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Abstract

Background: Early life health risks can shape long-term morbidity trajectories, yet prevailing pediatric risk assessment
paradigms are often fragmented and insufficiently capable of integrating heterogeneous data streams into actionable, individu-
alized profiles.

Objective: This study aimed to design, implement, and validate an artificial intelligence—driven framework that fuses
multimodal pediatric data and leverages advanced natural language processing and ensemble learning to improve early,
accurate stratification of key pediatric health risks.

Methods: A retrospective dataset of over 40,000 pediatric participants aged 2-8 years was used to train and evaluate the
framework. Data were split into training, validation, and test sets (70%, 15%, and 15%, respectively) with a temporally
mindful partitioning strategy to approximate prospective evaluation. Baseline comparators included traditional statistical and
machine learning models, and the statistical significance of area under the receiver operating characteristic curve (AUC-ROC)
differences was assessed using the DeLong test.

Results: The proposed Bidirectional Encoder Representations From Transformers—based model achieved an AUC-ROC of
0.85 (95% CI 0.82-0.88), sensitivity of 0.78, specificity of 0.80, and F-score of 0.75 on the test set, outperforming multiple
baseline models. In an additional manual comparison evaluation, automated and expert assessments aligned with 78% accuracy
(78/100), and most discrepancies arose in “equivalent” cases.

Conclusions: This study provides a validated, artificial intelligence—driven, multimodal pediatric health risk stratification
framework that translates heterogeneous child health data into clinically actionable risk profiles, demonstrating strong
discriminative performance and meaningful agreement with expert assessment. The framework supports proactive, individ-
ualized pediatric care and offers a scalable foundation for further validation across broader populations and longitudinal
follow-up.
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Introduction profound implications for individual lifelong well-being and
public health strategies. Establishing healthy developmen-
tal trajectories during childhood is fundamental, as health
conditions and risk exposures in early life can significantly

The assessment and early identification of health risks
in children represent a critical area of research with
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influence adult health outcomes and susceptibility to chronic
diseases [1,2]. Traditional pediatric health surveillance often
relies on periodic checkups, which may not fully capture
the dynamic and multifaceted nature of health risks influ-
enced by a complex interplay of genetic, environmental,
and lifestyle factors [3,4]. Therefore, developing advanced,
data-driven methodologies, such as those explored in recent
research on artificial intelligence (AI) and machine learn-
ing (ML) for tasks like toxicity prediction and broader
research applications, to proactively identify and stratify these
risks is of paramount importance. Such systems, potentially
incorporating guardian-interactive elements, can empower
health care providers and families with actionable insights
for timely preventive interventions, ultimately contributing
to a healthier future generation and optimizing health care
resource allocation [5]. Global health initiatives increasingly
emphasize the importance of leveraging innovative technolo-
gies, including advanced Al models, such as large language
models adapted for specific domains [6], to enhance child
health and well-being. The potential for deep learning to
enhance diagnostic and prognostic capabilities in areas like
child psychiatry further underscores this trend [7].

The rapid popularization of internet-based medical
services, including telehealth, mobile health (mHealth) apps,
and online consultation platforms, has significantly reshaped
health care delivery and accessibility worldwide [8]. This
digital transformation has not only provided patients and
caregivers with more convenient access to medical advice
and health information but also led to the generation of vast
amounts of digital health data [9,10]. While much of the
initial adoption has been observed in adult care, the princi-
ples of leveraging digital platforms for health monitoring,
data collection, and remote consultation, often supported by
automated systems for tasks like information synthesis [11],
are increasingly recognized as valuable in pediatric care. The
experience gained from the broader implementation of digital
health solutions, including aspects of data security, interoper-
ability, and user engagement, offers important lessons for
developing effective and safe digital health tools specifically
for children [12,13]. The expanding digital health infrastruc-
ture provides a rich ecosystem for collecting diverse health-
related data that, if properly managed and ethically used with
robust frameworks, can be invaluable for comprehensive risk
assessment in pediatric populations [14,15]. Task-oriented
dialogue systems, for instance, show potential for structured
data gathering in such contexts. Despite progress in pedia-
tric health surveillance, significant clinical voids persist,
particularly in the settings of primary care and population
health screening. Current risk assessment paradigms are often
fragmented, struggling to effectively integrate heterogeneous
data streams, such as structured electronic health record
(EHR) data, unstructured clinical notes, parental reports,
and real-time wearable sensor data, into a single, cohesive
risk profile. This leads to a reactive, rather than proactive,
approach to care, where risks are often identified only after
they have manifested. This research addresses this gap by
proposing a framework designed for the following specific
end users: (1) pediatricians in primary care, who can use the
system for point-of-care decision support; (2) public health
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officials, who can leverage population-level risk distributions
for resource allocation and strategic planning; and (3) clinical
care coordinators, who can manage and monitor high-risk
pediatric cohorts more effectively.

The increasing availability of EHR data, administrative
data, patient-generated health data, and other health-related
information sources has fueled the application of health care
big data analytics to improve service quality, operational
efficiency, and patient outcomes [16-18]. Effective utiliza-
tion of these data, supported by primers on data handling
and the underlying principles of models like Bidirectional
Encoder Representations From Transformers (BERT), can
support evidence-based clinical decision-making, enhance
population health management, facilitate epidemiological
surveillance, and enable the development of personalized
health care interventions [19]. To enhance clinical utility
and facilitate shared decision-making, it is imperative that
the reasons behind a child’s risk stratification are transpar-
ent and interpretable. Shapley additive explanations (SHAP)
are used due to their strong theoretical guarantee of consis-
tency and local accuracy, which can provide a unified and
reliable framework for model interpretation [20]. For a given
prediction, SHAP assigns an importance value (SHAP value)
to each input feature, and it is crucial for unlocking its full
potential in transforming health care delivery, research, and
policy.

