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Abstract

Background: Coal workers’ pneumoconiosis (CWP) is the most prevalent occupational disease that causes irreversible lung
damage. Early prediction of CWP is the key to blocking the irreversible process of pulmonary fibrosis. The prediction of CWP
based on imaging data and biomarker detection is constrained due to high cost and poor convenience.

Objective: The study aimed to use easily detectable clinical data to construct a prediction model for CWP through machine
learning (ML) methods.

Methods: A prediction framework was established using a moderate-sized dataset and multidimensional clinical features,
including occupational information, lung function parameters, and blood indicators. Six ML algorithms (light gradient boosting
machine, random forest, extreme gradient boosting, categorical boosting, support vector machine, and logistic regression)
were trained and evaluated using a stratified 5-fold cross-validation and a held-out test set. Hyperparameter optimization was
performed using a unified Optuna-based strategy to ensure fair comparison across models. Model interpretability was assessed
using Shapley Additive Explanation on top-performing models. In addition, an ablation analysis was conducted by retraining
models after excluding job type to assess the independent predictive value of clinical biomarkers.

Results: All 6 models achieved consistently high predictive performance, and the differences among the top-performing
models were small on the test set. After Optuna-based optimization, light gradient boosting machine and categorical boosting
achieved high test-set area under curve values (0.974 and 0.975, respectively), while extreme gradient boosting achieved
the highest recall (0.926) and Fi-score (0.952). Compared with the baseline models, hyperparameter optimization resulted in
only minor performance changes, indicating robust prediction under the current feature set and evaluation protocol. Shapley
Additive Explanation analysis consistently identified age, forced expiratory volume/forced vital capacity, and platelet count as
key contributors to CWP risk prediction. The ablation analysis further showed that model performance remained strong after
removing job type, supporting the independent predictive value of clinical features beyond occupational history.

Conclusions: The research results have confirmed the potential of combining simple multidimensional features with ML
algorithms for predicting CWP and provided new ideas for early diagnosis and intervention of patients with CWP.
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Introduction

As a traditional fossil energy source, coal has long held
an important position in the global energy system. A large
amount of respiratory coal dust can be generated during coal
mining, processing, loading, and transportation and enter the
human lungs through diffusion and sedimentation, inducing
the occurrence of coal workers’ pneumoconiosis (CWP) [1].
The pathogenesis of CWP is complex, characterized by strong
concealment in the early stage, high mortality rate in the later
stage, and poor quality of life for patients. Once diagnosed,
the course of the disease is irreversible and there is currently
no effective cure in clinical practice [2,3]. Early identification
of CWP can delay the deterioration of the condition and
prevent it from developing into progressive mass fibrosis or
respiratory failure.

High kilovoltage X-ray examination is the gold standard
for CWP diagnosis. To avoid the problem of overlapping and
occlusion of tissue and organ images, computed tomography
detection technology has also been used for CWP diagno-
sis [4,5]. However, the imaging differences among early
patients with CWP are not significant, and there are also
issues such as high cost, high radiation risk, and conven-
ient equipment use, which collectively constrain the early
identification of patients with CWP. At present, the devel-
opment of biomarker detection technology has significantly
improved the clinical feasibility of CWP early screening
[6,7]. As a measurable biological indicator, biomarkers can
objectively reflect the physiological and pathological status
of the body, such as proteins, genes, and metabolites, etc.
The research on the expression levels of biomarkers in the
serum of patients with CWP is the most extensive, including
transforming growth factor-a [8], interleukin-8 [9], noncod-
ing RNA (such as microRNA) [10], and common lipid
metabolites such as phosphatidylethanolamines and free fatty
acids [11], all of which have been proven to have impor-
tant guiding significance for early identification of CWP.
On the other hand, the occurrence and development of lung
diseases usually have an impact on changes in lung micro-
biota and respiratory flora. MicroRNA expression profiles
[12], surfactant-associated protein A and surfactant-associated
protein D [13] in bronchoalveolar lavage fluid, and transform-
ing growth factor-f3, interleukin-1[3, and matrix metalloprotei-
nase-9 in sputum [14], as well as benzene and aldehydes in
volatile organic compounds of exhaled breath [15], are also
commonly used for early identification of CWP. However,
metabolic processes are regulated by multiple factors. The
lower specificity and sensitivity reduce the reliability of early
screening of CWP through a single biomarker. Meanwhile,
the high cost of detecting specific biomarkers also limits the
early identification of patients with CWP.

