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Abstract

Background: Artificial intelligence (Al) is increasingly applied to health care, yet concerns about fairness persist, particularly
in relation to sociodemographic disparities. Previous studies suggest that socioeconomic status (SES) and sex may influence Al
model performance, potentially affecting groups that are historically underserved or understudied.

Objective: This study aimed to (1) assess algorithmic bias in Al-driven dementia prediction models based on SES and
sex (biological sex), (2) compare the utility of an individual-level SES measure (the Housing-Based Socioeconomic Status
[HOUSES] Index) versus an area-level measure (the Area Deprivation Index) for bias detection, and (3) evaluate the effective-
ness of an oversampling technique (the Synthetic Minority Oversampling Technique for Nominal and Continuous features) for
bias mitigation.

Methods: This study used data from two population-based cohorts: the Mayo Clinic Study on Aging (n=3041) and the
Rochester Epidemiology Project (n=19,572). Four Al models (random forest, logistic regression, support vector machine, and
Naive Bayes) were trained using a 5-year observation window of structured electronic health record data to predict dementia
onset within the subsequent 1-year window. Fairness and model performance were assessed using the balanced error rate
(BER) across intersecting SES-sex subgroups. The Synthetic Minority Oversampling Technique for Nominal and Continuous
features algorithm was applied to the training data to balance the representation of SES groups.

Results: Across both cohorts, individuals with lower SES generally exhibited higher BERs (worse performance) than high
SES groups, confirming the presence of bias. In the MCSA cohort, males with high SES, as indicated by the HOUSES
Index, consistently exhibited the lowest BERs across all evaluated models. Balancing the training data based on a specific
SES measure showed a trend toward reducing the BER disparity when evaluated using that same measure. However, this
targeted improvement demonstrated nonuniversal benefits; in some cases, it exacerbated disparities when evaluated using
other, unbalanced SES measures. This pattern suggests that fairness interventions are not universally beneficial across different
definitions of the protected attribute. While the balancing approach improved fairness in model performance for lower SES
groups, it often came at the cost of a slight reduction in overall model performance. However, an exception was observed in
the MCSA cohort when balancing based on the HOUSES Index using logistic regression, support vector machine, and Naive
Bayes, where the performances of both the high and low SES groups improved.

Conclusions: This research highlights the importance of incorporating sociodemographic context into AI modeling in health
care. The choice of SES measure may lead to different assessments of algorithmic bias. The HOUSES Index, as a validated
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individual-level SES measure, may be more effective for bias mitigation than area-level measures. Future Al development
should integrate bias mitigation strategies to ensure models do not reinforce existing disparities in health outcomes.
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Keywords: artificial intelligence; Al bias; dementia; Area Deprivation Index; socioeconomic status; machine learning

Introduction

In 2024, Alzheimer dementia affected approximately 6.9
million people in the United States, and this number is
projected to escalate to 13.8 million by 2060. This growth
places an immense burden on patients and their families,
society, and the health care system, manifesting in an
estimated 18.4 billion hours of unpaid care annually, valued
at US $346.6 billion [1]. Despite this considerable prevalence,
cognitive impairment, including mild cognitive impairment
(MCI) and dementia, often goes undetected in clinical
settings. Diagnoses frequently come late in the cognitive
decline process, reducing opportunities to enhance patients’
quality of life and exacerbating existing health disparities.
Ongoing research in health care seeks to leverage artificial
intelligence (Al) to enhance dementia prediction.

The rapid advancements in computing power, data storage,
and predictive analytics have significantly accelerated the
integration of Al tools into the US health care system [2].
By 2014, 97% of nonfederal acute care hospitals had adopted
a certified electronic health record (EHR) [3]. As of January
2025, the US Food and Drug Administration has approved
more than 1000 clinical AI applications [4]. This foundational
shift has enabled the widespread adoption of Al. Al-powered
solutions have already demonstrated transformative potential
in health care.

Beyond diagnostics, Al research continues to explore
ways to address health disparities, such as reducing unex-
plained pain disparities through image-based algorithms
in underserved populations [5]. However, alongside these
advancements lies the critical challenge of mitigating biases
inherent in Al systems. Studies have revealed that Al
algorithms trained on biased data can perpetuate health
disparities, particularly among underresourced and understud-
ied populations [6-9]. For example, a race-based algorithm
for estimating kidney function produced higher estimates for
Black patients than for White patients, resulting in delayed
referrals for organ transplants among Black individuals [10].
Such findings underscore the ethical imperative to scruti-
nize differential model performance by socioeconomic status
(SES) and other social determinants of health (SDOH), which
have profound implications for underserved populations and
care delivery. SES, as a core component of SDOH, plays a
pivotal role in shaping health outcomes through biological,
behavioral, and environmental pathways [11-20].

Recent studies have highlighted the pervasive issue of bias
in health care Al systems, particularly SES. For instance, a
2019 study [21] defines algorithmic bias in health care as the
application of an algorithm that compounds the challenges
affecting underserved groups across SES, race, background,
religion, sex, or disability, thereby amplifying disparities in
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health systems. The authors discuss how Al can inadvertently
perpetuate and exacerbate challenges faced by underserved
populations if not carefully designed and implemented.
Another study outlines various elements of potential bias
in the development and implementation of Al algorithms
in health care. It emphasizes that such biases can propa-
gate stereotypes and discrimination, further marginalizing
underserved populations and contributing to socioeconomic
health care disparities [22]. Similarly, research indicates
that lower SES is associated with poorer predictive model
performance, potentially due to incomplete or inaccurate EHR
data [23].

In addition to SES disparities, sex differences have
emerged as a critical factor influencing AI model perform-
ance in dementia prediction. Research indicates that females
often exhibit more severe cognitive impairment and experi-
ence a faster rate of cognitive decline compared to males
at the onset of Alzheimer disease [24]. Sociodemographic
factors, such as lower education levels and SES, dispropor-
tionately affect older female individuals, increasing their risk
for dementia [25-27]. Predictive models for cognitive decline,
such as Cox regression, demonstrate varying performances
across sexes, indicating potential biases in predictive accuracy
[28]. Additionally, transfer learning approaches have revealed
that cognitive deficits in female individuals, once detected
at the MCI stage, tend to deteriorate more consistently over
time, whereas male participants exhibit a wider variety of
declines across multiple cognitive functions [29].