Al algorithms can analyze complex, multidimensional
datasets to identify subtle patterns, predict the likelihood
of various health conditions, and stratify risk earlier and
more accurately than traditional statistical methods [20,21].
Researchers have explored various Al-driven systems for
health applications. For example, some systems focus on the
early detection of developmental disorders using behavio-
ral or imaging data, while others aim to predict adverse
outcomes in neonatal intensive care units or identify children
at risk for conditions like asthma, obesity, and mental health
issues, sometimes using specific BERT-based approaches
for analyzing medical records or predicting conditions like
Alzheimer disease (AD-BERT), which, while not pedia-
tric, demonstrates domain-specific adaptation [22]. Common
approaches in developing such systems involve the curation
of large, representative datasets; rigorous data preprocessing
and feature engineering; the application of appropriate ML
algorithms; and robust model validation using independent
test sets and ideally prospective clinical evaluation [23].
For instance, deep learning models have shown promise
in analyzing medical images for pediatric conditions, while
ensemble methods and sophisticated scoring mechanisms
like BERTScore for evaluating text generation quality [24]
(analogous to assessing the quality of Al-generated health
summaries) are often used to improve the robustness and
accuracy of predictive models based on structured EHR data
or textual information [25]. The primary contribution of
our framework lies in its advanced natural language process-
ing (NLP) capabilities, which distinguish it from prior Al
systems in pediatric care that have largely relied on traditional
NLP techniques. Methodologies, such as keyword match-
ing, bag-of-words, and term frequency-inverse document
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frequency models, while useful, are fundamentally limited in
their ability to interpret the complex and nuanced narratives
found in clinical texts.

Therefore, this study aimed to design, implement, and
validate a comprehensive, Al-driven framework for pediatric
health risk stratification. We hypothesize that by integrating
multimodal data, including EHRs, parental questionnaires,
and wearable sensor data, and leveraging advanced NLP
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and ensemble learning models, our system can identify and
stratify key pediatric health risks (eg, obesity and devel-
opmental delay) with greater accuracy and at an earlier
stage than traditional assessment methods, thereby providing
robust support for clinical decision-making and pre-emptive
intervention. A comparison of pediatric risk stratification
frameworks is provided in Table 1.

Table 1. Comparison of the selection of pediatric risk stratification frameworks.

Study Key method

Data modalities used Clinical deployment status

Smith et al [26]
Chen et al [27]

Our study
Lee et al [28]

Logistic regression
Random forest

Fine-tuned BERT® + ensemble
CNN€ on images

EHR? (structured only)
EHR and parental surveys

Retrospective validation
Prototype on retrospective data
EHR, surveys, and wearables Prototype on retrospective data

Medical imaging Conceptual framework

4EHR: electronic health record.
PBERT: Bidirectional Encoder Representations From Transformers.
CCNN: convolutional neural network.

Methods

Pediatric Health Risk Stratification
Framework and Data Foundation

This section addresses the critical, complex, and multiface-
ted aspects of multimodal data acquisition, encompassing the
collection of diverse data types from various sources and the
requisite, often intricate, data preparation processes. These
preparation stages, including but not limited to data clean-
ing, normalization, transformation, and feature engineering,
are indispensable for effectively fueling the advanced Al
models that form the analytical core of this research, ensuring
they operate on high-quality, meaningful inputs to generate
reliable and actionable insights [29,30]. The overarching
goal is to establish robust data and conceptual ground-
work upon which sophisticated risk prediction and stratifica-
tion can be built, ultimately aiming to transform pediatric
health care through proactive and personalized interventions.
Conceptually, the framework aims to map a complex set of
input variables Xy,, (representing multimodal pediatric data)
through a series of transformations and Al modeling of f 4; to

an interpretable risk stratification outcome Y ;g

D)

This high-level representation underscores the journey from
raw data to actionable risk assessment.

Yig = fAI(PreproceSSing(Xdata))

Conceptual Framework for Pediatric Risk
Stratification

The creation of a robust pediatric health risk stratification
system requires a meticulously defined conceptual framework
that delineates the core components, their interactions, and
the overall data flow. As depicted in Figure 1, the proposed
Al-driven framework is architected to be modular, scalable,
and adaptable to diverse pediatric health contexts. Its primary
objective is to convert raw, multisource pediatric data into
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actionable risk profiles, thereby facilitating proactive and
personalized health care interventions.

Commencing with multimodal data input, the framework
assimilates a wide array of data sources pertinent to child
health. Subsequently, the data preprocessing and harmo-
nization layer comes into play. Given the heterogeneity
and potential quality issues inherent in real-world pediatric
data, such as missing values, inconsistencies, and varying
formats from different sources, this layer uses data cleaning,
normalization, transformation, and integration techniques to
create a unified and analysis-ready dataset.

Next is the feature engineering and selection module,
which is dedicated to extracting meaningful features from the
preprocessed data that are highly indicative of pediatric health
risks. This process may involve creating composite variables,
transforming existing features, or applying dimensionality
reduction techniques to optimize the input for Al models.
Domain knowledge from pediatric medicine is crucial in
guiding this process to ensure clinical relevance.

At the core of the framework lies the Al-powered
risk modeling and stratification engine. This engine uses
advanced ML algorithms, with a particular focus on ensemble
learning techniques, as discussed in the Introduction, to
construct predictive models for various pediatric health risks.
Trained on historical data, these models learn complex
patterns and relationships between input features and health
outcomes or risk states. The output of this engine is not
merely a binary prediction but a nuanced risk stratification,
which may encompass risk scores, probability estimates, or
the identification of distinct risk phenotypes. The determina-
tion of weights for each data modality is a critical aspect of
our ensemble model. Rather than assigning predetermined,
fixed weights, our stacking framework uses a data-driven
approach.

The final layers of the framework are devoted to
risk profile generation and visualization and clinical
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decision support and intervention pathways. The generated
risk profiles are designed to be interpretable by health
care professionals and understandable by caregivers, often
incorporating visual aids and clear explanations. This output
is intended to seamlessly integrate with clinical work-
flows, offering evidence-based insights to support shared
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decision-making regarding preventive strategies, further
assessments, or targeted interventions. Continuous monitor-
ing and model updating are also integral to the framework,
ensuring that the AI models maintain their accuracy and
relevance as new information emerges and clinical knowledge
evolves [31].

