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Abstract
Background: Nephrolithiasis affects approximately 15% of the population and often remains undetected in asymptomatic
individuals. Current diagnostic approaches rely on imaging tools, such as ultrasound or computed tomography, which are
costly, operator dependent, or involve radiation, making them unsuitable for large-scale screening. A standardized, practical,
and low-cost screening strategy for early identification of clinically significant kidney stones is still lacking.
Objective: This study aimed to develop a low-cost, rapid screening model for clinically significant nephrolithiasis using
machine learning (ML) and simple clinical parameters.
Methods: We conducted a multihospital retrospective study using data from 3 hospitals in Kaohsiung, Taiwan (2012‐2021).
Adults without renal colic were included. ML models were trained and tested using 10 routine variables: sex, age, BMI,
gout, diabetes, estimated glomerular filtration rate, urine pH, red blood cell count, specific gravity, and bacteriuria. Multiple
ML algorithms were trained and evaluated, and the best-performing model was selected based on the area under the receiver
operating characteristic curve and the area under the precision-recall curve. To assess model interpretability, Shapley value
analysis was performed to determine the relative importance and contribution of each variable to the model’s predictive
performance.
Results: Among 6528 participants, the best-performing model achieved an area under the receiver operating characteristic
curve of 0.968 (95% CI 0.956‐0.980), an area under the precision-recall curve of 0.936 (95% CI 0.918‐0.953), a sensitivity
of 0.873 (95% CI 0.841‐0.904), and a specificity of 0.947 (95% CI 0.935‐0.959). Shapley value analysis identified urine red
blood cell count, estimated glomerular filtration rate, and urine specific gravity as the 3 most influential predictors.
Conclusions: This ML-based model enables efficient, noninvasive, and large-scale kidney stone screening using routine
health data. It can be integrated into health checkups or telemedicine platforms to facilitate early detection and proactive
management. Although the model was developed using an Asian population, future validation in diverse cohorts is warranted
to confirm its generalizability.

JMIR MEDICAL INFORMATICS Chen et al

https://medinform.jmir.org/2026/1/e80764 JMIR Med Inform 2026 | vol. 14 | e80764 | p. 1
(page number not for citation purposes)

https://medinform.jmir.org/2026/1/e80764


JMIR Med Inform 2026;14:e80764; doi: 10.2196/80764
Keywords: machine learning; nephrolithiasis; health services; software as a medical device; computer-aided diagnosis

Introduction
Approximately 10% of the global population faces a lifetime
risk of developing kidney stones [1], and the prevalence of
this disease has been steadily rising over the past two decades
[2,3]. The most common symptoms include flank pain and
hematuria, and kidney and ureteral stones are significant risk
factors for chronic kidney disease [4]. A study reported that in
the year 2000 alone, the total medical expenditure for treating
kidney and ureteral stones in the United States reached US
$2.1 billion [5].

Currently, there is no effective tool available for kidney
stone screening. Renal ultrasonography is the most commonly
used method for detecting kidney stones in clinical settings
and emergency departments [5]. While it is a convenient and
radiation-free technique, its accuracy is highly dependent on
the operator’s skill, thus requiring trained medical professio-
nals for both operation and interpretation. As a result, its use
in large-scale screening would demand substantial health care
manpower [6,7]. In contrast, abdominal computed tomogra-
phy (CT) is considered the gold standard for diagnosing
kidney and ureteral stones [8]. However, due to its high
radiation exposure and limited accessibility for routine or
large-scale screening, CT is not suitable for asymptomatic
populations or frontline outpatient use [9]. Therefore, existing
imaging tools are impractical for large-scale screening of
kidney stones. Developing a simple, cost-effective, and
accessible screening tool would be highly beneficial for the
early detection of kidney stones and for timely medical
decision-making.

We previously developed an artificial intelligence (AI)
algorithm that uses routine health checkup data, including
urine routine and blood creatinine, to preliminarily predict
the presence of kidney stones larger than 2 mm in over-
weight individuals (BMI ≥25 kg/m2) [6]. This tool has shown
potential for use in kidney stone screening. In this study, we
aimed to build upon our prior success by leveraging machine
learning (ML) techniques and routine health data to further
develop a clinically applicable AI model that can predict
clinically significant kidney stones in all patients—not limited
to those with BMI >24 kg/m2. The models will be validated
using patient cohorts from multiple hospitals.

Methods
Description of Participants
In this cohort study, clinical data were retrospectively
collected from three hospitals located in Kaohsiung,
Taiwan: Kaohsiung Medical University Hospital, Kaohsiung
Municipal Ta-Tung Hospital, and Kaohsiung Municipal
Siaogang Hospital. The data collection period spanned from
January 2012 to March 2021.

Patients were categorized into 2 groups based on
the presence or absence of nephrolithiasis measuring ≥2
mm. This classification followed the methodology of our
previously published ML-based nephrolithiasis screening
model developed for overweight and obese individuals [6].
In accordance with prior urological literature, stone fragments
smaller than 2 mm are considered clinically insignificant,
as they are unlikely to cause stone-related events or require
intervention [7]. Therefore, a cutoff of 2 mm was adopted
in this study to define clinically significant nephrolithiasis.
The presence of stones of 2 mm or larger was confirmed
using abdominal CT or a combination of renal ultrasonogra-
phy and plain abdominal radiography (KUB: kidney, ureter,
and bladder), consistent with our prior study protocol [6].
Patients were excluded if they experienced renal colic at
the time of data collection, had undergone kidney transplan-
tation, had indwelling foreign bodies in the upper urinary
tract (eg, ureteral stents or percutaneous nephrostomy tubes),
were receiving renal replacement therapy (hemodialysis or
peritoneal dialysis), were aged younger than 18 years, or
lacked complete medical records. For model development,
data from January 2012 to December 2019 were used for
training and validation. An independent test cohort compris-
ing data collected between January 2020 and March 2021 was
used for the clinical evaluation of model performance.