Previous studies have shown that blood routine exami-
nation, as an economical, efficient, and easy-to-operate
screening method in clinical practice, has important guiding
significance for early identification and risk assessment of
diseases, especially in mining areas where medical resour-
ces are relatively scarce [16,17]. CWP usually leads to lung
infections or the occurrence of inflammatory diseases, which
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are often reflected in lung function, coagulation function,
inflammatory markers, etc. This provides the possibility for
early identification of patients with CWP [18]. At present,
there is a relative lack of research on CWP prediction based
on routine clinical blood data. This study aims to develop a
low-cost CWP early screening tool based on machine learning
(ML) models. By establishing a 3D feature space of occupa-
tional exposure history, lung function parameters, and routine
blood indicators, and combining 6 algorithms including
light gradient boosting machine (LightGBM), random forest
(RF), extreme gradient boosting (XGBoost), categorical
boosting (CatBoost), support vector machine (SVM), and
logistic regression (LR) for comparative analysis of predictive
performance. In addition, an Optuna-based hyperparameter
optimization strategy was applied to tune the models under
a unified evaluation protocol. Finally, the Shapley Additive
Explanation (SHAP) method was used to interpret model
predictions and analyze the contributions of key parameters
such as lung function indicators and blood indicators. The
high-precision and interpretable prediction model constructed
can provide theoretical basis for early screening of CWP.

Methods

Ethical Considerations

This study was approved by the Second Affiliated Hospi-
tal of Xuzhou Medical University ([2024] 082701). Due to
the retrospective nature of the study and the use of deidenti-
fied data, the requirement for informed consent was waived
by the institutional review board. To ensure privacy and
confidentiality, all personal identifiers, such as names and
national identification numbers, were removed and replaced
with unique study IDs before data analysis. No financial
compensation was provided to the participants as the data
were extracted from routine clinical and physical examina-
tion records. Furthermore, we confirm that no identifiable
information or images of individual participants are included
in this manuscript or its supplementary materials.

Data Sources

Two hundred eighty-seven patients with CWP were admitted
to a large tertiary hospital from June 28, 2022, to September
20, 2024. Dust-exposed workers undergoing annual occupa-
tional health examinations at the same hospital from 2022
to 2024 were considered as controls. Considering some
workers attended examinations in multiple years, records
were deduplicated using a unique personal identifier, and only
the most recent examination record per worker was retained,
yielding 2446 unique controls. These data were retrospec-
tively extracted from the hospital’s electronic medical records
system and physical examination database. All participants
were male, aged between 22 and 90 years, and were
employees of a certain mining group. The testing report
included common demographic information, job types, and
routine biochemical indicators.

The clinical test data of dust-exposed workers and patients
with CWP were intersected, and 17 indicators were selec-
ted as candidate features. These indicators included job
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type, age, forced expiratory volume/forced vital capacity
(FEV1/FVC), white blood cell count (WBC), absolute
neutrophil count (ANC), absolute lymphocyte count (ALC),
absolute monocyte count (AMC), absolute eosinophil count
(AEC), red blood cell count, hemoglobin, platelet count
(PLT), alanine aminotransferase (ALT), glucose, triglycer-
ides, cholesterol, high-density lipoprotein, and low-density
lipoprotein. The raw dataset initially comprised 36 job types.
However, when categorized by disease status, a highly
significant class imbalance was observed that the number
of healthy individuals exposed to dust was approximately
8 times that of patients with CWP. This severe imbalance
phenomenon can cause the model to lean toward the majority
class during training, thereby reducing its ability to recognize
diseased samples and affecting the model’s generalization
performance [19]. Therefore, the original 36 job titles were
first merged into 11 broader job categories based on similarity
in work environment and job tasks. And then examined
the distribution of CWP cases across these categories and
found substantial imbalance (eg, only 1 CWP case among
vehicle drivers vs 218 cases among mixed excavation and
coal mining workers). To avoid unstable estimates driven by
rare categories and to ensure adequate case representation for
modeling, we restricted the analytic cohort to 5 job categories
with sufficient CWP case counts, including mixed excavation
and coal mining workers, excavation workers, coal miners,
winch operators, and conveyor operators. After this restric-
tion, the final dataset included 1085 dust-exposed healthy
individuals and 271 participants with CWP.