Despite these findings, there remains a significant gap in
strategies to mitigate biases in Al models. While some studies
have proposed methods to detect and quantify such biases,
comprehensive approaches to address and correct them are
limited [30]. Our study seeks to fill this gap by not only
examining the relationship between SES, sex, and Al model
performance in dementia prediction but also implementing
oversampling techniques to ensure adequate representation
of socioeconomically disadvantaged groups. By doing so,
we aim to reduce disparities in model performance across
different SES groups, thereby enhancing fairness in Al-driven
health care solutions.

Methods
Study Population

In our study, we used 2 cohorts. First, we studied individuals
participating in the Mayo Clinic Study on Aging (MCSA)
[31]. The MCSA, which commenced in 2004, is a population-
based research study focused on investigating the epidemi-
ology of MCI, dementia, and related biomarkers (N=5890;
dementia, n=682, 11.6%; and non-dementia, n=5208, 88.4%).
Participants for the study were chosen randomly from among
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persons living in Olmsted County, Minnesota, at the time of
recruitment. These participants completed detailed cognitive
assessments, including the Clinical Dementia Rating scale,
a full-scale neurological evaluation, and various neuropsycho-
logical tests. Using established criteria, a consensus commit-
tee made diagnoses, classifying participants as cognitively
unimpaired, having MCI, or having dementia. MCI diagnostic
criteria have been disclosed in previous publications [32],
and dementia diagnoses adhered to the criteria laid out in
the Diagnostic and Statistical Manual of Mental Disorders,
Fourth Edition [33].

Second, we studied a larger cohort of persons living
in Olmsted County, MN, between 2004 and 2020, derived
from the Rochester Epidemiology Project (REP) medical
records linkage system (N=290,528; dementia, n=8,205,
2.8%; and non-dementia, n=282,323, 97.2%) [34]. The
onset of dementia was identified by the date of the first
diagnosis code (International Classification of Diseases
[ICD], Ninth or Tenth Revision code) received between
2004 and 2020.

Socioeconomic Measures

We assessed potential biases in model performance using
two residence-based SES measures: the Area Deprivation
Index (ADI) [35] and the Housing-Based Socioeconomic
Status (HOUSES) Index [36]. The ADI is a multidimensional
evaluation of a person’s socioeconomic conditions at the
census block group level. We used both national-level and
state-level ADI rankings. The national-level ADI rankings
were used to divide participants into two groups: those in
the higher ADI quartile group (76-100) were considered
to reside in an area with high socioeconomic deprivation
(hereafter, low SES), and those in the ADI group (0-75)
were considered the referent group (hereafter, high SES).
Similarly, the state-level ADI ranking was categorized into
two groups: ADI (8-10) for low SES and ADI (0-7) for high
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SES. The HOUSES Index is a housing-based SES indicator,
derived from an analysis of 4 specific variables related to a
housing unit. The bottom quartile was considered low SES,
and the remaining quartiles were considered high SES. The
HOUSES Index was only used in the MCSA cohort because it
is not available for the REP cohort. By incorporating both
the HOUSES Index and ADI measures, our study aimed
to evaluate and compare their effectiveness in identifying
SES-related biases in the performance of AI models. In
addition to quantifying bias in model performance based on
SES, our study also considered sex.

Prediction Timeline Window

Our goal was to use records from the past 5 years (obser-
vation window) to forecast whether a patient would be
diagnosed with dementia in the following year (prediction
window).

For both cohorts, we applied consistent inclusion and
exclusion criteria. For patients with dementia (case), the
incident date was the date of dementia onset. We excluded
patients whose age at the incident date was less than 50 years.
The index date (point for prediction) is set to 1 year before the
dementia incident date. We performed frequency matching
for age between participants with dementia and participants
without dementia. For patients without dementia (control),
we assigned index dates to match age with cases—that is,
patients without dementia at the index date have a similar
age distribution to patients with dementia at their index
dates. As shown in Figure 1, the 5-year period preceding
the index date serves as the observation window. The 1-year
period following the index date is the prediction window
for both groups. We exclude patients with no record within
the observation window. We also exclude patients without
dementia who do not have at least 1 year of follow-up after
their index date (whose last record date is not at least 1 year
after the index date).

Figure 1. Timeline overview for dementia and non-dementia patients. For patients with dementia (cases), the index date is set 1 year before their
diagnosis. For patients without dementia (controls), the index date is assigned to match the age distribution of the cases. The model uses a 5-year
observation window preceding the index date to predict the onset of dementia within the subsequent 1-year prediction window.
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Assessing Al Bias Across Different SES
and Sex Categories

Four machine learning algorithms were selected to cap-
ture a variety of model classes commonly used in clinical
prediction tasks, allowing for an assessment of whether
observed bias patterns were robust across different algorith-
mic assumptions and complexities. The selected models were
(1) logistic regression (LR), a well-established, interpretable
linear model that serves as a standard baseline in clinical
research; (2) support vector machine (SVM), a powerful
kernel-based method capable of learning complex, nonlinear
decision boundaries; (3) random forest (RF), a nonlinear
ensemble of decision trees that is robust to overfitting and
can implicitly capture complex interactions between features;
and (4) Naive Bayes (NB), a simple yet efficient probabilistic
classifier based on Bayes’ theorem with strong independence
assumptions. This selection enables a more comprehensive
evaluation of how algorithmic bias manifests across linear,
nonlinear, ensemble, and probabilistic modeling paradigms.
We trained and tested the 4 AI models to predict the
incidence of dementia in the following year.