Ethical Considerations
This study was approved by the Institutional Review
Board of Kaohsiung Medical University Hospital (KMU-
HIRB-E(I)-20210331) and conducted in accordance with
the principles outlined in the Declaration of Helsinki. The
requirement for informed consent was waived due to the
retrospective nature of the study and the minimal risk to
participants. All data were obtained from existing electronic
health records and were fully deidentified before analysis.
No personally identifiable information was accessed by the
researchers, and data access was restricted to authorized study
personnel only. No compensation was provided to partici-
pants, as no direct contact or intervention was involved in this
retrospective study.
Variables and Data Processing
A total of 10 predictor variables were included for model
development, categorized into sociodemographic, health-rela-
ted, and clinical domains. The categorical response variable
indicated the presence (1) or absence (0) of nephrolithiasis
≥2 mm. Sociodemographic variables included age (numeric)
and sex (categorical: male=1 and female =0). Health-related
variables comprised BMI (numeric with 2 decimals) and
a history of diabetes mellitus and gout (both categorical:
with=1 and without=0).

Clinical variables included five parameters derived from
urine and blood tests:

1.  Urine specific gravity (SG; numeric with 3 decimals)
2.  Urine pH (numeric with 1 decimal)
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3.  Bacteriuria (categorical: present =1, absent =0)
4.  Urine red blood cell (RBC) count (treated as a

numeric variable; details described as follows): In
Taiwan, urine RBC counts are commonly reported in
terms of a range (eg, 6‐10 RBCs per high-power field
[HPF]), with the lowest range being “0 to 2 RBCs per
HPF.” In this study, the urine RBC data we collected
consist of the following ranges: 0 to 2, 3 to 5, 6 to
10, 11 to 25, 26 to 50, 51 to 99, and 100 or greater.
As such, it may be treated as a categorical variable
in this study. However, to accommodate various range
scales used by different hospitals and make the model
universally applicable, we adopted the mean of the
reported ranges (eg, 8 for the range 6‐10 RBCs per
HPF) as the corresponding urine RBC count and treated
the variable as numeric (continuous). The exceptions to
the rule are the range of “0 to 2” and the ranges whose
mean values exceed 100. For the 0 to 2 range, the value
0 is assigned. This is due to an American Urological
Association guideline, which defines microhematuria
as “3 or more RBCs per HPF on microscopic exami-
nation.” Therefore, 0 to 2 RBCs per HPF is gener-
ally considered as no hematuria. On the other hand,
patients with macroscopic hematuria generally have
their urine RBC counts reported as “100 or more RBCs
per HPF,” or a range with a mean value exceeding
100, or something equivalent to that effect. As such,
for ranges whose mean values exceed 100 RBCs per
HPF, we applied the capped value of 200 to maintain
consistency across the dataset [10].

5.  Estimated glomerular filtration rate (eGFR), numeric
with 1 decimal, calculated using the Isotope Dilution
Mass Spectrometry–traceable Modification of Diet in
Renal Disease equation: eGFR (mL/min/1.73 m2)=175×
(Scr)−1.154×(age)−0.203×(0.742 if female) [8]

For descriptive statistics, the Fisher exact test was used for
categorical variables (eg, sex, history of diabetes mellitus, and
history of gout), and the Mann-Whitney U test was applied
for numeric variables (eg, age, BMI, eGFR, urine SG, urine
RBC count, and urine pH) between patients with and without
nephrolithiasis. To verify the similarity between the train-
ing and testing datasets, we compared feature distributions
by calculating category percentages for categorical variables
and means with SDs for continuous variables. All statistical
analyses were performed using the Statistical Package for
the Social Sciences for Windows (version 24.0; IBM), and P
values of less than .05 were considered statistically signifi-
cant.
Model Development, Fitting, and
Evaluation
ML methods were used to build the models [9]. The logistic
regression, the k-nearest neighbors algorithm, the support
vector machine, and the random forest (RF) algorithm
were used as the standard methods for comparison, while
an artificial neural network (ANN) model was developed
for deep learning classification. All standard models were
implemented in Python using the scikit-learn library (version

1.1.3; scikit-learn developers) with recommended settings.
The respective algorithms for each method were run using
the recommended parameters [11,12].

For the ANN, implemented in Python, the 10-fold
cross-validation protocol was performed on the training set
to produce 10 models, each structured as a 9-layer fully
connected neural network. These models were averaged into
1 final model. To address the imbalance between stone-
positive and stone-negative cohorts, the synthetic minority
over-sampling technique, as well as the approach of assigning
different weights to the 2 patient groups, was adopted when
training our models. In addition, a pronounced sex imbalance
among the patient cohorts was observed. To ensure equitable
accuracy for the 2 gender groups, 2 separate cutoff thresholds
were identified for male and female patients. The 2 thresholds
were then standardized to 0.5 by applying gender-specific
rescalers to the averaged outputs. The resulting combined
structure served as the final ANN model with a unified
threshold of 0.5. Additional information is provided in Figure
S1 in Multimedia Appendix 1.