Data Preprocessing

After verification, it was found that FEV1/FVC and low-den-
sity lipoprotein had missing values, accounting for 3.68%
(50/1356) and 1.48% (20/1356), respectively. In order to
avoid the impact of missing values on subsequent analysis
and model training, the k-nearest neighbor (KNN) algorithm
was used to fill in the missing value variables. The KNN
imputation was performed within the training data for each
fold in cross-validation, ensuring that the test data remained
unseen during preprocessing. The specific calculation method
is shown in equation (1).

d(x;, xj)\/ f (it — Xj1))” 0))

k=1

Among them, x; and x;, respectively, represent the feature
vectors of 2 samples, and x;; and xj, respectively, represent
the kth feature of these 2 samples.

The categorical variable job type was processed using
one-hot encoding, which converts each category into a binary
feature column. Categories include mixed excavation and
coal mining, excavation workers, winch operators, conveyor
operators, and coal miners. The remaining 15 continuous
feature variables were standardized, and each feature was
transformed into a distribution with a mean 0 (SD 1) for the
model to analyze. Standardization was performed only on the
training data, with the same scaling applied to the validation
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and test sets. The calculation method for the standard score of
each feature is shown in equation (2).

z="2F @)

Among them, x is a certain value of the feature in the original
data, u is the mean of the feature, and o is the SD of the
feature.

Statistical Analysis and Feature Selection

Statistical analysis was conducted using SPSS Statistics
(version 26.0; IBM Corp). The normality of quantitative
data was tested using the K-S test, and the homogeneity of
variance was tested using the Levene test. Data with normal
distribution were represented by mean (SD), and intergroup
comparison was tested using 2 independent samples ¢ test.
The data with nonnormal distribution were represented by
median (P25-P75), and Mann-Whitney U test was used for
intergroup comparison. Categorical variables were represen-
ted by the number of examples (%), and comparison
between groups was conducted using the chi-square test.
The difference was statistically significant with P<.05. The
Least Absolute Shrinkage and Selection Operator (LASSO)
algorithm, an embedded feature selection method, was used
for regression analysis to identify key feature variables
associated with CWP, thereby reducing model complexity
and enhancing generalization capability. LASSO regression
achieved feature selection by performing o regularization
on coefficients, shrinking the coefficients of less important
features to 0 [20]. To ensure no information leakage, LASSO
feature selection was performed within each fold’s training
data, and the same selected features were applied to the
validation data within each fold. This method was combined
with correlation analysis in filtering methods to comprehen-
sively select features.

Construction and Evaluation of ML
Models

Six representative ML models including tree-based ensemble
learning models (LightGBM, XGBoost, RF, and CatBoost)
and traditional classification algorithms (LR and SVM)
were used for constructing CWP prediction models. A
brief overview of each model’s key characteristics and its
relevance to this study is provided below.

For tree-based ensemble learning models, XGBoost
uses second-order Taylor expansion for high accuracy and
speed, incorporates regularization to prevent overfitting,
and supports parallel computing for efficient training [21].
LightGBM uses a leaf-wise growth strategy and histogram-
based feature discretization for efficiency, with built-in
class weight adjustments beneficial for imbalanced datasets
[22]. CatBoost uses an ordered boosting strategy for better
generalization, directly handles categorical features, and uses
a symmetric tree structure to reduce overfitting [23]. RF
builds multiple decision trees from bootstrapped samples,
randomly selects features at each split, and aggregates
predictions through voting for robust classification [24].
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To compare model performance on imbalanced datasets, 2
traditional models were also selected for comparison with the
ensemble models. LR as a generalized linear model predicts
probabilities using a sigmoid function [25]. SVM finds an
optimal hyperplane to separate classes, using slack variables
and a radial basis function kernel for inseparable data. Class
weights were also incorporated into its objective function for
imbalance handling [26]. In this study, class weights were
applied in the loss functions of both traditional models to
effectively handle the class imbalance issue.

Python (version 3.8.0; Python Software Foundation)
software was used for model training and evaluation,
randomly dividing the dataset into training and test set in an
8:2 ratio. To further assess model stability, 5-fold stratified
cross-validation within the training data was used. In this
procedure, the dataset was randomly divided into 5 nono-
verlapping subsets. In each fold, 4 subsets were used as
the training set, and the remaining 1 subset was used for
validation. This process was repeated 5 times, and the average
performance across all folds was taken as the evaluation
metric. The test set was only used for the final model
evaluation, ensuring it remained unseen during model training
and hyperparameter tuning. In the process of model training

Lietal

and evaluation, based on the confusion matrix, the perform-
ance of the model was comprehensively judged through
accuracy, precision, recall, F'j-score value, and the area under
curve (AUC) of the subjects. The corresponding calculation
formulas are as follows:

_ TN +FN
Accuracy = TP+ FP 3)
TP
Precision = TP+ EP 4)
TP
Recall = 5 TEN (5)
_ 2"precision*recall

(6)

~ precision + recall

Among them, TP represents true positive, TN represents true
negative, F'P represents false positive, and FN represents false
negative. Figure 1 shows the technical roadmap of this study.