Figure 1. Conceptual diagram of the Al-driven pediatric health risk stratification framework. The image visually represents the modules and their

interconnections. Al: artificial intelligence.
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Identification of Key Pediatric Health
Domains and Risk Factors

The primary pediatric health domains identified for this
framework, as detailed in Table 2, cover a broad spec-
trum of child well-being. Patient safety focuses on risks,
such as adverse drug events and medical errors, typically
informed by EHR data and incident reports. Continuous
health monitoring is crucial, tracking growth parameters
and developmental milestones using EHR data and wearable
sensor inputs. For children with ongoing conditions, chronic
disease management addresses factors like glycemic control
or asthma exacerbation frequency, primarily using EHR data
and home monitoring device information. Mental health
is a significant domain, evaluating behavioral indicators
and emotional well-being via parental, teacher, and direct
child assessments. Furthermore, preventive care adherence
is monitored through risk factors, such as vaccination status
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and well-child visit compliance, drawing from EHR data and
parental questionnaires [32]. The interconnected domains of
nutrition and growth consider risks associated with nutritional
intake and growth percentiles, also informed by EHR and
parental questionnaire data. Lastly, physical activity levels
and sedentary behavior duration, identified as critical risk
factors, are assessed using wearable sensor data and parental
questionnaires.

For each identified health domain, a set of specific,
measurable risk factors and associated potential data sources
is cataloged. This systematic identification ensures that the
subsequent data acquisition and Al modeling efforts are
focused and aligned with the goal of comprehensive risk
assessment. The dynamic nature of these risk factors across
different developmental stages (infancy, early childhood,
middle childhood, and adolescence) is also a key considera-
tion in the framework’s design and application.
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Table 2. Key pediatric health domains, associated risk factors, and potential data sources.

Key pediatric health domains  Associated risk factors

Potential data sources

Patient safety Adverse drug events and medical errors
Health monitoring

Chronic disease management
frequency

Acute illness severity

Mental health

Preventive care
Nutrition and growth Nutritional intake and growth percentiles

Physical activity

Growth parameters and developmental milestones

Glycemic control and asthma exacerbation

Fever severity and respiratory distress indicators

Behavioral indicators and emotional well-being

Vaccination status and well-child visit adherence

Activity levels and sedentary behavior duration

EHR® data and incident reports
EHR data and wearable sensor data

EHR data and home monitoring devices

EHR data and parental questionnaire responses

Parental and teacher assessments, and direct child
assessments

EHR data and parental questionnaire responses

EHR data and parental questionnaire responses
Wearable sensor data and parental questionnaire responses

4EHR: electronic health record.

Multimodal Data Acquisition and
Preparation

The effectiveness of the Al-driven risk stratification
framework is fundamentally dependent on the availability of
comprehensive, high-quality, multimodal data that accurately
reflect the various factors influencing child health. This
section details the strategies for acquiring and preparing such
data for input into the framework, emphasizing the criti-
cal importance of ethical considerations, including informed
consent, data privacy, and security, in full compliance with
relevant regulations, such as the General Data Protection
Regulation (GDPR) and Health Insurance Portability and
Accountability Act (HIPAA), adapted for pediatric popula-
tions.

The data sources for this framework are inherently
multimodal, encompassing a variety of information types.
EHRs serve as a primary source, offering longitudinal
clinical data that include diagnoses (ICD codes), procedures,
medications, laboratory results, growth chart data, and clinical
notes. Access to both structured and unstructured EHR data
is essential. Parental and child questionnaires or surveys
are used to capture information often not systematically
recorded in EHRs, such as detailed family history, socio-
economic status, lifestyle factors (diet, physical activity,
and sleep), environmental exposures, and patient-reported
outcomes or symptoms. Wearable sensors and mHealth data
provide opportunities for continuous, real-world monitoring
of physiological parameters (eg, heart rate, activity levels, and
sleep patterns) and behavioral data. School health records can
contribute information on immunizations, health screenings
conducted at school, and potentially attendance or behavioral
notes relevant to health [33]. Public health and environmental
databases can offer community-level data on factors like air
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quality, neighborhood socioeconomic indicators, and access
to health care or recreational facilities. Genomic data, when
applicable and ethically sourced, can provide valuable genetic
risk scores or specific genetic markers associated with
pediatric conditions.

The data preparation pipeline, illustrated in Figure 2,
involves several key steps to transform raw, multimodal data
into an analysis-ready dataset. Initially, data from dispa-
rate sources must undergo integration and harmonization.
This process includes mapping data elements to common
terminologies, resolving inconsistencies, and creating a
unified data schema. Data cleaning is then performed to
address missing values, correct errors, and remove outli-
ers. Data transformation may be necessary to convert raw
data into formats suitable for analysis, such as calculating
age-specific z scores for growth parameters or deriving
summary statistics from time-series sensor data. For instance,
if X4, iS @ raw measurement and flgg, sex aNd Ogge sex A€
the age- and sex-specific mean and SD, respectively, from a
reference population, the z score can be calculated as follows:

Xraw — :uage, sex

O'age, sex

This normalization is crucial for enabling comparisons of
measurements across different age groups and sexes. Finally,
data anonymization or pseudonymization is rigorously
applied to protect patient privacy before the data are used
for model development. The resulting dataset provides the
foundation for the feature engineering and Al modeling stages
described in the subsequent part.

@)
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Figure 2. Multimodal data acquisition and preparation pipeline.
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Data Preprocessing and Feature
Engineering

The integrity and utility of input data are paramount to
the performance and clinical relevance of any AI model,
particularly in the pediatric domain, where data can be
sparse, longitudinal, and highly variable due to growth
and development. Pediatric health data, often derived from
multiple heterogeneous sources, such as EHRs, parental
questionnaires, school health notes, and wearable sensors,
typically present unique challenges, including systematically
missing values (eg, developmental assessments not performed
at certain ages), measurement noise (eg, variability in
home-based measurements), and the presence of irrelevant
or redundant information that can obscure true risk sig-
nals. Therefore, rigorous data preprocessing and thoughtful,
domain-informed feature engineering are indispensable steps
to prepare a high-quality dataset for subsequent AI modeling.