Data between January 2012 and December 2019 were used
for model training and validation. The data were randomly
divided into a training dataset (75%) and a validation dataset
(25%). Model training was performed using the training data,
while validation data helped identify overfitting or bias. Data
registered after January 1, 2020, formed the testing dataset
(ie, the holdout dataset) for independent evaluation of model
performance. Performance on the testing data was assessed
by various metrics, including the area under the receiver
operating characteristic (ROC) curve (AUROC), the area
under the precision-recall (PR) curve (AUPRC), and net
benefit by the decision curve analysis. The optimal thresh-
olds for standard models were based on the Youden index
[13] from their respective training ROC curves. For the
ANN, the classification threshold was preset at 0.5. These
thresholds were used to calculate sensitivity, specificity,
positive predictive value, and negative predictive value on
the validation and testing sets. Model calibration analysis was
also performed to assess how accurately the output probabili-
ties of the models reflect the true likelihood of outcomes.

To examine model stability and fairness across different
patient subgroups, additional analyses were performed by
individual variables (eg, sex, diabetes, gout, bacteriuria, urine
RBC count, age, BMI, and eGFR), where model performance
metrics (area under the curve [AUC] and accuracy) were
calculated independently for each subgroup.
Importance of Feature Variables
To evaluate the predictive power of each feature variable,
their relative impact on the ANN model output was assessed
by applying the Shapley value analysis [14]. Features with
notably high impact were selected, and an ANN model
was trained using only these variables. The performance
of the model was compared with that of the full-variable
ANN model to assess whether key features alone provided
sufficient predictive power.
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Results
Characteristics of Study Participants
In the training dataset, 1243 (33.11%) participants had
nephrolithiasis, and 2511 (66.89%) participants were without
nephrolithiasis of 2 mm or greater, among a total of
3754 (100.0%) participants. The validation dataset had 414
(33.09%) participants with and 837 (66.91%) participants
without nephrolithiasis of 2 mm or greater, among a total
of 1251 (100.0%) participants. The testing dataset had 400
(26.26%) participants with and 1123 (73.74%) participants

without nephrolithiasis of 2 mm or greater, among a total
of 1523 (100.0%) participants. The characteristics of the
participants in these 3 sets are described in detail in Tables 1
and 2. Statistical similarity among the 3 sets was observed. It
is also observed that the mean values (or the “percentages,” in
the case of binary variables) of the variables we selected are
statistically different between participants with and without
nephrolithiasis. The Fisher exact and Mann-Whitney U tests
were applied to verify the statistical significance of these
differences, and the resulting P values are also reported in
Tables 1 and 2.

Table 1. Descriptive analysis of the training, validation, and testing datasets.
Training set, n (%) Validation set, n (%) Testing set, n (%)
w/nepha
(n=1243,
33.1%)

wo/nephb
(n=2511,
66.9
%)

Total
(N=37
54)

P value w/neph
(n=414,
33.1%)

wo/neph
(n=837,
66.9%)

Total
(N=12
51)

P value w/neph
(n=400,
26.3%)

wo/neph
(n=1123,
73.7%)

Total
(N=15
23)

P value

Gender .02 .19 <.001
  Male 820

(66.0)
1750
(69.7)

2570
(68.5)

273
(65.9)

584
(69.8)

857
(68.5)

250
(62.5)

433
(38.6)

683
(44.8)

  Female 423
(34.0)

761
(30.3)

1184
(31.5)

141
(34.1)

253
(30.2)

394
(31.5)

150
(37.5)

690
(61.4)

840
(55.2)

Diabetes <.001 <.001 <.001
  With 220

(17.7)
148
(5.9)

368
(9.8)

86
(20.8)

59
(7.1)

145
(11.6)

94
(23.5)

15
(1.3)

109
(7.2)

  Without 1023
(82.3)

2363
(94.1)

3386
(90.2)

328
(79.2)

778
(92.9)

1106
(88.4)

306
(76.5)

1108
(98.7)

1414
(92.8)

Gout <.001 <.001 <.001
  With 49

(3.9)
16
(0.6)

65
(1.7)

20
(4.8)

3
(0.4)

23
(1.8)

12
(3.0)

4
(0.4)

16
(1.1)

  Without 1194
(96.1%)

2495
(99.4)

3689
(98.3)

394
(95.2)

834
(99.6)

1228
(98.2)

388
(97.0)

1119
(99.6%)

1507
(98.9)

BACc <.001 <.001 <.001
  With 191

(15.4)
249
(9.9)

440
(11.7)

47
(11.4)

78
(9.3)

125
(10.0)

49
(12.3)

145
(12.9)

194
(12.7)

  Without 1052
(84.6)

2262
(90.1)

3314
(88.3)

367
(88.6)

759
(90.7)

1126
(90.0)

351
(87.7)

978
(87.1)

1329
(87.3)

Urine RBC
countd

<.001 <.001 <.001

  0-2 219
(17.6)

2265
(90.2)

2484
(66.2)

80
(19.3)

752
(89.8)

832
(66.5)

84
(21.0)

921
(82.0)