Figure 1. The technical roadmap of this study. AUC: area under the curve; CatBoost: categorical boosting; LightGBM: light gradient boosting
machine; LR: logistic regression; RF: random forest; SHAP: Shapley Additive Explanation; SVM: support vector machine; XGBoost: extreme

gradient boosting.
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Results

Results of Statistical Analysis and
Feature Selection

Table 1 shows the comparison of basic characteristics
between the dust-exposed workers and the patients with
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CWP. It is found that 13 indicators, including job type,
age, FEV1/FVC, WBC, ANC, ALC, AMC, AEC, hemoglo-
bin, PLT, ALT, cholesterol, and glucose, have statistical
significance (P<.05) compared between the 2 groups.

JMIR Med Inform 2026 | vol. 14 1e80156 | p. 4
(page number not for citation purposes)


https://medinform.jmir.org/2026/1/e80156

JMIR MEDICAL INFORMATICS Lietal
Table 1. Comparison of basic characteristics between the dust-exposed workers and the patients with coal workers’ pneumoconiosis.
Healthy Disease Test Statistic P value

Job type/Case 1085 271 Pearson X2 —a <.001
Mixed workers for excavation and coal 160 (14.7) 219 (80.8) — — —
mining, n (%)
Excavator workers, n (%) 253 (23.3) 35(12.9) — — —
Winch operator, n (%) 260 (24) 3(1.1) — — —
Conveyor operator, n (%) 234 (21.6) 62.2) — — —
Coal miners, n (%) 178 (16.4) 8(3) — — —
Age, median (IQR) 48 (39-52) 69 (62-77) Mann-Whitney U~ U=11,900,Z=-2343  <.001
FEV1/FVC® (%), median (IQR) 90 (86-97) 75.86 (68-89) Mann-Whitney U~ U=177,046,Z=12.02 <.001
WBC® (x10° /L), median (IQR) 6.36 (5.42-7.60) 5.84 (4.92-6.96) Mann-Whitney U~ U=177,670,Z=5.32 <.001
ANCY (x10° /L), median (IQR) 3.53 (2.86-4.39) 297 (2.21-3.98) Mann-Whitney U~ U=185,504, Z=6.67 <.001
ALC® (x10% /L), median (IQR) 221 (1.82-2.69) 2.01 (1.58-2.72) Mann-Whitney U~ U=163,138, Z=2.80 005
AMCT (x10° /L), median (IQR) 0.39 (0.33-0.48) 0.47 (0.38-0.68) Mann-Whitney U~ U=94,124,7=-9.17 <.001
AEC8 (><109 /L), median (IQR) 0.16 (0.10-0.25) 0.13 (0.07-0.19) Mann-Whitney U U=174854,7=4.83 <.001
RBC! (x10!2 /L), median (IQR) 4.89 (4.64-5.12) 4.85 (4.46-533) Mann-Whitney U~ U=150,982, Z=0.69 49
HB! (g/L), median (IQR) 151 (144-158) 148 (136-160) Mann-Whitney U~ U=161,103, Z=2.44 01
PLTI (x10° /L), median (IQR) 244 (211-276) 200 (158.50-240) Welch t U=208,796,7=10.71 <.001
ALTK (U/L), median (IQR) 20 (15-27) 17 (12-24) Mann-Whitney U~ U=180,185, Z=5.75 <.001
GLU' (mmol/L), median (IQR) 525 (4.85-5.75) 491 (441-5.62) Mann-Whitney U~ U=180,125, Z=6.14 <.001
TG™ (mmol/L), median (IQR) 1.42 (0.99-2.33) 1.28 (0.96-2.01) Mann-Whitney U~ U=157,897, Z=1.89 06
CHOL" (mmol/L), median (IQR) 4.86 (4.29-5.52) 448 (3.67-5.22) Mann-Whitney U~ U=181,528, Z=5.98 <.001
HDL® (mmol/L), median (IQR) 1.27 (1.12-1.47) 1.23 (1.05-1.54) Mann-Whitney U~ U=150479, Z=0.60 55
LDLP (mmol/L), median (IQR) 2.67(2.29-3.11) 2.69(2.13-3.21) Mann-Whitney U~ U=129,398, Z=0.67 .50

2Not available.