The experimental process begins with preprocessing the
data. The 5-year observation period is divided into five
1-year windows. During each 1-year window, patients may
have multiple visits. For each visit, we extracted ICD-9
and ICD-10 codes, categorized the codes using the Clinical
Classifications Software (CCS) [37], which groups diagno-
ses and procedures into clinically relevant categories and
then generated a one-hot-encoded vector representing the
CCS categories for the visit. We computed the element-wise
sum of all visit vectors within each 1-year window. To
robustly distinguish between years with no visit and years
with visits but no relevant diagnoses, we used a missing
indicator method. For 1-year windows where a patient had
no visits, the corresponding annual vector was filled with
zeros. Concurrently, we introduced 5 binary features, one for
each year of the observation window, setting the feature to
“1” to explicitly flag a year with no visits and “0” otherwise.
Finally, we formed the final input vector by concatenating
the 5 annual vectors, sex, age at the index date, and the 5
created binary visit-indicator features. Our primary objective
was to assess the baseline performance and bias of models
built only on the most common, structured data elements that
are widely available for nearly all patients within a standard
EHR system.

In this study, we developed and evaluated 4 AI models
for each cohort. We randomly partitioned the dataset into
two subsets: 70% for training and 30% for testing. Within
the training set, we used a 5-fold cross-validation strategy
to identify the optimal parameters for each model, thereby
ensuring robust performance estimates and minimizing the
risk of overfitting. After determining the best-performing
configuration for each model, we retrained the model on the
entire training set and subsequently evaluated its performance
using the 30% test set. All model development and evaluation
procedures were conducted independently within each of the
2 cohorts. We did not perform cross-cohort validation.
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Within each cohort, and for each model, we then con-
ducted subgroup analyses by comparing performance across
different sex groups and among various SES-sex subgroups.
This approach was used to identify potential differences in
predictive bias.

To assess the fairness of these models, we used the
balanced error rate (BER) [23], defined as the unweighted
mean of the false-positive rate (FPR) and the false-negative
rate (FNR), as follows:

FPR + FNR

BER = >

The FPR, also referred to as 1-specificity, represents the
proportion of negative instances that are incorrectly classified
as positive. Formally,

_ False positive(FP)
" True negative(TN) + False positive(FP)

FPR

The FNR, also referred to as l-sensitivity, represents the
proportion of positive instances that are incorrectly classified
as negative. Formally,

False negative(FN)

FNR =
True positive(TP) + False negative(FN)

By incorporating both the FPR and FNR, BER cap-
tures imbalances in how models treat positively and nega-
tively labeled individuals, allowing us to identify potential
disparities or biases in the predictive performance.

To assess the variability and reliability of the BER
estimates, we calculated bootstrap ClIs for each SES-sex
group:

1. Bootstrapping procedure: We generated 1000 bootstrap
samples by randomly resampling with replacement
from the original test datasets.

2. BER calculation: For each bootstrap sample, we
calculated the BER.

3. ClI estimation: The distribution of the bootstrap BERs
was used to compute the 95% CI, providing an estimate
of the uncertainty around the BER.

To assess statistical differences in model performance (BER)
between SES-sex groups, we conducted a series of pairwise
2-tailed ¢ tests with a significance threshold of 0.05. The
Levene test was used to assess variance homogeneity, with
the Welch ¢ test applied for unequal variances and the
standard ¢ test for equal variances. Each test was performed
independently to evaluate a specific contrast (eg, low vs high
SES within a sex group). To correct for the increased risk of
type 1 errors (false positives) due to multiple comparisons, we
applied the Benjamini-Hochberg procedure. For each of the 4
Al models, we collected the P values from all pairwise ¢ tests
performed for that model and applied the Benjamini-Hoch-
berg correction to this complete set of P values. This method
controls the false discovery rate at our chosen significance
level of 0.05. All reported statistical significances for pairwise

JMIR Med Inform 2026 | vol. 14 1 e80405 | p. 4
(page number not for citation purposes)


https://medinform.jmir.org/2026/1/e80405

JMIR MEDICAL INFORMATICS

comparisons are based on the results of this false discovery
rate correction.

In addition to these pairwise comparisons, a sepa-
rate baseline analysis was conducted to contextualize the
performance of all subgroups relative to a single reference
point. For this analysis, the “male in high SES” subgroup was
designated as the baseline category. We then calculated the
difference in BER for all other sociodemographic subgroups
by comparing their BERs to the BER of this baseline group.
This method provides a consistent benchmark for evaluating
the performance disparities relative to the reference group.

Reducing SES-Related Bias

To address disparities in AI model performance related to
SES, we implemented the Synthetic Minority Oversampling
Technique for Nominal and Continuous features (SMOTE-
NC) [38]. SMOTE-NC is a variant of an oversampling
technique designed to generate synthetic examples in datasets

Liuetal

that include both continuous and categorical variables. This
method is particularly useful in addressing imbalances in
datasets, which can lead to biased model performance.

In the context of our study, we applied SMOTE-NC
to balance the representation of understudied SES groups
within our training dataset. This process preserved the ratio
of dementia cases and controls in the cohort (Tables 1 and
2). We set the number of neighbors parameter to 5 and
used a fixed random seed of 42. This process ensured that
the distribution of SES groups in the training dataset was
balanced, without introducing synthetic examples into the
test set. Following the oversampling, the AI models were
retrained on the balanced dataset using the same cross-valida-
tion strategy. To assess the effectiveness of SES balancing,
we compared the performance (BER) of models trained on
the oversampled datasets with those trained on the original,
imbalanced datasets.

Table 1. Participant characteristics in Mayo Clinic Study on Aging (MCSA; N=3041), stratified by dementia cases (n=679, 22.3%) and non-dementia

controls (n=2362, 77.7%).