1005
(66.0)

  3-5 128
(10.3)

169
(6.7)

297
(7.9)

36
(8.7)

63
(7.52)

99
(7.9)

41
(10.3)

138
(12.3)

179
(11.7)

  6-10 104
(8.4)

44
(1.8)

148
(3.9)

35
(8.5)

13
(1.6)

48
(3.8)

35
(8.8)

30
(2.7)

65
(4.3)

  11-25 153
(12.3)

23
(0.9)

176
(4.7)

56
(13.5)

6
(0.72)

62
(5.0)

43
(10.7)

19
(1.7)

62
(4.1)

  26-50 141
(11.3)

5
(0.2)

146
(3.9)

38
(9.2)

2
(0.24)

40
(3.2)

33
(8.2)

6
(0.5)

39
(2.5)

  51-99 121 1 122 47 0 47 32 3 35
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Training set, n (%) Validation set, n (%) Testing set, n (%)
w/nepha
(n=1243,
33.1%)

wo/nephb
(n=2511,
66.9
%)

Total
(N=37
54)

P value w/neph
(n=414,
33.1%)

wo/neph
(n=837,
66.9%)

Total
(N=12
51)

P value w/neph
(n=400,
26.3%)

wo/neph
(n=1123,
73.7%)

Total
(N=15
23)

P value

(9.7) (0.04) (3.3) (11.4) (0.0) (3.8) (8.0) (0.3) (2.3)
  ≥100 377

(30.4)
4
(0.16)

381
(10.1)

122
(29.4)

1
(0.12)

123
(9.8)

132
(33.0)

6
(0.5)

138
(9.1)

aw/neph: with nephrolithiasis.
bwo/neph: without nephrolithiasis.
cBAC: bacteriuria.
dRBC: red blood cell.

Table 2. Characteristics about age, BMI, urine pH, estimated glomerular filtration rate (eGFR), and urine red blood cell (RBC) count of patients in
the training, validation, and testing datasets.

Training set, mean (SD) [95% CI] Validation set, mean (SD) [95% CI] Testing set, mean (SD) [95% CI]
w/nepha wo/nephb P value w/neph wo/neph P value w/neph wo/neph P

value
Age 55.92

(13.30)
[55.15‐56.68]

50.92
(10.10)
[50.51‐51.33]

<.001 55.53
(13.47)
[54.34‐56.71]

51.36
(10.07)
[50.73‐51.98]

<.001 57.31
(13.80)
[55.95‐58.66]

45.52
(9.32)
[44.97‐46.07]

<.001

eGFR 74.67
(29.23)
[72.98‐76.35]

86.31
(17.83)
[85.58‐87.03]

<.001 73.38
(30.44)
[70.70‐76.06]

85.95
(17.64)
[84.86‐87.04]

<.001 69.47
(26.74)
[66.84‐72.10]

95.03
(19.18)
[93.90‐96.15]

<.001

BMI 25.77
(3.81)
[25.55‐25.99]

24.64
(3.63)
[24.50‐24.79]

<.001 25.91
(4.02)
[25.56‐26.27]

24.67
(3.59)
[24.45‐24.89]

<.001 26.65
(4.82)
[26.18‐27.13]

23.68
(3.86)
[23.45‐23.90]

<.001

Urine pH 6.03
(0.79)
[5.98‐6.07]

6.03
(0.74)
[6.00‐6.06]

.93 6.07
(0.80)
[5.99‐6.15]

6.01
(0.75)
[5.96‐6.06]

.21 6.11
(0.84)
[6.02‐6.19]

6.02
(0.79)
[5.97‐6.06]

.06

Urine RBC
count

75.42
(84.64)
[70.55‐80.30]

1.03
(8.83)
[0.67‐1.39]

<.001 74.93
(84.60)
[67.48‐82.38]

0.83
(6.82)
[0.41‐1.26]

<.001 78.18
(87.85)
[69.54‐86.82]

2.48
(15.48)
[1.58‐3.39]

<.001

Urine SGc 1.014
(0.006)
[1.0137‐
1.0144]

1.018
(0.007)
[1.018‐
1.0185]

<.001 1.014
(0.007)
[1.013‐
1.0145]

1.018
(0.007)
[1.018‐
1.0185]

<.001 1.015
(0.008)
[1.014‐
1.0154]

1.018
(0.006)
[1.018‐
1.0187]

<.001

aw/neph: with nephrolithiasis.
bwo/neph: without nephrolithiasis.
cSG: specific gravity.

Model Performance
The ANN model we developed demonstrated strong
discriminatory power in identifying participants with kidney
or ureteral stones, using only limited information typically
collected at an initial clinical visit. It achieved validation
and testing AUROCs of 0.970 and 0.968 and validation and
testing AUPRCs of 0.960 and 0.936, respectively. Using
a cutoff value of 0.5, the model showed high sensitivity,
specificity, positive predictive value, and negative predic-
tive value in both validation and testing sets, with overall
correction rates of 92.3% and 92.7%, respectively. These
performance measures indicate that the model achieved a
good balance in identifying both positive and negative cases
and is able to render both high precision and high recall.