PFEV1/FVC: forced expiratory volume/forced vital capacity.
“WBC: white blood cell.

dANC: absolute neutrophil count.
®ALC: absolute lymphocyte count.
fAMC: absolute monocyte count.
8AEC: absolute eosinophil count.
hRBC: red blood cell count.

%HB: hemoglobin.

JPLT: platelet count.

KALT: alanine aminotransferase.
IGLU: glucose.

MTG: triglycerides.

"CHOL.: cholesterol.

OHDL.: high-density lipoprotein.
PLDL: low-density lipoprotein.

Figure S1 in Multimedia Appendix 1 showed the cross-vali-
dation curve of LASSO regression. When the a value is low,
the model may contain too many irrelevant features, resulting
in significant errors (overfitting). When the o value is large,
the model may remove too many important features, which
also leads to an increase in error (underfitting). At the optimal
a value, the cross-validation error is minimized. The LASSO
coefficient plot was shown in Figure S2 in Multimedia
Appendix 1, which showed that the coefficients of 9 features,
including job-type mixed excavation coal, job-type excava-
tion worker, job-type conveyor operator, job-type winch
operator, age, FEV1/FVC, AMC, PLT, and ANC, were not
0 at the optimal o value. This indicated the criticality of these
features and their significant explanatory power for the target
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variable; therefore, they should be retained in the final model
for prediction.

In order to avoid the problem of multicollinearity caused
by strong correlation between features, this study used
correlation analysis in a filtering method to comprehen-
sively select features based on the 17 features selected
through statistical analysis and LASSO regression screen-
ing in the early stage. By calculating the Spearman correla-
tion coefficient matrix (Figure 2), the threshold was set to
an absolute value of r greater than 0.8, and highly correla-
ted terms in the feature pairs were selected. Based on the
absolute value of LASSO regression weights, the features that
contribute more to the target were retained, thereby eliminat-
ing redundant variables. Specifically, a Spearman correlation
matrix was computed on the training data, and pairs with an
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absolute value of r greater than 0.8 were considered highly
correlated. For each highly correlated pair, the feature with
the larger absolute LASSO coefficient was retained and the
other feature was removed. In the current dataset, WBC and
ANC showed high correlation (r=0.833); thus, WBC was
removed and ANC was retained. After redundancy filtering,

Lietal

16 nonredundant features were used as inputs for subsequent
model development, including job-type mixed excavation
coal, job-type excavation worker, job-type conveyor operator,
job-type winch operator, job-type coal miner, age, FEV1/
FVC, ANC, ALC, AMC, AEC, hemoglobin, PLT, ALT,
cholesterol, and glucose.

Figure 2. Spearman correlation coefficient matrix. AEC: absolute eosinophil count; ALC: absolute lymphocyte count; ALT: alanine aminotrans-
ferase; AMC: absolute monocyte count; ANC: absolute neutrophil count; CHOL: cholesterol; FEV1/FVC: forced expiratory volume/forced vital
capacity; GLU: glucose; HB: hemoglobin; PLT: platelet count; WBC: white blood cell count.
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Evaluation of the CWP Prediction Model

The selected 16 clinical features were input as feature
variables into 6 ML models, and 5-fold cross-validation
was performed for each model during training. The perform-
ance of each model was comprehensively evaluated based
on the test-set data, and the output results of each model
were organized and are summarized in Table 2. Meanwhile,
the visualized results of the data in Table 2 are shown in
Figure S3 in Multimedia Appendix 1. From the figure, it
can be seen that the AUC of each fold of the 6 models
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in cross-validation was consistently high (all folds >0.90),
indicating that the generalization ability of the 6 models is
strong and stable. The AUC values of the 6 models were
ranked in descending order as CatBoost (0.979), LightGBM
(0.978), XGBoost (0.976), RF (0.972), SVM (0.968), and
LR (0.967). This result indicated that the performance
of ensemble learning models on imbalanced datasets was
superior to traditional models, verifying the advantages of
ensemble learning models in dealing with such problems
[27]. Taking into account accuracy, precision, recall, and
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F1-score, both the LightGBM and RF models achieved the
highest accuracy (0.982), precision (1), and Fq-score (0.951),
while the LR model had the highest recall (0.926). Therefore,

Table 2. Evaluation of predictive performance of different models.

Lietal

based on the overall performance across multiple evaluation
indicators, LightGBM and RF were preliminarily considered
as top-performing predictive models.