The initial phase of preprocessing involves comprehen-
sive data cleaning. Missing data represent a pervasive
issue in longitudinal pediatric health care datasets. For
instance, growth parameters or developmental screening
results might be missing for specific well-child visits. While
simple imputation techniques like mean, median, and mode
imputation can be applied for variables with a low percent-
age of missingness and random patterns, they often fail to
capture the underlying data structure in pediatric cohorts.
More sophisticated methods are typically required, such as
k-nearest neighbors imputation, which identifies the k most
similar pediatric cases (based on a suite of other observed
features) and imputes the missing value for a feature X; using
a weighted average or majority vote from the neighbors [34].
Alternatively, model-based imputation, using algorithms like
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multivariate imputation by chained equations (MICE), can be
used. MICE iteratively models each variable with missing
values as a function of other variables in the dataset, cycling
through variables until convergence is achieved. For a set
of variables Xj, ..., X,, MICE specifies a conditional model

P(X il X ¢j) for each X; and iteratively samples from
these conditional distributions.

Outlier detection and appropriate treatment are also critical
in pediatric data, where extreme values might represent
genuine clinical concern or measurement error. Statistical
methods, such as the z score and IQR, are used. For a
data point X; in a feature distribution, its z score is calcula-

ted as z; = (xl- - ,Ll)/O', where u is the mean and o is

the SD. Data points with |Z;| > Oyypier may be flagged.
The IQR method defines outliers as points falling below
Q; — 1.5 X IQR or above Q3+ 1.5 X IQR, where Q; and Q3
are the first and third quartiles, respectively, and IQR = Q3 —
Q;. Decisions on handling outliers (removal, transforma-
tion, or winsorization) are made cautiously, considering the

potential clinical significance of extreme values in child
health.

Feature engineering in the pediatric context is a highly
domain-driven process focused on creating new, informative
features from raw data to capture developmental trajectories,
critical exposure periods, and clinically relevant interactions.
This enhances model performance and interpretability. In
child health, this includes deriving age- and sex-adjusted z
scores for growth parameters, such as height, weight, BMI,
and head circumference, based on standardized pediatric
growth charts like World Health Organization (WHO)
and Centers for Disease Control and Prevention (CDC)
growth standards. It also involves creating features like
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developmental velocity, calculated as AD/At = (D(t,) —

D(t,))/(t,—t,), reflecting the rate of change in develop-
mental milestone scores between assessments. Additionally,
it covers quantifying cumulative exposure to risk factors,
such as days with poor air quality and screen time during
early childhood, generating features for adherence to pediatric
guidelines like vaccination completeness and well-child visit
schedules, and creating interaction terms reflecting synergis-
tic effects in child health, such as genetic predispositions
interacting with environmental exposures.

To reduce dimensionality, mitigate the risk of overfitting
(especially with potentially limited sample sizes in spe-
cific pediatric subpopulations), and improve model train-
ing efficiency and interpretability, various feature selection
techniques are used. These are broadly categorized into
filter methods, wrapper methods, and embedded methods.
Filter methods evaluate features independently of the Al
model, using statistical measures relevant to pediatric
outcomes, such as the chi-square test for assessing associa-
tions between categorical risk factors (eg, maternal smok-
ing during pregnancy) and a binary child health outcome,
and the ANOVA F value for assessing the relationship
between numerical predictors (eg, birth weight) and different
risk groups. Wrapper methods, such as recursive feature
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elimination, use the performance of a specific AI model
to iteratively build and evaluate models with different
subsets of features. Embedded methods perform feature
selection as an integral part of the model training proc-
ess. For instance, tree-based algorithms like random forest
and gradient boosting inherently provide feature importance
scores based on how much each feature contributes to
reducing impurity or error across the ensemble of trees.
Regularization techniques, such as L1 regularization (Lasso),
are particularly useful. The Lasso objective function for a
linear model predicting a child’s health outcome y based on
features X and coefficients 3 is as follows:

n p 2 p
LLasso = Z (yi_ﬁo_ Z xijﬁj) +/IZ |5]| (3)
: =1

i=1 j=1

where A4 is the regularization parameter that controls the
penalty on the sum of absolute values of the coefficients,
effectively shrinking less important feature coefficients to
zero. The selection of A is typically done via cross-validation.

To provide an overview of the preprocessing pipeline and
feature engineering strategies across different data modalities,
the key steps are summarized in Table 3.

Table 3. Summary of pediatric data preprocessing steps and feature engineering strategies.

Data type Preprocessing methods

Feature engineering

Examples

Missing data imputation (KNN? and
MICEP)

Outlier detection (z score and IQR)

Growth indicators

Early exposure

terms
Questionnaires Data cleaning and encoding
School records

Wearables
Genomics

Data integration

Noise reduction and smoothing
Data anonymization

z score calculation and velocity features

Cumulative exposure and interaction

One-hot encoding and label encoding
Feature extraction

Activity patterns and sleep metrics
Genetic risk scoring

Age- and sex-adjusted z scores

Poor air quality days and screen time

Vaccination scores and visit adherence
Immunization records and attendance

Activity levels and sleep duration
Genetic predispositions

4KNN: k-nearest neighbors.
PMICE: multivariate imputation by chained equations.

Risk Stratification Algorithm

The process of risk stratification involves translating the
continuous risk probabilities or composite risk scores
generated by AI models into distinct, actionable risk
categories that are meaningful in a clinical context. This is
achieved by defining specific thresholds that convert model
outputs into discrete risk strata. The thresholds are deter-
mined through a combination of clinical expertise, statistical
methods, and decision theory principles, ensuring they are
both clinically relevant and statistically valid. P(Risk / X pniq)
represents the feature vector for a specific child. For a 4-tier
stratification system, the risk categories can be defined as
follows:

» Low risk: P(Risk /X piqa) < 61

* Moderate risk: 6 < P(Risk / Xcpiq) < 6,

* High risk: 8, < P(Risk / X.pig) < 63

* Very high risk: P(Risk / X piq) = 63

https://medinform.jmir.org/2026/1/e80163

The selection of the thresholds (6;,6,,6;) is guided by
clinical expertise, statistical methods, and decision theory.
Pediatric specialists define thresholds based on established
clinical guidelines, acceptable risk levels for specific age
groups, and the availability and efficacy of preventive
interventions. Statistical methods, such as using percen-
tiles of the predicted risk distribution in a well-character-
ized pediatric reference population, can also be used. For
example, thresholds might be set to correspond to the 50th,
80th, and 95th percentiles of this distribution. Decision
theory principles can further refine threshold optimization
by considering a utility function that balances the costs and
benefits associated with true positives, false positives, true
negatives, and false negatives. This might involve analyzing
metrics like Youden J statistic (J=sensitivity+specificity—1) or
finding points on the precision-recall curve that correspond
to desired tradeoffs for pediatric screening or intervention
programs.
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When the system is designed to predict multiple dis-
tinct health risks for a child, such as the risk of obesity,
developmental delay, or asthma exacerbation, the framework
requires a mechanism to present these risks in a consolida-
ted and understandable manner. This can be achieved by
either displaying the stratified risk level for each condition
independently or by developing a composite pediatric health
vulnerability index (CPHVI). The CPHVI is calculated by
assigning weights w; to each risk score S(R;) based on factors,
such as the clinical severity of risk R;, its impact on long-
term child development, its prevalence in the target pedia-
tric population, and its responsiveness to an intervention. To
translate the CPHVI into clinical practice, we propose a tiered
intervention model based on predefined, clinically mean-
ingful thresholds developed in collaboration with pediatric
experts. For example, a CPHVI score exceeding a “high risk”
threshold could automatically trigger an alert in the EHR
system for the primary care physician, along with a recom-
mendation for a direct referral to a relevant specialist. The
formula for the CPHVI is as follows:

ScpHVI = TN 4)

The determination of the weights w; is a complex task,
often requiring expert consensus or data-driven approaches.
Another advanced approach involves using unsupervised
learning techniques, such as clustering algorithms, applied
to the vector of predicted individual risk probabilities for
each child. This can help identify common co-occurring
risk patterns or distinct pediatric subphenotypes that share
similar multirisk profiles, guiding more tailored multifaceted
interventions.

To enhance clinical utility and facilitate shared decision-
making with families, the reasons behind a child’s stratifica-
tion into a particular risk category must be as transparent
and interpretable as possible. Techniques, such as SHAP and
Local Interpretable Model-Agnostic Explanations (LIME),
are used. For a given prediction f(Xchﬂd), SHAP assigns
an importance value (SHAP value, ¢;) to each input feature
Jj, representing its marginal contribution to pushing the
prediction away from a baseline. The sum of SHAP values
for all features plus the baseline prediction equals the model’s
output for that child:

f Xenid) = o+ X718 (5)
This allows clinicians to understand which specific factors
(eg, low birth weight, specific dietary patterns, and lack
of physical activity) are most influential in determining a
child’s assessed risk level, thereby guiding targeted advice
and interventions.
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BERT-Based Knowledge Extraction and
NLP Modeling

BERT-based NLP is used to extract informative representa-
tions from unstructured pediatric clinical text (eg, consulta-
tion records, clinical notes, and parental narratives), which are
subsequently used as input features for pediatric health risk
stratification models.

Pediatric medical journals serve as a vital source
of pediatric disease knowledge, encompassing a wealth
of information on pediatric diseases, including clinical
symptoms, diagnostic methods, treatment approaches, and
prognoses. These journals are written by pediatric experts
and researchers and are based on extensive clinical practice
and scientific research. They contain detailed case studies,
research findings, and expert opinions, providing a solid
foundation for the extraction and application of pediatric
disease knowledge. The knowledge derived from these
journals can help health care professionals better understand
the characteristics and progression of pediatric diseases,
thereby improving the quality of pediatric health care services
[14].

The pediatric disease knowledge base is a structured
repository that integrates information from pediatric medical
journals and other authoritative sources. It includes vari-
ous aspects of pediatric diseases, such as disease names,
symptoms, signs, laboratory test results, imaging findings,
treatment methods, and prognoses. This knowledge base is
designed to provide comprehensive and accurate information
on pediatric diseases, supporting clinical decision-making
and research. By organizing and structuring the informa-
tion from pediatric medical journals, the pediatric disease
knowledge base enables efficient retrieval and utilization of
pediatric disease knowledge, facilitating the application of
this knowledge in clinical practice and research.

The process begins with the ingestion of pediatric medical
journal data into our system. These textual data, rich in
pediatric disease knowledge, undergo meticulous preprocess-
ing to align with BERT’s input requirements. The text
is tokenized into a sequence of tokens [T, T, ..., Ty,
where each T; represents a word or subword unit. Addi-
tionally, the pediatric disease knowledge base is incorpo-
rated to enhance the model’s understanding of pediatric
medical concepts. BERT’s architecture consists of multiple
transformer encoder layers, each equipped with self-attention
mechanisms. The input tokens, enriched with special markers
like [CLS] and [SEP], pass through these layers, generating
a matrix of contextualized embeddings z = {Zl, Z)y eeny Zn}.
These embeddings capture intricate semantic relationships
and contextual information within the text, forming the basis
for subsequent knowledge extraction tasks.

To identify key pediatric disease entities and their
relationships within the text, named entity recognition and
relation extraction techniques are applied to the BERT-gen-
erated embeddings. For named entity recognition, a linear
layer combined with a conditional random field is used. The
conditional random field loss function is defined as follows:
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N
Lygr= — % Z logP(y; | X;) (6)
i=1

where N is the number of samples and P(y;| X;) is the
probability of the true label sequence y; given the input
sequence X;. For relation extraction between entities, a
classifier is trained using a cross-entropy loss function as
follows:

M

c
Lpg = — Z Z Vi, jlogyi j

i=1j=1

(7)

where M represents the number of entity pairs, C is the
number of relation types, and y; ; and }Ali, j are the true and
predicted probabilities for relation j between the entity pair
i, respectively. The extracted entities and relationships are
then integrated into the pediatric disease knowledge base.
This knowledge base, enriched with entities and relation-
ships from pediatric medical literature, serves to enhance a
medical chatbot’s responses. When users input symptoms, the
chatbot leverages this knowledge base to generate accurate
and contextually relevant diagnostic suggestions and risk
assessments.

Mao & Chen

Figure 3 illustrates a comprehensive workflow where
BERT’s robust language understanding capabilities are
harnessed to extract valuable pediatric disease knowledge
from medical texts. This knowledge is subsequently used to
empower a medical chatbot, enabling it to deliver precise and
informative responses to user inquiries regarding pediatric
symptoms. The integration of BERT with pediatric medical
journals and a pediatric disease knowledge base provides a
powerful tool for advancing pediatric health care through
improved diagnostic accuracy and personalized treatment
recommendations.