The performance of models obtained using standard
methods appeared to be somewhat inferior to that of the
ANN model, with the exception of the RF algorithm, which
performed equally well. The logistic regression, k-nearest
neighbors, and support vector machine (linear kernel) models
had testing AUROCs of 0.933, 0.916, and 0.910, respectively,
and testing AUPRCs of 0.822, 0.876, and 0.790, respectively.
The RF model achieved AUROC and AUPRC of 0.965 and
0.934, which are almost the same as those of the ANN
model. The overall correction rate was 90.5%. Despite the
high AUROC and AUPRC scores, the RF model showed
unbalanced performance between sensitivity and specificity, a
pattern also observed in the other conventional models.
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Table 3 summarizes the performance data of these 5
models. Figure 1A-C presents their training, validation,

and testing ROC curves, while Figure 2A-C presents the
respective PR curves.

Figure 1. The receiver operating characteristic (ROC) curves of the artificial neural network (ANN), random forest, k-nearest neighbor (KNN),
support vector machine (SVM), and logistic regression models. (A) Training ROC curves. (B) Validation ROC curves. (C) Testing ROC curves.
AUROC: area under the receiver operating characteristic curve.
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Figure 2. Precision-recall (PR) curves of the artificial neural network (ANN), random forest, k-nearest neighbor (KNN), support vector machine
(SVM), and logistic regression models. (A) Training PR curves. (B) Validation PR curves. (C) Testing PR curves. AUPRC: area under the
precision-recall curve.

Table 3. Summary of model performances.

Model and dataset
AUROCa

(95% CI)
AUPRCb

(95% CI)
Accuracy
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

PPVc

(95% CI)
NPVd

(95% CI)
ANNe

  Training 0.974
(0.968‐0.980)

0.964
(0.956‐0.971)

0.943
(0.935‐0.951)

0.907
(0.890‐0.923)

0.961
(0.954‐0.968)

0.920
(0.903‐0.937)

0.954
(0.946‐0.963)

  Validation 0.970
(0.958‐0.982)

0.960
(0.946‐0.973)

0.923
(0.908‐0.937)

0.889
(0.860‐0.918)

0.939
(0.923‐0.956)

0.878
(0.846‐0.911)

0.945
(0.928‐0.962)

  Testing 0.968
(0.956‐0.98)

0.936
(0.918‐0.953)

0.927
(0.915‐0.939)

0.873
(0.841‐0.904)

0.947
(0.935‐0.959)

0.853
(0.819‐0.888)

0.954
(0.941‐0.968)

LRf

  Training 0.922
(0.911‐0.934)

0.911
(0.899‐0.922)

0.900
(0.891‐0.910)

0.817
(0.796‐0.839)

0.942
(0.932‐0.951)

0.874
(0.855‐0.893)

0.912
(0.902‐0.923)

  Validation 0.926
(0.906‐0.945)

0.917
(0.897‐0.936)

0.908
(0.892‐0.924)

0.843
(0.808‐0.878)

0.940
(0.924‐0.956)

0.875
(0.842‐0.907)

0.924
(0.906‐0.942)

  Testing 0.933 0.882 0.909 0.800 0.948 0.847 0.930
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Model and dataset
AUROCa

(95% CI)
AUPRCb

(95% CI)
Accuracy
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

PPVc

(95% CI)
NPVd

(95% CI)
(0.916‐0.949) (0.859‐0.904) (0.895‐0.924) (0.761‐0.839) (0.935‐0.961) (0.810‐0.883) (0.915‐0.945)

KNNg

  Training 0.960
(0.954‐0.966)

0.942
(0.932‐0.951)

0.905
(0.896‐0.914)

0.861
(0.842‐0.880)

0.927
(0.917‐0.937)

0.853
(0.834‐0.873)

0.931
(0.921‐0.941)

  Validation 0.950
(0.936‐0.963)

0.935
(0.918‐0.952)

0.899
(0.882‐0.915)

0.862
(0.829‐0.896)

0.916
(0.898‐0.935)

0.836
(0.801‐0.871)

0.931
(0.914‐0.948)

   Testing 0.916
(0.896‐0.936)

0.876
(0.853‐0.899)

0.892
(0.876‐0.907)

0.848
(0.812‐0.883)

0.907
(0.890‐0.924)

0.765
(0.726‐0.805)

0.944
(0.930‐0.957)

SVMh

  Training 0.994
(0.991‐0.996)

0.991
(0.987‐0.994)

0.972
(0.966‐0.977)

0.957
(0.946‐0.969)

0.979
(0.973‐0.984)

0.957
(0.945‐0.968)

0.979
(0.973‐0.985)

  Validation 0.934
(0.917‐0.949)

0.872
(0.848‐0.895)

0.828
(0.807‐0.849)

0.930
(0.905‐0.955)

0.778
(0.750‐0.806)

0.674
(0.636‐0.713)

0.957
(0.942‐0.973)

  Testing 0.910
(0.891‐0.929)

0.790
(0.761‐0.818)

0.722
(0.700‐0.745)

0.920
(0.893‐0.947)

0.652
(0.624‐0.680)

0.485
(0.449‐0.520)

0.958
(0.944‐0.972)

RFi

  Training 0.980
(0.975‐0.984)

0.973
(0.966‐0.979)

0.939
(0.931‐0.946)

0.919
(0.904‐0.934)

0.949
(0.940‐0.957)

0.899
(0.882‐0.915)

0.959
(0.952‐0.967)

  Validation 0.969
(0.958‐0.979)

0.959
(0.945‐0.972)

0.924
(0.909‐0.939)

0.918
(0.891‐0.944)

0.927
(0.910‐0.945)

0.862
(0.830‐0.894)

0.958
(0.944‐0.972)

  Testing 0.965
(0.954‐0.975)

0.934
(0.916‐0.951)

0.905
(0.890‐0.920)

0.900
(0.871‐0.929)

0.907
(0.890‐0.924)

0.774
(0.736‐0.812)

0.962
(0.951‐0.974)

aAUROC: area under the receiver operating characteristic curve.
bAUPRC: area under the precision-recall curve.
cPPV: positive predictive value.
dNPV: negative predictive value.
eANN: artificial neural network.
fLR: logistic regression.
gKNN: k-nearest neighbor.
hSVM: support vector machine.
iRF: random forest.