MCSA Case Control
Age (y; at index date), n (%)
55-64 1(0) 3(0)
65-74 32(5) 112 (5)
75-84 259 (38) 906 (38)
85-94 364 (54) 1261 (53)
=95 23 (3) 80 (4
Sex, n (%)
Male 353 (52) 1192 (51)
Female 326 (48) 1170 (49)
Race, n (%)
Native American or Alaska Native 0(0) 0(0)
Asian 8 (1) 11(1)
Hawaiian or Pacific Islander 0(0) 1(0)
Black or African American 1(0) 5(0)
White 666 (98) 2337 (99)
More than one 3(1) 5(0)
Missing 1(0) 3(0)
Background, n (%)
Hispanic 2(0) 6 (0)
Non-Hispanic 674 (99) 2350 (100)
Missing 3(1) 6 (0)
HOUSES? Index, n (%)
Q1 (low SESP) 146 (22) 506 (21)
Q2-Q4 (high SES) 533 (78) 1856 (79)
National-level ADI, n (%)
76-100 (low SES) 35(5) 94 (4)
0-75 (high SES) 644 (95) 2268 (96)
State-level ADI, n (%)
8-10 (low SES) 202 (30) 572 (24)
0-7 (high SES) 477 (70) 1790 (76)
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MCSA

Case

Control

Number of visits, mean (SD)

933 (65.0)

795 (62.7)

HOUSES: Housing-Based Socioeconomic Status.
PSES: socioeconomic status.
CADI: Area Deprivation Index.

Table 2. Participant characteristics in Rochester Epidemiology Project (REP; N=19,572), stratified by dementia cases (n=7335, 37.5%) and

nondementia controls (n=12,237, 62.5%).

REP Case Control
Age (y; at index date), n (%)
50-54 97 (1) 194 (1)
55-64 405 (6) 810 (7)
65-74 1199 (16) 2398 (20)
75-84 2830 (39) 5660 (46)
85-94 2485 (34) 3016 (25)
=95 319 (4) 159 (1)
Sex, n (%)
Male 3040 (41) 5298 (43)
Female 4295 (59) 6939 (57)
Race, n (%)
Black 80 (1) 123 (1)
Asian 118 (2) 229 (2)
Hawaiian or Pacific Islander 3(0) 4 (0)
American Indian 3(0) 11 (0)
Other or mixed 58 (1) 121 (1)
White 7049 (96) 11,681 (96)
Refusal 11 (0) 24 (0)
Unknown 13 (0) 44 (0)
Background, n (%)
Hispanic 105 (1) 238 (2)
Non-Hispanic 6504 (89) 10,536 (86)
Missing 726 (10) 1463 (12)
National-level ADI?, n (%)
76-100 (low SESP) 444 (6) 651 (5)
0-75 (high SES) 6891 (94) 11,586 (95)
State-level ADI, n (%)
8-10 (low SES) 2098 (29) 3176 (26)
0-7 (high SES) 5237 (71) 9061 (74)
Number of visits, mean (SD) 76.2(704) 55.8(52.2)

3ADI: Area Deprivation Index.
PSES: socioeconomic status.

Ethical Considerations

The study was approved by the institutional review boards
(IRBs) of the Mayo Clinic (20-004498) and the Olmsted
Medical Center (028-OMC-20). The need for informed
consent was waived for the study. Approval for the MCSA
(IRB number 14-004401) was also obtained from the IRBs
of the Mayo Clinic and Olmsted Medical Center in Roches-
ter, Minnesota. Participants of the MCSA provided written
informed consent before participation. The MCSA informed
consent and the study’s IRB protocol allow secondary
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analysis without additional consent. All data were accessed
and analyzed within secure and institutionally approved
computing environments. No individual identifiers were
presented in the manuscript. The results are reported only
in aggregate form, ensuring that patients cannot be identified.
No compensation was provided to participants, as this study
involved the retrospective analysis of medical records.
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Results

Cohort Characteristics

Table 1 presents the participant characteristics for the
MCSA cohort. Approximately 21% (652/3041) of cases were
categorized as low SES based on the HOUSES Index, 4%
(129/3041) were categorized based on the national-level ADI,
and 25% (774/3041) were categorized based on the state-level
ADI. To understand the relationship between SES measures,
we assessed the concordance between the HOUSES Index
and both ADI measures in the MCSA cohort. There was
limited overlap between the classifications. Among those
identified as low SES by the HOUSES Index, only 12.0%
(78/652) were concurrently classified as low SES by the
national-level ADI, and 40.0% (261/652) were concurrently
classified as low SES by the state-level ADI. This lack of
concordance indicates that while these metrics all aim to
measure disadvantage, they identify distinct subpopulations.

Table 2 summarizes the participant characteristics for the
REP cohort. SES analyses indicate that approximately 6%
(1095/19,572) of cases were classified as low SES using the
national-level ADI, and 27% (5274/19,572) of cases were
classified as low SES using the state-level ADI (the HOUSES
Index is not available in the REP cohort). SES measure
distributions were similar for controls in both populations.

The average number of visits during the 5-year observation
window was 93.3 (SD 65.0) for patients with dementia and
79.5 (SD 62.7) for patients without dementia in the MCSA
cohort, and 76.2 (SD 70.4) and 55.8 (SD 52.2), respectively,
in the REP cohort. We also assessed data completeness by
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calculating the average number of years missed, defined as
the count of years within the 5-year observation window
where a patient had no recorded visits. When analyzing the
combined population of patients with dementia and patients
without dementia, most SES measures indicated that the low
SES group exhibited a higher average number of years missed
compared to the high SES group. In the MCSA cohort, the
high SES group averaged 0.12 missed years compared to 0.17
missed years for the low SES group based on the HOUSES
Index. Similarly, the national-level ADI showed 0.13 missed
years for the high SES group and 0.16 missed years for the
low SES group, while the state-level ADI showed a diver-
gent pattern, with 0.14 missed years for the high SES group
compared to 0.11 missed years for the low SES group. A
consistent pattern emerged in the REP cohort, where the
national-level ADI showed averages of 0.54 missed years
for the high SES group and 0.71 for the low SES group,
and the state-level ADI showed 0.54 for the high SES group
compared to 0.59 for the low SES group.

Figures 2 and 3 show the top 20 CCS categories that
appear among cases versus controls, ordered by the percent-
age of patients who had those CCS categories in the MCSA
cohort and the REP cohort, respectively. In both cohorts,
more patients with dementia visited for “essential hyper-
tension” than patients without dementia during the 5-year
observation period (MCSA: 854% vs 78.4%; and REP:
762% vs 67.0%). Similarly, more patients with dementia
visited for “other nervous system disorders” than patients
without dementia during the same period (MCSA: 70.0% vs
54.6%; and REP: 61.3% vs 38.4%).