Model Accuracy Precision Recall F1-score AUC?
LightGBM® 0.982° 1.000° 0.907 0.951° 0.978
CatBoostd 0.978 0.980 0.907 0.942 0.979>
XGBoost® 0.978 0.980 0.907 0.942 0.976
REf 0.982° 1.000° 0.907 0.951° 0972
LRE 0.956 0.862 0.926° 0.893 0.967
svmP 0.963 0.907 0.907 0.907 0.968

3AUC: area under the curve.

b Significant values.

“LightGBM: light gradient boosting machine.
dCatBoost: categorical boosting.

°XGBoost: extreme gradient boosting.

fRF: random forest.

8LR: logistic regression.

NSVM: support vector machine.

In order to further improve the predictive performance and
to ensure a fair comparison among candidate models, this
study used the Optuna algorithm to optimize the hyperpara-
meters of all 6 ML models (LightGBM, CatBoost, XGBoost,
RF, LR, and SVM) under the same optimization budget, and
also conducted 5-fold cross-validation during training. The
output results of each optimized model were summarized in
Table 3, and the visualized results were shown in Figure
S4 in Multimedia Appendix 1. The results showed that the
AUC of each fold in cross-validation was consistently high
(all folds >0.90), indicating that the generalization ability

Table 3. Performance evaluation of optimized models.

of the 6 models was strong and stable. After applying an
equivalent hyperparameter optimization strategy, the overall
performance of the 6 models remains high and the differen-
ces among the top-performing models were small. Specifi-
cally, CatBoost and LightGBM achieved high test-set AUC
values (0.975 and 0.974, respectively). In addition, XGBoost
achieved the highest recall (0.926) and F-score (0.952) on
the test set. Compared with the baseline results, hyperparame-
ter optimization led to only small changes in performance.
Overall, the 6 models maintained consistently high perform-
ance under the current evaluation protocol.

Model Accuracy Precision Recall F1-score AUC?
LightGBMP-Optuna 0.982 1 0.907 0951 0974
CatBoost®-Optuna 0.982 1 0.907 0951 0975
XGBoostd-Optuna 0.982 0.98 0.926 0.952 0.969
RF®-Optuna 0974 0.961 0.907 0.933 0.968
LR-Optuna 0.952 0.847 0.926 0.885 0.968
SVME-Optuna 0.967 0.925 0.907 0916 0.962

2AUC: area under the curve.

bLightGBM: light gradient boosting machine.
“CatBoost: categorical boosting.

dXGBoost: extreme gradient boosting.

°RF: random forest.

fLR: logistic regression.

ESVM: support vector machine.

Model Interpretability

In order to gain a deeper understanding of the impact of
various clinical features on the model’s prediction results,
this study used the SHAP method to conduct interpretabil-
ity analysis on the 2 representative top-performing models
LightGBM-Optuna and CatBoost-Optuna. The calculation
method was shown in Equation 7.

https://medinform jmir.org/2026/1/e80156

SHAP(y) = SHAP(base) + zn: SHAP(x;) (7)
i=1

Among them, SHAP (base) is the baseline value of the entire
model, and SHAP (x;) is the contribution of each sample to
the final prediction result.

The summary results of SHAP values are shown in Figure
3, which displayed the distribution of SHAP values for 17
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input feature variables. Each point in the figure represen-
ted a feature, and the position of the point represented the
SHAP value of the feature, which was the contribution of the
feature to the model output. If the SHAP value is positive,
it indicates that the feature increases the risk of disease and
has a positive impact on the output results. Conversely, if it
is negative, it indicates that the feature reduces the risk of
disease and has a negative impact on the output results. In
addition, the color range from blue to red reflects the actual
value of the feature, with red indicating high values and blue
indicating low values. The darker the color, the stronger
the impact of the feature on the target variable. Overall,
both models showed consistent patterns in feature effects.
Age is the most influential variable, and higher age values

Lietal

were mainly associated with positive SHAP values, suggest-
ing that older individuals tended to have a higher predicted
disease risk. In contrast, higher values of FEV1/FVC were
mostly distributed on the negative side, indicating that better
lung function (higher FEVI/FVC) was related to a lower
predicted risk. PLT showed a similar tendency, with higher
values generally corresponding to negative SHAP values. On
the other hand, higher AMC values tended to correspond
to positive SHAP values, indicating a positive association
with increased predicted risk. These results suggested that the
model predictions were largely driven by age-related factors
and lung function indicators, together with selected hemato-
logical and biochemical variables.

