing the alignment losses
led to considerable performance degradation, particularly a
17%-21% drop in AUROC when the group alignment loss
was excluded. This underscores the critical role of align-
ment in ensuring temporal consistency and improving the
robustness of the framework.

In addition to evaluations on our self-collected dataset, we
validated the framework on the publicly available ADReSSo
dataset, which uses English picture description speech.
Despite differences in language and task, our model achieved
more than 88% accuracy, suggesting that the approach
generalizes well across languages and cognitive assessment
protocols.

In our analysis, the distribution of false positives and
false negatives provides additional context for interpreting
the model’s sensitivity and specificity. False positives,
which reduce specificity, were often linked to healthy
subjects who displayed atypical speech characteristics such
as disfluencies, pauses, or reduced lexical richness that
mimicked early cognitive decline. On the other hand,
false negatives, which lower sensitivity, were frequently
observed in MCI subjects who retained strong narrative
skills or enriched their responses with contextual details,
thereby masking subtle impairments. These observations
illustrate how individual variability in speech patterns can
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differentially impact sensitivity and specificity, underscor-
ing both the strengths and the boundary conditions of the
framework. While the alignment-based approach improves
overall robustness, further refinement of feature representa-
tions and the inclusion of personalized modeling strategies
may help balance sensitivity and specificity more effectively.

Taken together, these results highlight both the methodo-
logical and clinical significance of the proposed approach.
Improvements in AUROC of 10%-15% can translate into
earlier identification of at-risk individuals and a reduction
in false negatives in real-world screening. This demonstrates
the potential of longitudinal, dual-modal speech analysis as a
noninvasive, scalable tool for long-term cognitive monitoring,
with the flexibility to be integrated into routine memory clinic
assessments or used as a low-cost prescreening solution to
complement standardized neuropsychological testing.

Limitations

Although the proposed framework shows promising
performance for early MCI detection, several limitations
remain. One major limitation of this study lies in the
relatively small sample size of the NTU-AM-LG dataset,
which includes only 54 subjects. Although each subject
contributes multiple audio recordings across different visits,
the limited number of unique participants poses inherent
challenges for deep learning models, including a higher risk
of overfitting, model instability, and low statistical power.
As a result, while the proposed model demonstrates prom-
ising performance trends, its robustness and generalizabil-
ity should be interpreted with caution. To mitigate these
risks, we adopted strict subject-independent data splits and
cross-validation to avoid data leakage and improve reliability.
Nevertheless, future studies with larger and more diverse
longitudinal datasets are essential to confirm the model’s
generalization capability and to further validate its clinical
applicability. Furthermore, we also validate our approach
on the publicly available ADReSSo dataset, although it is
limited to a cross-sectional study. Cross-lingual robustness
also presents a challenge, as our dataset is in Chinese
while ADReSSo is in English. Linguistic and cultural factors
such as narrative structure, emotional expression, and lexical
choices may influence AM speech patterns and, in turn, affect
model generalizability. Nevertheless, our results demonstrate
encouraging cross-lingual generalizability. We highlight this
as an open challenge and a direction for future work, where
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cross-lingual adaptation and multilingual modeling will be
crucial to improving robustness across diverse populations.

Moreover, the current longitudinal dataset includes 3
visits per participant, which restricts the ability to capture
long-term trajectories of cognitive change. Collecting data
across additional time points would allow the development
of models better suited to characterizing the progression of
cognitive decline.

This study also acknowledges potential confounding
factors arising from the use of automatic speech process-
ing tools. The whisper-timestamped model and pyannote
diarization tool kit were used for transcription and speaker
segmentation, respectively; however, the resulting ASR and
diarization errors were not formally measured. Such errors,
especially the higher ASR error rates likely to occur in
participants with MCI due to disfluency or reduced articula-
tion, and diarization inaccuracies that may introduce noise,
could impact the extracted linguistic and acoustic fea-
tures. These unaddressed confounders represent an inherent
limitation of this study.

Further Studies

Based on the current findings, several directions can be
explored in future work. First, extending the framework to
multilingual settings will be essential for improving cross-
lingual generalizability, as language and cultural factors
strongly influence AM narratives. Second, adapting the model
for low-resource scenarios will enhance its applicability in
real-world clinical practice, where large-scale longitudinal
datasets are often unavailable. Techniques such as transfer
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learning, data augmentation, and self-supervised pretraining
could make the system more robust under such constraints.

Third, integrating AM speech analysis with other
noninvasive modalities, such as wearable sensor data, offers
the potential to capture complementary behavioral and
physiological signals (eg, activity levels, sleep patterns, and
heart rate variability). Such multimodal fusion could provide
a more holistic view of cognitive health and improve early
detection of decline. Finally, future studies should focus on
personalized modeling of cognitive trajectories, acknowledg-
ing that the pace and pattern of decline vary across indi-
viduals. Personalized approaches may increase the clinical
relevance of the framework and support tailored interven-
tions.

Conclusions

We developed a dual-modal longitudinal analysis system
to enhance the accuracy of diagnosing MCI. The system
consists of an encoder and an ATM. We used a pretrained
Wav2vec 2.0 model for speech data and BERT for text data to
generate latent representations. Our proposed ATM generates
significantly improved performance for MCI prediction, with
F1-scores of 0.78 and 0.83 on the recall and probing datasets,
respectively. Combining data from both modalities improved
understanding of the AM test data, with up to 19% and 12%
improvements in F-score compared with unimodal models.
In addition, ablation experiments verified the necessity of
context embedding and linguistic features in the linguistic
encoder. Our model’s effectiveness was consistently superior
across different datasets.
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