Figure 2. Top 20 Clinical Classifications Software (CCS) categories that appear among cases versus controls during the 5-year observation period,
ordered by the percentage of patients who had those CCS categories in the Mayo Clinic Study on Aging cohort.

Top 20 CCS Categories (Case)
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Figure 3. Top 20 Clinical Classifications Software (CCS) categories that appear among cases versus controls during the 5-year observation period,
ordered by the percentage of patients who had those CCS categories in the Rochester Epidemiology Project cohort.

Top 20 CCS Categories (Case)
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disorders or infectious disease)

Other aftercare

Medical examination/evaluation
Other connective tissue disease
Disorders of lipid metabolism
Other skin disorders

Other lower respiratory disease
Other nervous system disorders
Other nontraumatic joint disorders

Cataract

Spondylosis; intervertebral disc disorders; other back
problems

Blindness and vision defects

Genitourinary symptoms and ill-defined conditions
Other circulatory disease

Osteoarthritis

Other gastrointestinal disorders

Cardiac dysrhythmias

0 20 40 60 80
Percentage of Patients

Bias Measurement

Table 3 presents a comparison of BERs for Al-based
dementia prediction models stratified by SES, as indicated by
both the ADIs and the HOUSES Index in the MCSA cohort.
The first 2 rows compare BERs among males, the next 2 rows
compare BERs among females, and the final 2 rows compare
BERs for both males and females combined. Between each
pair of rows, superscript letters denote statistically significant
differences in BER for the low SES group compared to the
high SES group (based on Benjamini-Hochberg—corrected
P<.05): “h” indicates a significantly lower BER, “i” indicates
a significantly higher BER, and “j” indicates no statistically
significant difference. Across all evaluated models, individu-
als (males and females combined) with low SES, as meas-
ured by both the ADIs and the HOUSES Index, consistently
exhibited higher BERs. When focusing on males only, those
with low SES similarly demonstrated higher or equal BERs
across models. However, for females, the patterns differed:
in nearly all evaluated models, females with low SES, as
indicated by the national-level ADI, consistently showed
higher BERs, while female participants with low SES, as
indicated by the state-level ADI, showed comparable BERs.
In contrast, those with low SES as measured by the HOUSES
Index consistently exhibited lower or equal BERs.

Table 4 compares BERs within each Al-based dementia
prediction model among SES-sex subgroups in the MCSA
cohort. We selected “male in high SES” as the baseline
category. For each model, the table displays how the BERs
for “male in low SES,” “female in high SES,” and “female in
low SES” compare to this baseline. “Lower” indicates a lower
BER than the baseline, “higher” indicates a higher BER,
and empty cells signify no statistically significant difference.
From the table, it is evident that males with high SES, as
indicated by the HOUSES Index, consistently exhibited the
lowest BERs across all evaluated models. Furthermore, males
with high SES measured by the 2 ADIs showed the lowest
BERs in almost all models, with the exception of the RF
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Top 20 CCS Categories (Control)

Other screening for suspected conditions (not mental
o disorders or infectious disease)
Immunizations and screening for infectious disease

Medical examination/evaluation
Essential hypertension

Residual codes; unclassified
Disorders of lipid metabolism
Other connective tissue disease
Other aftercare

Other skin disorders

Cataract

Other lower respiratory disease
Other nontraumatic joint disorders
Blindness and vision defects

Osteoarthritis

Spondylosis; intervertebral disc disorders; other back
problems

Other eye disorders

Diabetes mellitus without complication
Other circulatory disease

Other nervous system disorders

Other and unspecified benign neoplasm

0 20 40 60 80
Percentage of Patients

when using the national-level ADI and the NB model when
using either the state-level or national-level ADI.

Table 5 presents a comparison of BERs for Al-based
dementia prediction models stratified by SES—as indicated
by both ADIs—in the REP cohort (the HOUSES Index was
not available in the REP cohort). In every evaluated model
except NB, individuals (combining both males and females)
with low SES, as determined by both ADIs, consistently
exhibited higher BERs. When focusing on females only, those
with low SES similarly demonstrated higher BERs across
almost all models, with the exception of the NB model when
using the state-level ADI. Furthermore, males with high SES
showed lower BERSs in almost all models, with the exception
of the NB model when using either the state-level or national-
level ADI.
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Table 4. Balanced error rate (BER) difference for male in high socioeconomic status (SES) as a baseline for Table 3.
MCSA®? (sex and
SES group) National-level ADI?, BER State-level ADIP?, BER HOUSES® Index, BER
RF4 LR® svMmf  NBE RF LR SVM NB RF LR SVM NB
Male
High Base Base Base Base Base Base Base Base Base Base Base Base
Low Higher" Higher Higher® Higherh Higher" Higher” Higher® Higher" Higher” Higher®  Higher Higher"
h
Female
High Higher" Higher Higher" Lower! Higher" Higher” Higher"™ Lower' Higher” Higher®  Higher Higher"
h
Low Lowerl Higher" Higher® Higher" Higher® Higher” Higher® Lower' Higher® Higher®  Higher —J
h

AMCSA: Mayo Clinic Study on Aging.

YADI: Area Deprivation Index.

“HOUSES: Housing-Based Socioeconomic Status.
dRF: random forest.

°LR: logistic regression.

fsvMm: support vector machine.

gNB: Naive Bayes.

"Higher: BER significantly higher than baseline.
iLower: BER significantly lower than baseline.

JNo statistically significant difference from baseline.