Our knowledge extraction module is built upon BioBERT,
a pretrained language model optimized for the biomedical
domain. We chose BioBERT as our base model due to its
demonstrated strong performance on various biomedical text
mining tasks. For fine-tuning, we used a domain-specific
corpus comprising over 50,000 articles from leading pediatric
medical journals and over 100,000 deidentified clinical notes.
The model was fine-tuned for 5 epochs with a learning rate
of 2e™. The performance of our fine-tuned model on key
NLP tasks was rigorously evaluated on a manually annotated
test set of 500 clinical notes, which were dual-annotated by
pediatric domain experts to ensure quality.

Figure 3. BERT-driven pediatric disease knowledge extraction and medical dialogue response framework. T denotes the input token sequence
obtained after tokenization of the pediatric clinical text, E represents the contextualized embedding vectors produced by the BERT encoder, and Trm
refers to the Transformer encoder layers of the BERT model. BERT: Bidirectional Encoder Representations From Transformers.
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System Architecture Design

The successful deployment, scalability, and usability of
the Al-driven pediatric health risk stratification framework
critically depend on a meticulously planned and well-engi-
neered system architecture. This architecture must robustly
support efficient multimodal data processing pipelines;

https://medinform.jmir.org/2026/1/e80163

Pediatric medical chatbot
Response by symptoms

reliable and timely execution of complex Al models; secure
and compliant management of sensitive pediatric health
data; and an intuitive, actionable interface for diverse
end users, including pediatricians, specialist clinicians,
public health officials, researchers, and potentially, with
appropriate safeguards, parents or caregivers. A multitier,
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service-oriented architecture is proposed to ensure modular-
ity, maintainability, and scalability. This typically comprises
the following tiers:

1. Data tier: This foundational tier is responsible for
the persistent storage and comprehensive management
of all relevant pediatric health data. This includes
raw input data from diverse sources (EHRs, wear-
ables, and questionnaires), preprocessed and feature-
engineered datasets, trained AI models (including their
versions and metadata), generated risk profiles for
individual children, and audit logs. This tier would
likely involve a hybrid database strategy, combining
relational databases (MySQL) for structured metadata,
patient demographics, and well-defined clinical entities,
with potentially NoSQL databases for handling large
volumes of heterogeneous, unstructured, or streaming
data (like continuous sensor readings). Robust data
governance, backup, and recovery mechanisms are
integral.

2. Application logic tier (backend services): This is the
computational core of the system, housing the data
preprocessing pipelines, sophisticated feature engineer-
ing modules, the Al model inference engine, and the
risk stratification algorithms. It handles all computa-
tional tasks, business logic for risk assessment, and
interactions with the data tier. This tier would be
developed using scalable and efficient programming
languages and appropriate backend frameworks. It may
be implemented as a set of microservices to enhance
scalability and independent deployability of different
functionalities.

3. Presentation tier (frontend interfaces): This tier
provides the user interface and user experience for
interacting with the system. This could manifest as a
secure web-based application accessible via standard
browsers, designed with responsive layouts for use on
various devices. For specific user groups like parents
or children (with age-appropriate design), a dedica-
ted mobile app might be considered. The frontend
allows authorized users to view individualized pediatric
risk stratification results, explore interactive visualiza-
tions of risk factors and trends, access evidence-based
decision support information or guideline recommen-
dations, and potentially (for clinicians) trigger further
diagnostic or intervention pathways.

Key functional system modules are designed to support the
end-to-end pediatric risk stratification process (Figure 4).

1. Pediatric data ingestion and management module: It
securely handles the import of data from diverse, often
disparate, pediatric health information systems and
sources. It performs initial data validation and schema
mapping and manages data storage, versioning, and
provenance tracking, which are crucial for longitudinal
pediatric studies.

2. Preprocessing and pediatric feature engineering
module: It implements complex algorithms described
in the preceding section, tailored for pediatric data. This
module needs to be highly configurable and extensible

https://medinform.jmir.org/2026/1/e80163
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to accommodate new data types, evolving pediatric
clinical knowledge, or updated feature definitions.

3. Al model execution and management engine: It loads
versioned, trained Al models and performs inference
on new or updated pediatric patient data to generate
risk predictions. This engine must be optimized for
performance and scalability, especially if real-time
or near real-time risk assessment is required for
acute pediatric conditions. It also manages the model
lifecycle, including retraining triggers and performance
monitoring.

4. Pediatric risk stratification and profiling module: It
implements the sophisticated algorithms from the
preceding section to convert raw model outputs into
clinically interpretable risk strata and comprehensive,
multidimensional pediatric risk profiles, potentially
including age-adjusted interpretations.

5. Reporting, visualization, and alerting module: It
generates customized reports, interactive dashboards
(eg, showing population-level pediatric risk distribu-
tions and trends over time for specific age cohorts),
and dynamic visualizations (eg, individual child risk
timelines and feature importance charts for specific
predictions). It may also include an alerting mechanism
for clinicians when a child’s risk profile crosses critical,
predefined thresholds.

6. User authentication, authorization, and audit module:
It ensures secure, role-based access to the system
and its sensitive pediatric data, adhering strictly to
privacy regulations (eg, HIPAA, GDPR, and Children's
Online Privacy Protection Act [COPPA]). Comprehen-
sive audit trails of data access and system actions are
maintained.

7. Interoperability layer (application programming
interfaces [APIs]): It provides well-defined APIs,
possibly using standards like Fast Healthcare Interoper-
ability Resources, to allow secure data exchange and
interaction with other clinical systems (eg, pediatric
EHRs, laboratory information systems, and clinical
decision support tools embedded in existing work-
flows).