Figure 3. Summary chart of SHAP values. (a) LightGBM-Optuna; (b) CatBoost-Optuna. AEC: absolute eosinophil count; ALC: absolute lymphocyte
count; ALT: alanine aminotransferase; AMC: absolute monocyte count; ANC: absolute neutrophil count; CHOL: cholesterol; FEV1/FVC: forced
expiratory volume/forced vital capacity; GLU: glucose; HB: hemoglobin; PLT: platelet count; SHAP: Shapley Additive Explanations.
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Figure 4 showed the SHAP feature importance matrix,
which arranged the average SHAP absolute value of each
feature from high to low. The horizontal axis represented the
contribution value, and the larger the value, the greater the
contribution to the model results. In both the Optuna-tuned

https://medinform jmir.org/2026/1/e80156
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LightGBM and CatBoost models, age showed the high-
est contribution, followed by FEV1/FVC and PLT, which
indicates that these variables play the most important roles in
the prediction of CWP risk.
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Figure 4. Matrix diagram of SHAP feature importance. (a) LightGBM-Optuna; (b) CatBoost-Optuna. AEC: absolute eosinophil count; ALC:
absolute lymphocyte count; ALT: alanine aminotransferase; AMC: absolute monocyte count; ANC: absolute neutrophil count; CHOL: cholesterol;
FEVI1/FVC: forced expiratory volume/forced vital capacity; GLU: glucose; HB: hemoglobin; PLT: platelet count; SHAP: Shapley Additive
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To further examine how the top 3 influential features affect
the model output, SHAP dependence plots were generated
(Figure S5 in Multimedia Appendix 1). As shown in the
dependence plot for age, the SHAP values generally increase

https://medinform.jmir.org/2026/1/e80156

3 4 5
Mean (|[SHAP value|)

with age, and the risk contribution became more pronounced
after approximately 55-60 years, suggesting that older age
was associated with a higher predicted disease risk. For
FEV1/FVC, lower values correspond to higher SHAP values,
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indicating an increased risk, whereas higher values (approx-
imately 85%-100%) were associated with SHAP values
close to zero or negative, suggesting a lower predicted risk.
Similarly, the PLT dependence plot showed that lower PLT
levels tended to contribute positively to disease risk, while
higher PLT values (approximately 250-350x10%/L) were
more often associated with negative SHAP values, indicating
a reduced predicted risk.

Discussion

Principal Findings

In clinical research, it is very common for medical records
to have missing values in a certain examination due to
the complexity of data collection and individual differen-
ces among different patients. By calculating the Euclidean
distance between samples, KNN interpolation can identify
K-neighboring samples that are most similar to missing values
and then use the average feature information of neighboring
samples to fill in the missing values, effectively restoring
the integrity of the data [28]. As a categorical variable, the
values of job type do not have a sequential relationship, and
categories with larger values do not necessarily have greater
weights than categories with smaller values. In order to
enable ML models to better capture the relationship between
feature variables and target variables, single hot encoding
was applied to categorical features in this study [29]. The
remaining 15 characteristic variables are all continuous
features, but their units and ranges of values vary greatly. For
example, PLT is measured in unit x10A9/L and has a wide
range of variable values, while glucose is measured in unit
mmol/L and has a smaller range of values. This inconsistent
scale may lead to the model being more sensitive to certain
features with larger numerical ranges during training and
ignoring other features with smaller scales, thereby affect-
ing the training effectiveness of the model. Standardizing
irregular continuous variables is often the key to solving such
problems [30].

Feature selection is a crucial step in ML applications,
aimed at selecting the most relevant features to the tar-
get variable in order to improve model performance and
interpretability [31]. The common feature selection methods
mainly include embedded, wrapped, and filtered methods
[32]. As an embedded feature selection method, LASSO
uses regression analysis to screen out key feature variables
related to CWP, reducing model complexity and improving
model generalization ability. In this study, LASSO regres-
sion analysis is applied to compress the coefficients of some
unimportant features to O by performing a regularization on
the coefficients, thereby achieving feature selection [20]. The
preprocessed dataset still suffers from class imbalance, with
the number of dust-exposed workers without CWP being
about 4 times that of patients with CWP. Regarding the
issue of class imbalance, commonly used methods in model
construction include data sampling and ensemble learning
[33]. In order to preserve the distribution characteristics of the
original data as much as possible and avoid the bias and noise
that may be introduced by data oversampling methods [34],

https://medinform jmir.org/2026/1/e80156
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ensemble learning models were used to handle imbalanced
data in this study. Specifically, we selected decision tree-
based ensemble learning models such as LightGBM, RF,
CatBoost, and XGBoost and compared them with traditional
LR and SVM models.