Table 5. Comparison of balanced error rates (BERs) for artificial intelligence—based dementia prediction models in the Rochester Epidemiology

Project (REP) cohort.
REP (sex and SES?
group) National-level ADIb, BER (95% CI) State-level ADI, BER (95% CI)
RF® LRY SVM® NBf RF LR SVM NB
Male
High 0.25508 0.29228 031388 0.35000 0.25008 0.2839¢8 034158 035510
(024-027)  (027-031) (029-033)  (033-037)  (023-027)  (025-032)  (0.32-0.36) (0.33-0.38)
Low 0.3001h 031130 0.3378h 0.31658 0.27561 0.29430 0.3458h 0.33028
(021-039)  (0.23-0.40) (025-044)  (024-040)  (024-032)  (027-033)  (0.31-0.38) (0.29-0.36)
Female
High 0.26068 0.2988¢8 0.32668 0.35858 0.23358 0.28158 033418 0.3682h
(024-028)  (0.28-0.32) (031-035)  (034-037)  (021-026)  (026-030)  (0.32-0.35) (0.35-0.39)
Low 0.2648h 031230 0.3688h 0.40671 0.25600 0.29620 0.3584h 0.34788
(0.20-033)  (0.25-0.38) (029-042)  (034-047)  (023-029)  (027-033)  (0.33-0.39) (0.32-0.38)
Male and female
High 025818 0.2958¢8 031638 0.3547¢8 0.24788 0.2827¢8 033768 0.3626"
(025-027)  (0.28-031) (029-033)  (034-037)  (023-027)  (027-030)  (0.32-0.35) (0.35-0.38)
Low 0.2772h 031240 0.3437h 0.3752h 0.26371 0.29550 0.3547h 034118
(0.23-033)  (0.27-0.36) (029-039)  (033-042)  (024-029)  (0.28-032)  (0.33-0.38) (0.32-0.36)

4SES: socioeconomic status.
YADI: Area Deprivation Index.
°RF: random forest.

dLR: logistic regression.
€SVM: support vector machine.
fNB: Naive Bayes.

2BER significantly lower.
YBER significantly higher.

Table 6 compares BERs within each Al-based dementia
prediction model among SES-sex subgroups (using the same
approach as Table 4) in the REP cohort; we selected “male
in high SES” as the baseline category. From the table, most
of both males and females with low SES exhibit higher BER
compared to males with high SES. Furthermore, females with

https://medinform.jmir.org/2026/1/e80405

high SES, as indicated by the national-level ADI, exhibited
higher BER compared to males with high SES. However,
females with high SES, as indicated by the state-level ADI,
exhibited the lowest BERs across almost all the evaluated
models except for the NB model.
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Table 6. Balanced error rate (BER) difference for male high socioeconomic status (SES) as a baseline for Table 5.

REP* (sex and SES group) National-level ADI®, BER

State-level ADI, BER

RF¢ LRY SVM® NBf RF LR SVM NB
Male
High Base Base Base Base Base Base Base Base
Low Higher? Higher? Higher? Lower? Higher? Higher? Higher? Lower
Female
High Higher? Higher? Higher? Higher? Lower Lower! Lower Higher?
Low Higher® Higher® Higher® Higher® Higher® Higher® Higher® Lower?

4REP: Rochester Epidemiology Project.

YADI: Area Deprivation Index.

°RF: random forest.

dLR: logistic regression.

°SVM: support vector machine.

fNB: Naive Bayes.

8Higher: BER significantly higher than baseline.
] ower: BER significantly lower than baseline.

Table 7 presents a comparison of the relative differences in
BERs between low and high SES groups, as indicated by
both the ADIs and the HOUSES Index, across the 4 Al-based
dementia prediction models in the MCSA cohort. The relative
difference (value close to 0 is perfectly balanced between low
and high SES groups), calculated as (low SES’ BER-high
SES’ BER)/high SES’ BER, was first shown for the baseline
case with no dataset balancing. Subsequently, the relative
differences after balancing the training dataset (separately
using national-level ADI, state-level ADI, and the HOUSES
Index) are displayed. Within each model and SES measure,
if the difference postbalancing was lower than the baseline,
the corresponding cell is marked with “i”’; otherwise, it is
marked with “j”. As indicated by “h” in the table, balanc-
ing the training dataset using any one of the 3 SES meas-
ures was associated with narrower BER differences between
high and low SES groups when stratified by that same SES
measure. However, in several cases, most notably with the
LR and RF models under national-level ADI balancing, the
relative difference shifted from positive to negative. This
shift indicates an inversion of the disparity, whereby the low
SES group achieved a lower BER than the high SES group.
Furthermore, when the training dataset was balanced using

one SES measure but performance was stratified by another
SES measure, BER differences were similarly reduced across
nearly all cases. The exceptions occurred when SES was
stratified by national-level ADI and the training dataset was
balanced by state-level ADI or the HOUSES Index under
the RF model or when the training dataset was balanced by
national-level ADI but evaluated using the HOUSES Index
with the SVM and NB models. For instance, balancing the
training data on the HOUSES Index increased the BER
disparity measured by the national-level ADI from 8.38% to
30.37% with the RF model. This pattern suggests that fairness
interventions are not universally beneficial across different
definitions of the protected attribute.

Table 8 presents the same comparison as in Table 7 but
for the REP cohort. Similarly, as indicated by footnote “g”
in the table, balancing the training dataset using any one of
the 3 SES measures consistently reduced the BER differences
between high and low SES groups when stratified by that
same SES measure. A similar pattern of disparity inversion
was observed, where balancing on the national-level ADI for
the RF model and the state-level ADI for the SVM model also

resulted in negative relative differences.

Table 7. Comparison of balanced error rate (BER) differences between low and high socioeconomic status (SES) groups under various data

balancing strategies in artificial intelligence (Al)-based dementia prediction models (Mayo Clinic Study on Aging [MCSA] cohort).