The data flow within the system begins with secure data
ingestion from multiple sources into the data tier. The
application logic tier then orchestrates the preprocessing
and feature engineering pipelines. The processed features
are subsequently fed into the Al model execution engine
for risk prediction. These predictions are passed to the risk
stratification and profiling module, and the final, interpreta-
ble pediatric risk profiles are stored and made available for
secure access and visualization through the presentation tier
or via the API layer. The technology stack will be care-
fully chosen based on criteria, such as scalability for large
pediatric populations, real-time performance requirements,
security mandates for child data, ease of development and
maintenance, and compatibility with existing health care
IT infrastructure. This might include Python with libraries
like Pandas, NumPy, Scikit-learn, TensorFlow/Keras, and
PyTorch for Al or ML development; web frameworks, such
as Django/Flask (Python), Spring Boot (Java), and Node js,
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for the backend services; modern JavaScript frameworks
like React, Angular, and Vue.js for building responsive and

Mao & Chen

NoSQL databases as described for the data tier. Containeri-
zation technologies like Docker and orchestration tools like

interactive frontend interfaces; and a combination of SQL and Kubernetes may be used for deployment and scaling.

Figure 4. Multitier system architecture diagram for pediatric risk stratification. Al: artificial intelligence.
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Prototype System Implementation

The pediatric health risk stratification prototype system
integrates multisource data input with advanced Al mod-
els to deliver a comprehensive risk assessment platform.

https://medinform.jmir.org/2026/1/e80163

As illustrated in Figure 5, the system collects diverse data
types, including patient demographics, clinical records, and
parent-reported outcomes, which serve as the foundation for
subsequent analysis and risk assessment. This integration

JMIR Med Inform 2026 | vol. 14 180163 | p. 11
(page number not for citation purposes)


https://medinform.jmir.org/2026/1/e80163

JMIR MEDICAL INFORMATICS

ensures a holistic view of pediatric health, enabling more
accurate and nuanced risk predictions.

At the core of the system is a pretrained BERT model,
specifically fine-tuned to handle pediatric health terminol-
ogy and context. The model processes input text data
through multiple Transformer modules, which encode the
text to capture complex linguistic patterns and semantic
relationships. Feature extraction layers then distil these
encoded representations into risk-relevant features. These
features are passed to risk assessment components where
the actual risk stratification takes place, transforming raw
data into actionable insights regarding children’s health
risks.

The system’s implementation leverages a robust tech-
nology stack to ensure efficiency, scalability, and user-
friendliness. The backend, developed using Python and its
rich library ecosystem, handles data processing and model
execution. It uses microservices, potentially orchestrated
by lightweight frameworks like Flask, to manage distinct
functionalities such as data ingestion, preprocessing, and
model inference. Data storage follows a hybrid approach,
combining PostgreSQL for structured data with MongoDB
for unstructured or semistructured content. The frontend, built

Mao & Chen

with modern JavaScript frameworks, offers tailored interfa-
ces for different users, including physicians and parents. It
includes features like risk profile visualizations and popula-
tion-level risk trend dashboards. Docker is used for container-
ization to ensure smooth deployment and scalability of the
application components.

To illustrate the practical utility of the framework, consider
a hypothetical clinical scenario. Dr Smith, a pediatrician,
begins her day by logging into the system’s dashboard. The
system flags one of her patients, a 5-year-old child, for a
significant increase in the composite risk score for develop-
ing obesity. Dr Smith clicks on the patient’s profile and
is presented with an interactive, multimodal dashboard. An
explainable Al feature, using SHAP values, highlights the
primary contributing factors: a recent decrease in physical
activity levels captured by wearable data and parent-repor-
ted dietary logs indicating high consumption of processed
foods. Based on these insights, the system provides Dr Smith
with evidence-based, actionable recommendations, including
a referral to a pediatric nutritionist and a set of tailored
educational materials for the parents. This scenario demon-
strates how the framework can transform raw data into
clinically actionable insights to facilitate timely and personal-
ized preventive care.

Figure 5. Structure of the pediatric health risk stratification prototype system. T denotes the input token sequence obtained after tokenization of the
pediatric clinical text, E represents the contextualized embedding vectors produced by the BERT encoder, and Trm refers to the Transformer encoder
layers of the BERT model. BERT: Bidirectional Encoder Representations From Transformers; EHR: electronic health record.
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Experimental Setup

The primary dataset used for training and validating the Al
models included data from over 40,000 pediatric participants,
with an age range of 2 to 8 years at the time of data collection
or follow-up. The dataset was partitioned into 3 mutually
exclusive sets: a training set (70% of the data), a validation
set (15%), and an independent holdout test set (15%). To
ensure temporal validity if longitudinal data were used, the
split was performed such that data from earlier time periods
were used for training and validation, while data from later
periods were reserved for testing, mimicking a prospective
evaluation.

To benchmark the performance of the proposed Al-driven
framework, a selection of robust baseline models was
implemented and rigorously evaluated on an identical dataset
and predictive task. These comparators included established
traditional statistical models frequently used in pediatric
risk prediction, specifically logistic regression for binary
risk outcomes, where the probability of risk P(Y =1 | X)
is modeled as P(Y=1]X)=(1+e(o+2 /ﬂ'Xi))fl,
proportional hazards models in scenarios where time-to-event
data for risk onset were available. Furthermore, simpler yet
effective ML algorithms, namely support vector machine
(SVM), configured with various kernels (linear and radial
basis function), and standard single decision trees, were
also incorporated as baselines. In instances where existing,
validated pediatric risk scores or established rule-based
systems were pertinent to the specific health outcomes under
investigation and applicable to the dataset, these were also
included in the comparative analysis to provide a comprehen-
sive performance context. To rigorously assess the statistical
significance of our model’s superior performance, we used
the DeLong test to compare the area under the receiver
operating characteristic curve (AUC-ROC) of our proposed
model with that of each baseline model.

and Cox
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Ethical Considerations

This study involved research with human participants. The
study protocol was reviewed and approved by the Institu-
tional Review Board and Research Ethics Committee of
Hunan University of Arts and Science (HUAS-20250504).
All procedures were performed in accordance with the ethical
standards of the responsible institutional committee and
with the principles of the Declaration of Helsinki. Informed
consent was obtained from all participants prior to their
inclusion in the study. Participants were fully informed
about the purpose of the study, the procedures involved, and
their right to withdraw at any time without penalty. The
privacy and confidentiality of all participants were strictly
maintained throughout the study. All data were anonymized
prior to analysis, and no personally identifiable information
was collected, stored, or reported. No financial or material
compensation was provided to participants for their participa-
tion in this study.