Regarding the practical relevance of models’ predicted
probabilities, the results of decision curve analysis and
model calibration analysis are shown in Figure 3A-C and
Figure 4A-C, respectively. Figure 3 indicates that all models
rendered higher net benefits than those of the baseline
strategies (“treat all” and “treat none”) over a large range of
threshold probabilities. Among them, the performance of the
ANN and RF models appeared to be superior to the others

over the validation and testing datasets. Figure 4 indicates
that the predicted probabilities of all models were somewhat
deviated from the actual events. As such, despite exhibit-
ing good performance for identifying nephrolithiasis, further
calibration of the model outputs appears to be required. To
further evaluate the robustness and generalizability of the
ANN model, subgroup analyses were conducted based on
demographic and clinical characteristics.
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Figure 3. Decision curve analysis for the artificial neural network (ANN), random forest, k-nearest neighbor (KNN), support vector machine (SVM),
and logistic regression models. (A) Net benefits over the training set. (B) Net benefits over the validation set. (C) Net benefits over the testing set.

JMIR MEDICAL INFORMATICS Chen et al

https://medinform.jmir.org/2026/1/e80764 JMIR Med Inform 2026 | vol. 14 | e80764 | p. 9
(page number not for citation purposes)

https://medinform.jmir.org/2026/1/e80764


Figure 4. Model calibration analysis for the artificial neural network (ANN), random forest, k-nearest neighbor (KNN), support vector machine
(SVM), and logistic regression (LR) models. (A) Over the training set. (B) Over the validation set. (C) Over the testing set.

In the subgroup analysis, the ANN model achieved an AUC
of 0.965 and an accuracy of 0.917 in male patients and an
AUC of 0.970 and an accuracy of 0.936 in female patients.
Similar consistent performances were observed across other
subgroups. In patients with diabetes, the model achieved an
AUC of 0.961 and an accuracy of 0.890, whereas in those
without diabetes, the AUC and accuracy were 0.963 and
0.930, respectively. In patients with gout, the model reached
an AUC of 1.000 and accuracy of 1.000, while in those
without gout, the AUC was 0.967, and the accuracy was
0.926. For patients with bacteriuria, the AUC was 0.967, and
the accuracy was 0.926, compared with 0.968 and 0.929 in
those without bacteriuria. Among urine RBC subgroups, the
AUC and accuracy were 0.915 and 0.942 for 0 to 2 RBCs,
0.936 and 0.866 for 3 to 5 RBCs, 0.950 and 0.908 for 6 to
10 RBCs, and 0.936 and 0.916 for 10 or more RBCs. By
age category, the AUC and accuracy were 0.972 and 0.949
for patients aged 18 to 40 years, 0.956 and 0.923 for those
aged 40 to 65 years, and 0.916 and 0.907 for those older than
65 years. For BMI subgroups, the model achieved 0.966 and
0.934 for BMI less than 25 kg/m2, 0.961 and 0.918 for BMI

of 25 to 30 kg/m2, and 0.964 and 0.913 for BMI of 30 kg/m2

or greater. Finally, among patients with eGFR less than 60,
the AUC and accuracy were 0.992 and 0.981, compared with
0.953 and 0.921 for those with eGFR greater than 60.
Importance of Feature Variables
The results of the Shapley value analysis for the ANN
model are shown in Figure 5A, which indicates that the
predictive power of the model was predominantly driven by
three features: urine RBC count, eGFR, and urine SG. An
ANN model trained using only these 3 predictors (referred
to as “ANN-3P” thereafter, as opposed to “ANN-10P” for
the original 10-predictor ANN model) achieved validation
and testing AUROCs of 0.954 and 0.943, and validation
and testing AUPRCs of 0.938 and 0.891, respectively; the
performance is competitive with that of the ANN-10P model.
Figure 5B-E displays the ROC and PR curves of the 2
models, and a comprehensive performance comparison is
summarized in Table 4. The outstanding performance of the
ANN-3P model confirms the predictive power rendered by
the 3 key feature variables.
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Figure 5. Results of the Shapley value analysis and receiver operating characteristic (ROC), precision-recall curves of the artificial neural network
(ANN) models. (A) Summary plot of the Shapley values. (B) Validation ROC curves. (C) Validation PR curves. (D) Testing ROC curves. (E)
Testing PR curves. AUROC: area under the receiver operating characteristic curve; AUPRC: area under the precision-recall curve; eGFR: estimated
glomerular filtration rate; SG: specific gravity; SHAP: Shapley Additive Explanations; urineRBC: urine red blood cell.
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Table 4. Performance comparison between artificial neural network (ANN)-3P and ANN-10P models.