MCSA (sex and National-level ADI?, (low SES’ BER-high
balance on) SES’ BER)/high SES’ BER (percentile)

State-level ADI, (low SES’ BER—high
SES’ BER)/high SES’ BER (percentile)

HOUSESP Index, (low SES’ BER-high
SES’ BER)/high SES’ BER (percentile)

RF¢ LRY SVM®¢  NBf RF LR SVM NB RF LR SVM NB

Male and female

N/AS 8.38% 33.63%  689%  3471%  3028% 1557% 1.83% 6.98% 809%  1095% 3.58% 17.63%
National- 584%™ 7279™ 349%™ 511%™ 2530 2.04%  113%1 294%1  427%  979%  590%  18.13%)
level ADI

Statedlevel  —3037% —28.64%1 —531% —2296% 391%™ 111%™ —027%™ —1.12%™ —195% -020% 103%  -975%
ADI

HOUSES 25.13%  -1489% -233%' 1.15% 1580% 245%  152%  —050% 224%™ 343%™ —086%" 383%™
Index

3ADI: Area Deprivation Index.
YHOUSES: Housing-Based Socioeconomic Status.
°RF: random forest.

https://medinform.jmir.org/2026/1/e80405

JMIR Med Inform 2026 | vol. 14 1 e80405 | p. 11
(page number not for citation purposes)


https://medinform.jmir.org/2026/1/e80405

JMIR MEDICAL INFORMATICS

Liuetal

9LR: logistic regression.
®SVM: support vector machine.
fNB: Naive Bayes.

gNot applicable.

hResults corresponding to models trained on datasets balanced using the same SES measure by which performance is stratified.

%Relative BER difference lower.
JRelative BER difference higher.

Table 8. Comparison of balanced error rate (BER) differences between low and high socioeconomic status (SES) groups under various data

balancing strategies in artificial intelligence—based dementia prediction models (Rochester Epidemiology Project [REP] cohort).

National-level ADI? (low SES” BER-high SES’ BER)/high

REP (sex and balance on)  SES’ BER [percentile])

State-level ADI, (low SES’ BER-high SES’ BER)/
high SES’ BER [percentile])

RFP LR¢ svmd NB¢ RF LR SVM NB
Male and female
N/Af 7.40% 5.61% 8.66% 5.78% 6.42% 4.53% 5.07% -5.93%
National-level ADI -1.80%&P  237%&h 3.28%h 2.63%h —425%"  6.75% 3.11%" —2.70%"
State-level ADI —4.14%" 9.26%! —0.05%" 6.73% 1.62%%P  0.16%%P  —052%2h  -328%%h

3ADI: Area Deprivation Index.
PRF: random forest.

°LR: logistic regression.
dSVM: support vector machine.
°NB: Naive Bayes.

fNot applicable.

8Results corresponding to models trained on datasets balanced using the same socioeconomic status (SES) measure by which performance is

stratified.
F‘Relative BER difference lower.
'Relative BER difference higher.

Discussion

Principal Findings

Our study demonstrates socioeconomic bias in Al-driven
dementia prediction models. Across both the research cohort
(MCSA) and the real-world cohort (REP), the combined male
and female population with lower SES consistently exhibi-
ted higher BERs compared to their higher SES counter-
parts, except when using the NB model in the REP cohort.
This discrepancy suggests that Al models, when trained
on imbalanced SES datasets, may not generalize well
across different socioeconomic groups, potentially reinforc-
ing existing health care disparities. The findings highlight
important differences in bias detection across SES measures.
Both the ADI and the HOUSES Index were effective in
identifying disparities, but they capture different aspects of
socioeconomic disadvantage. The HOUSES Index, which is
based on housing data, identified a more nuanced variation in
model performance. In contrast, the ADI (both national-level
and state-level rankings), which is derived from census block
group-level data, showed broader disparities but may be less
sensitive to individual economic conditions.

One important factor contributing to the observed
differences in performance between high and low SES groups
is the imbalance in their representation within both cohorts.
Individuals from higher SES groups significantly outnumber
those from lower SES groups. This skewed distribution can
have a direct impact on model performance, as Al algorithms
trained on predominantly high SES individuals may not

https://medinform.jmir.org/2026/1/e80405

adequately capture the health-related patterns of populations
with low SES.

A key implication of this imbalance is that Al models
become optimized for the majority (high SES) group, leading
to lower accuracy and higher BERs for the understudied
(low SES) group. Machine learning models inherently learn
patterns based on the data they are exposed to, and if the
majority of training samples come from high SES individuals,
the model is likely to develop a bias toward their health
characteristics and health care access patterns. This bias can
manifest in the form of increased BER for participants with
low SES. Furthermore, disparities in health care access and
utilization between SES groups can compound these biases.
Traditionally, it is argued that individuals from higher SES
backgrounds have more comprehensive and consistent health
records, whereas individuals with lower SES may experience
gaps in care that lead to incomplete medical histories [23].
Our findings support this view: the low SES group exhibi-
ted a higher average number of years with missed visits
compared to the high SES group, as reported in the Results
section.

Another important observation is the interaction between
SES and sex. In the MCSA cohort, high SES male partici-
pants generally exhibited the lowest BERs. In the REP cohort,
however, the results depended on the specific SES measure
used: high SES female individuals tended to have the lowest
BERs when stratified by the state-level ADI, whereas this
pattern was not observed with the national-level ADI. This
discrepancy between cohorts may result from MCSA’s active
recruitment and retention process, which likely selected for
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a subgroup of male participants with higher health literacy
and more complete records than the general population—
a selection bias less present in the passive data collection
of the REP cohort. Furthermore, within the REP cohort,
the fact that high SES female individuals did not exhibit
this advantage under the national-level ADI highlights the
differential validity of SES measures. Broader metrics such as
the national-level ADI may fail to capture localized resource
variations that drive health outcomes for female participants,
nuances that are better reflected by more granular measures
such as the state-level ADI.

To address these disparities, we applied the SMOTE-NC
to balance the SES representation in the training data. This
approach narrowed the observed SES-related disparities in
BERs, demonstrating that balanced data distributions can
improve Al model fairness. However, the effectiveness of
this technique varied across SES measures —while balancing
based on the HOUSES Index and state-level ADI consis-
tently reduced BER disparities, national-level ADI balancing
sometimes led to unintended increases in BER differences
for certain models. This may indicate that the national-
level ADI lacks the necessary resolution to distinguish SES
levels within specific states effectively. Unlike the state-level
ADI or the HOUSES Index, the national-level ADI may
not adequately represent the local socioeconomic context
required for effective data balancing. Furthermore, the limited
concordance observed between the HOUSES Index and the
ADI measures may explain why oversampling based on one
measure resulted in disparities in the others.