Results

This section reports the empirical performance of the
proposed Al-driven pediatric health risk stratification
framework evaluated on the independent test set, in compari-
son with multiple baseline models.

Table 4 summarizes the predictive performance of the
proposed model and baseline methods across targeted
pediatric health risks. The proposed model achieved an
AUC-ROC of 0.85 (95% CI 0.82-0.88), an area under
the precision-recall curve of 0.70 (95% CI 0.65-0.75), a
sensitivity of 0.78, a specificity of 0.80, and an Fj-score of
0.75. In comparison, logistic regression, SVM, random forest,
gradient boosting, and a conventional deep learning model
yielded lower AUC-ROC and F-score values.

Table 4. Key performance metrics of the proposed artificial intelligence model and baseline models for targeted pediatric risks in the test set.

Model name AUC-ROC?, value (95% CI) AUC—PRb, value (95% CI)  Sensitivity ~ Specificity =~ Fj-score  Brier score
Proposed BERT® model ~ 0.85 (0.82-0.88) 0.70 (0.65-0.75) 0.78 0.80 0.75 0.15
Logistic regression 0.72 (0.68-0.76) 0.60 (0.55-0.65) 0.65 0.70 0.62 0.20
svmd 0.75 (0.71-0.79) 0.65 (0.60-0.70) 0.70 0.72 0.66 0.18
Random forest 0.78 (0.74-0.82) 0.67 (0.62-0.72) 0.72 0.75 0.69 0.17
Gradient boosting 0.80 (0.77-0.83) 0.69 (0.64-0.74) 0.75 0.76 0.72 0.16
Deep learning 0.83 (0.80-0.86) 0.72 (0.67-0.77) 0.76 0.79 0.74 0.14

2AUC-ROC: area under the receiver operating characteristic curve.
bAUC-PR: area under the precision-recall curve.

“BERT: Bidirectional Encoder Representations From Transformers.
dSVM: support vector machine.

The DeLong test demonstrated that the AUC-ROC of the
proposed model was significantly higher than that of each
baseline model (all P<.05). Paired ¢ tests on F|-scores
similarly indicated statistically significant improvements in
predictive accuracy for the proposed model relative to all
comparators.
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To further assess alignment with expert judgment,
a manual comparison evaluation was conducted using
100 randomly selected pairs of online consultation
cases. Automated predictions and expert assessments were
concordant in 78 cases, corresponding to an agreement rate of
78%.

JMIR Med Inform 2026 | vol. 14 180163 | p. 13
(page number not for citation purposes)


https://medinform.jmir.org/2026/1/e80163

JMIR MEDICAL INFORMATICS Mao & Chen
A confusion matrix (Figure 6) shows that most discrep- were predominantly observed within the equivalent category,
ancies occurred in cases manually labeled as “equivalent,” while the majority of nonequivalent cases were correctly

whereas predictions for clearly differentiated cases exhibited identified.
higher agreement with expert assessments. Misclassifications

Figure 6. Artificial intelligence prediction confusion matrix.
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Model performance was further examined across predefined for children younger than 2 years, 0.85 for those aged 2-5
pediatric subgroups, including age categories, sex, and years, and 0.86 for those older than 5 years. Similar perform-
socioeconomic status (Table 5). Comparable AUC-ROC and ance consistency was observed across sex and socioeconomic
F1-score values were observed across all subgroups. For strata.

age-based stratification, the AUC-ROC values were 0.84

Table 5. Model performance across different pediatric subgroups for early childhood obesity.

Group AUC-ROC?, value (95% CI) Fy-score
Age
<2 years 0.84 (0.80-0.88) 0.74
2-5 years 0.85 (0.82-0.89) 0.75
>5 years 0.86 (0.83-0.89) 0.76
Sex
Male 0.85 (0.82-0.88) 0.75
Female 0.84 (0.81-0.87) 0.74
Status
Low SESP 0.83(0.79-0.87) 0.73
Medium SES 0.85 (0.82-0.88) 0.75
High SES 0.86 (0.83-0.89) 0.76

2AUC-ROC: area under the receiver operating characteristic curve.
bSES: socioeconomic status.
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Discussion

Conclusions

This study successfully designed and validated a novel
Al-driven framework for comprehensive pediatric health risk
stratification. The primary findings were threefold. First,
the framework demonstrates the capability to effectively
integrate heterogeneous, multimodal data sources to create a
holistic view of a child’s health status. Second, our pro-
posed predictive model, which combines a fine-tuned BERT
architecture with an ensemble learning strategy, significantly
outperformed established baseline models, such as logistic
regression and SVM, in predicting key health risks, achieving
an AUC-ROC of 0.85 for early childhood obesity. Third,
the prototype system’s risk assessments showed substantial
agreement with manual expert evaluations (78% accuracy),
confirming its potential clinical utility and feasibility. The
successful implementation of the prototype system, featur-
ing intuitive dashboards for both clinicians and parents,
further illustrates the practical applicability of this approach
in facilitating early and personalized interventions, thereby
contributing a novel and robust technological foundation for
proactive pediatric health care.

Limitations and Future Work

While the presented framework shows considerable promise,
certain limitations and avenues for future research warrant

Mao & Chen

discussion. The current validation, though rigorous, was
based on a specific dataset of over 40,000 pediatric partici-
pants aged 2-8 years. Broader validation across more diverse
pediatric populations and longitudinal follow-up are essential
to ascertain long-term predictive accuracy and generalizabil-
ity. One limitation of our study is the observed slight dip in
model performance for the subgroup of children aged 3-5
years, which we attribute to the relative scarcity of rich,
unstructured text data for this age cohort. To mitigate this
issue in future work, we plan to incorporate alternative text
sources. A promising approach, as suggested, is the inclu-
sion of open-ended responses from parental questionnaires.
These narratives, which capture detailed parental concerns
and observations, can be processed by our fine-tuned BERT
model to generate rich semantic features, thereby enriching
the feature set for younger children and addressing the data
sparsity issue. A crucial direction for future work is the
implementation of advanced bias mitigation techniques. We
plan to further explore methods, such as adversarial debias-
ing, which involves training the model to make predictions
that are invariant to sensitive attributes, thereby proactively
enhancing the fairness and equity of our risk stratification
framework.
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