Model and dataset
AUROCa

(95% CI)
AUPRCb

(95% CI)
Accuracy
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

PPVc

(95% CI)
NPVd

(95% CI)
ANN-10P
  Training 0.974

(0.968‐0.980)
0.964
(0.956‐0.971)

0.943
(0.935‐0.951)

0.907
(0.890‐0.923)

0.961
(0.954‐0.968)

0.920
(0.903‐0.937)

0.954
(0.946‐0.963)

  Validation 0.970
(0.958‐0.982)

0.960
(0.946‐0.973)

0.923
(0.908‐0.937)

0.889
(0.860‐0.918)

0.939
(0.923‐0.956)

0.878
(0.846‐0.911)

0.945
(0.928‐0.962)

  Testing 0.968
(0.956‐0.98)

0.936
(0.918‐0.953)

0.927
(0.915‐0.939)

0.873
(0.841‐0.904)

0.947
(0.935‐0.959)

0.853
(0.819‐0.888)

0.954
(0.941‐0.968)

ANN-3P
  Training 0.953

(0.945‐0.960)
0.934
(0.924‐0.943)

0.910
(0.901‐0.919)

0.866
(0.846‐0.885)

0.932
(0.922‐0.942)

0.863
(0.843‐0.883)

0.934
(0.923‐0.943)

  Validation 0.954
(0.906‐0.945)

0.938
(0.921‐0.954)

0.908
(0.892‐0.924)

0.892
(0.864‐0.918)

0.916
(0.899‐0.933)

0.841
(0.809‐0.872)

0.945
(0.930‐0.959)

  Testing 0.943
(0.927‐0.956)

0.891
(0.869‐0.913)

0.883
(0.867‐0.899)

0.878
(0.845‐0.909)

0.885
(0.866‐0.903)

0.731
(0.691‐0.771)

0.953
(0.940‐0.965)

aAUROC: area under the receiver operating characteristic curve.
bAUPRC: area under the precision-recall curve.
cPPV: positive predictive value.
dNPV: negative predictive value.

Discussion
Principal Findings
Epidemiological studies indicate that approximately 10% of
the global population faces a lifetime risk of developing
kidney stones [1], and approximately 80% of those affected
experience recurrence after stone treatment [15]. Although
kidney stones are not malignant such as cancers, they can
cause severe flank pain that often drives patients to seek
emergency care [16]. In more serious cases, stones may lead
to urinary tract infections, sepsis, and even hospitalization.
Furthermore, recent studies have reported a strong associa-
tion between nephrolithiasis and the development of chronic
kidney disease [4]. Despite these risks, most kidney stones
are only diagnosed after patients present with symptoms and
undergo imaging-based evaluations in clinical settings [17].
Currently, there is no widely adopted, large-scale, low-cost,
and simple screening tool available for the early detection of
kidney stones [18,19].

In 2024, our team developed an AI-based model using
routine health checkup data to screen for kidney stones
in overweight and obese individuals. The model achieved
excellent performance (AUC=0.96), and its advantages
include low cost, rapid computation, minimal computational
power requirements, and no need for physician involvement
[6]. This enables its application in frontline health screen-
ings to identify high-risk individuals for further evaluation.
Building on the success of our previous work, this study
extends the application of our AI framework to the general
population. Our findings suggest the potential for a scalable,
accessible, and noninvasive tool to detect clinically signifi-
cant kidney stones across diverse patient groups, providing a

much-needed advancement in the proactive management of
urolithiasis.

In some regions, certain high-end health screening
programs incorporate renal ultrasound (US), plain abdomi-
nal radiography (KUB), or even CT to detect asympto-
matic kidney stones. While US is a fast, user-friendly,
and radiation-free imaging modality, its accuracy is highly
operator dependent. Studies comparing US with CT have
reported widely varying sensitivity (24%‐69%) and specif-
icity (53%‐90%) levels [20-22]. This variability limits its
reliability, especially in large-scale screening, as it requires
experienced physicians and access to ultrasound equipment,
both of which are resource intensive. Plain x-rays or KUB,
although useful in identifying some kidney stones, expose
patients to radiation (0.7 mSv per scan) [20]. Plain abdomi-
nal x-rays (KUB) can identify some radiopaque stones but
have limited sensitivity and expose patients to ionizing
radiation (~0.7 mSv per scan) [22] . For women of repro-
ductive age, pregnancy status must be considered before
imaging. Furthermore, the interpretation of KUB relies on
trained radiologists, making it less practical for commun-
ity-based screening. Currently, abdominal CT is the gold
standard for diagnosing kidney and ureteral stones. How-
ever, it has notable drawbacks, including significant radiation
exposure (10 mSv for standard noncontrast CT and 1‐3
mSv for low-dose CT) [20,23] and high medical cost [24].
These factors make CT unsuitable for large-scale or repeated
screening, particularly in asymptomatic populations. Given
the limitations of traditional imaging modalities in mass
screening contexts, our AI-based approach offers a com-
pelling alternative. Using only routine clinical parameters
from standard health checkups, our model provides a rapid,
low-cost, and accessible method for the early detection of
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kidney stones without the need for imaging, radiation, or
specialized personnel. This has significant implications for
population-level screening and preventive nephrology.