While our balancing approach improved fairness in model
performance for lower SES groups, it often came at the cost
of a slight reduction in overall model performance. In some
cases, this intervention led to an inversion of bias, result-
ing in the models performing better on the low SES group
than the high SES group. The trade-off between fairness
and predictive accuracy is a known challenge in Al-driven
health care apps, and our results highlight this issue. Most
balancing strategies led to improved performance for the
low SES group while slightly decreasing overall predictive
accuracy. However, an exception was observed in the MCSA
cohort when balancing based on the HOUSES Index using
LR, SVM, and NB, where both the high and low SES group
performances improved. This suggests that housing-based
SES metrics, such as the HOUSES Index, may be more
effective for bias mitigation than area-level measures such
as the ADI.

Beyond statistical significance, it is crucial to consider
the clinical importance of these performance disparities. For
instance, in the MCSA cohort, the NB model using the
HOUSES Index yielded a BER of 39.3% for the high SES
group compared to 46.2% for the low SES group. While
this represents a modest absolute difference of 6.9 percent-
age points, its impact at a population level is substantial.
In a hypothetical clinical screening scenario involving 1000
patients from each SES group, this disparity would translate
to an additional 69 patients from low SES backgrounds being
misclassified compared to their high SES counterparts. Such
a systematic difference in accuracy, when deployed at scale,
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could further disadvantage already underserved populations
in clinical care. Patients from socioeconomically disadvan-
taged backgrounds would be disproportionately subject to
the consequences of misclassification, including delayed
diagnosis and intervention in the case of false negatives,
or unnecessary, costly, and anxiety-inducing follow-up
procedures in the case of false positives. This quantification
highlights how seemingly small statistical biases can manifest
as meaningful clinical harms.

Limitations

While this study provides valuable insights, it is important
to recognize limitations. First, although our study cohorts
(MCSA and REP) represent Midwestern populations with
a dominant White demographic, they are not representative
of the broader US population [39]. Therefore, the findings
regarding SES- and sex-based bias warrant validation in more
representative populations. Second, our Al models do not
include certain important clinical factors, such as cognitive
test scores, functional assessments, or advanced biomarkers,
in dementia prediction. Instead, we focused on commonly
available variables in real-world clinical settings because the
primary goal of this study was to investigate Al bias rather
than to maximize predictive accuracy. Third, relying on ICD
codes to identify dementia cases in the REP cohort introduces
potential ascertainment bias. In real-world settings, socioeco-
nomic barriers to care may prevent low SES individuals from
obtaining a formal diagnosis despite the presence of disease.
Consequently, these undiagnosed individuals are liable to
be misclassified as not having dementia. This specific form
of label noise likely inflates the apparent error rates (spe-
cifically false negatives) for low SES groups independent
of algorithmic performance. Fourth, the requirement for a
5-year observation window and subsequent follow-up may
inadvertently exclude individuals with fragmented care. This
selection factor suggests that the performance disparities
reported here may underestimate the full extent of algorithmic
bias. Additionally, while SMOTE-NC consistently reduced
numerical BER disparities, the statistical significance of this
reduction was not formally tested. These findings should
be interpreted as descriptive evidence of fairness improve-
ment. Finally, we did not consider temporal validation of
the AI models over time, particularly in the REP cohort
(real-world data). Health care systems are dynamic, and
evolving diagnostic criteria for dementia and changes in ICD
coding practices may lead to concept drift. Consequently, the
models’ utility for predicting dementia risk in future patient
populations requires further investigation. Nonetheless, our
main objective was to assess the SES-driven Al model bias
rather than to optimize prediction performance, and our
findings successfully demonstrate the influence of SES on Al
bias in dementia prediction.

Future Work

In this study, BER was selected as the primary metric for
evaluating model performance and fairness. This metric is
particularly well suited for classification tasks with imbal-
anced classes, such as dementia prediction, because it gives
equal importance to errors made on the understudied and
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majority classes, unlike standard accuracy. Our use of BER
aligns with a fairness goal of achieving parity in over-
all error rates between demographic subgroups. However,
it is important to acknowledge that “fairness” is a multi-
faceted concept, and no single metric can capture all its
dimensions. Alternative fairness criteria could have been
used, each with different implications. Future work should
extend this analysis by evaluating these models against a
broader suite of fairness metrics to provide a more holis-
tic assessment of their performance trade-offs. We should
also investigate whether differences in health care utilization
patterns contribute to these variations, as female individuals
may engage with health care services differently than male
participants, potentially influencing Al model predictions.

Our further research should explore advanced fairness-
aware algorithms that optimize both fairness and predictive
accuracy, ensuring that model improvements do not dispro-
portionately benefit or disadvantage any subgroup. Addition-
ally, our future work should evaluate alternative debiasing
strategies beyond oversampling, such as model recalibration
and adversarial learning, to address structural biases inherent
in the data.

Conclusions

This study underscores the biases in Al models predict-
ing dementia, with performance disparities observed across

Liuetal

SES and sex groups. Individuals from lower SES back-
grounds consistently experienced less accurate predictions,
as reflected in higher BERs. These disparities suggest
that Al models trained on real-world health care data
may inadvertently reinforce patterns of underservice among
certain populations, underscoring the need for fairness-aware
modeling approaches.

Comparisons between SES measures revealed that the
HOUSES Index and ADI capture different aspects of
socioeconomic disadvantage, with the HOUSES Index
potentially offering more granularity at the individual level.
The observed sex-based disparities in model bias further
emphasize the intersectionality of SDOH, highlighting the
importance of multidimensional fairness evaluations in
Al-driven health care applications.

Ultimately, this research reinforces the ethical impera-
tive to integrate sociodemographic factors into AI model
development and evaluation. Addressing these biases is
essential for promoting fair Al-driven solutions in dementia
risk prediction, where early and accurate diagnosis is critical
for patient outcomes.
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