To the best of our knowledge, this study is the first to use a
large-scale dataset that integrates simple clinical information
from both patients with and without kidney stones, applying
ML techniques to develop a computer-aided screening tool
for detecting stones of various compositions. This approach
reflects real-world clinical scenarios and aims to support
early detection and decision-making for further diagnostic
evaluation. In this study, we expanded upon our previous
work by incorporating 10 easily accessible clinical varia-
bles to construct an AI-based model capable of identify-
ing individuals at high risk for kidney stones [6]. These
variables, readily available during routine health checkups,
emergency visits, or outpatient consultations, can be collected
and analyzed quickly, with no additional burden on patients
or health care resources.

One of the key advantages of this tool lies in its simplic-
ity and cost-effectiveness. Unlike imaging-based diagnostics,
which require expensive equipment and specialized interpre-
tation, our AI model only needs a standard internet-connec-
ted computer and does not rely on urologists or radiologists
for execution. This enhances its feasibility and scalabil-
ity, particularly in resource-limited settings or rural areas.
Conceptually, our AI screening model functions similarly to
the fecal occult blood test used for colorectal cancer screening
[25]—offering a rapid, noninvasive, and low-cost method
to identify high-risk individuals who would then proceed to
confirmatory imaging tests such as ultrasound, x-rays, or CT
scans.

Furthermore, because our model relies on only 10 standard
health checkup parameters, patients do not require any
additional testing. This makes the tool highly compatible
with existing clinical workflows. Given its accessibility
and minimal operational requirements, it could be readily
implemented in annual health screenings or even in the
follow-up of patients who have undergone treatment for
kidney stones [26,27]. By enabling earlier detection of stones
—even when they are still small and asymptomatic—the
model could facilitate timely intervention, reduce the risk of
complications, and simplify surgical management.

Importantly, this approach also holds significant potential
for use in telemedicine. By leveraging basic clinical data and
our AI software, health care providers could remotely screen
for kidney stones in patients living far from medical centers,
enabling early identification and reducing the likelihood of
emergency presentations. Overall, this screening tool may
serve as a practical and scalable solution for improving access
to care, minimizing disease burden, and promoting proactive
management of urolithiasis across diverse health care settings.

Our AI model is designed as a practical screening tool
to identify kidney stones using only routine blood and
urine data collected during health checkups. In real-world
workflows, it can be seamlessly integrated into existing
laboratory information systems, allowing automated risk
predictions once test results are available. For individuals

with a high predicted probability of nephrolithiasis, clinicians
can proceed with confirmatory imaging such as ultrasonog-
raphy or CT for diagnosis, while those with low risk can
safely avoid unnecessary imaging. This stepwise approach
facilitates early detection and appropriate resource allocation.
Furthermore, it should be noted that the algorithm only uses
laboratory data from routine urinalysis and no additional
(expensive) tests are required. As such, the extra cost for
using our algorithm is minimal, making it highly affordable.
Early identification enables timely lifestyle interventions or
pharmacologic prevention, potentially reducing emergency
visits and treatment costs associated with advanced stone
disease.

The variables selected in our model were based on
previously validated clinical factors strongly associated with
nephrolithiasis. Although several of these factors showed
significant differences (P<.001) between cases and controls,
which may contribute to potential overestimation of model
performance, we minimized this bias by applying stratified
sampling and reweighting techniques during model train-
ing. Consistently high AUC and accuracy values across all
subgroups further support the robustness and generalizability
of our model.

As every participant in this study underwent imaging
confirmation to verify the presence or absence of stones,
conducting multiethnic and cross-national validation would
require substantial resources and logistical coordination.
Therefore, this work focuses on an Asian cohort as an initial
step. Although our dataset was comprehensive—comprising
a large number of patients from multiple hospitals—and we
further validated the model using an independent testing
cohort in a clinical trial setting, one important limitation must
be acknowledged. All patients included in this study were
of Asian ethnicity. As a result, the predictive performance
of our AI model may be limited when applied to popula-
tions of different racial or ethnic backgrounds. Differences
in genetics, diet, and environmental factors could potentially
affect the clinical presentation and risk profiles of kidney
stone disease. To reduce racial and environmental bias,
variables known to vary with ethnicity or diet—such as
urinary calcium, oxalate, citrate, or lifestyle factors—were
excluded. Instead, our model incorporated clinically relevant
indicators of stone risk, including hematuria, bacteriuria, and
serum creatinine. These features are biologically plausible
and less population dependent, suggesting that the model
may be applicable across diverse groups, although future
international validation is warranted to confirm its per-
formance. Future research should focus on collecting and
integrating data from diverse populations to further refine
and recalibrate the model. This will be essential to enhance
the generalizability and global applicability of the AI-based
kidney stone screening tool.
Conclusions
In this multihospital study, we developed an ML-based
model that accurately identifies clinically significant kidney
stones using only 10 routine clinical and urine parame-
ters. This low-cost, noninvasive tool enables large-scale,
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manpower-free screening and can be readily integrated into
health checkups or telemedicine, offering a practical solution

for early detection and proactive management of nephrolithia-
sis.
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AUROC: area under the receiver operating characteristic curve
CT: computed tomography
eGFR: estimated glomerular filtration rate
HPF: high-power field
KUB: kidney, ureter, and bladder
ML: machine learning
RBC: red blood cell
RF: random forest
ROC: receiver operating characteristic curve
SG: specific gravity
US: ultrasound
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