To ensure a fair comparison among candidate models,
this study adopted a unified hyperparameter optimization
strategy based on Optuna. Optuna is a Bayesian optimiza-
tion framework that uses a tree-structured Parzen estimator
to efficiently explore the hyperparameter space by prioritiz-
ing promising regions. Under the same optimization budget
and the same stratified k-fold cross-validation protocol, all 6
models were tuned and evaluated consistently. The results
show that after optimization, all models achieved consis-
tently high cross-validated performance, while the differ-
ences among the top-performing models remained small
on the held-out test set. This finding suggests that the
current feature set and evaluation setting already provide
strong predictive ability, and further improvements are more
likely to depend on feature refinement or decision strat-
egy rather than extensive hyperparameter tuning. In addi-
tion, the top-performing models show comparable overall
performance, but each presents advantages under different
evaluation priorities. Specifically, models such as LightGBM
and CatBoost demonstrate stronger overall discrimination,
whereas XGBoost tends to perform better when recall- or
Fi-related sensitivity is emphasized. Therefore, LightGBM
and CatBoost were both retained as top-performing models
for subsequent interpretability analysis. Job type reflects
different dust exposure scenarios in coal mining and therefore
contributes to CWP risk prediction, which is consistent with
epidemiological evidence [35]. The concentration, particle
size, and composition of coal dust have a significant impact
on the pathogenesis and prevalence of CWP [36,37]. The
different working scenarios in coal mines in the same region
also have a significant impact on the prevalence of CWP.
The excavator workers are mainly responsible for developing
tunnels, and the cut rocks are rich in free silica. The pathoge-
nicity of silica dust is much higher than that of coal dust,
which can lead to more severe pulmonary fibrosis (silicosis)
and a shorter onset period [38,39]. Coal miners mainly come
into contact with coal dust (carbon-based dust), which has
relatively weaker pathogenicity compared to silica dust and
slower disease progression. At the same time, the excavation
face is a temporary work site, and the ventilation and dust
removal facilities are usually not as complete as those in
the coal mining face, resulting in greater difficulty in dust
control [40]. Mixed workers for excavation and coal mining
are exposed to silica dust and coal dust simultaneously, and
the synergistic effect of the 2 types of dust may accelerate
lung damage [41,42].

To examine whether the clinical variables provide
predictive value beyond occupational history, we conduc-
ted an ablation analysis by retraining the baseline models
after removing the job-type variable. Because hyperparame-
ter tuning led to only minor changes in performance, using
baseline models for this analysis was sufficient to evaluate
the independent contribution of clinical variables. The results
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of each model are summarized in Table 4, which showed
that model performance remained highly robust. For example,
the AUC of LightGBM only slightly changed from 0.978
(with job type) to 0.973 (without job type), indicating that

Table 4. Ablation analysis of model performance without job type.

Lietal

the physiological signals captured by clinical features and
biomarkers are major contributors to the model’s predictive
capability.

Model Accuracy Precision Recall F1-score AUC?
LightGBMP 0.982 1 0.907 0.951 0973

CatBoost® 0978 0.98 0.907 0.942 0.977
XGBoostd 0.982 1 0.907 0.951 0.978
RF¢ 0.982 1 0.907 0.951 0976
LRf 0.963 0.893 0.926 0.909 0.969
SVME 0.974 0.98 0.889 0.932 0.971

3AUC: area under curve.

bLightGBM: light gradient boosting machine.
CCatBoost: categorical boosting.

dXGBoost: extreme gradient boosting.

°RF: random forest.

fLR: logistic regression.

8SVM: support vector machine.

This finding is also supported by the SHAP interpretation
results. The decrease in FEV1/FVC reflects impaired lung
function, while the corresponding increase in SHAP value
suggests that ventilation function may be an important feature
of CWP. This is consistent with the results of existing studies
suggesting that alveolar-arterial oxygen gradient in lung
function can be used as a predictor of CWP [43]. Platelets,
as important cells for hemostasis and coagulation, play a
role by participating in systemic inflammatory and immune
responses, providing new therapeutic targets for inflammatory
diseases [44]. For example, a previous study found that lower
PLT levels were associated with a higher risk of develop-
ing severe mycoplasma pneumoniae pneumonia [45]. Due
to the important role of platelets in inflammation and tissue
repair, this phenomenon may be related to inflammation or
weakened immune function leading to lung damage. These
findings emphasize the importance of clinical features in
CWP risk assessment and provide new perspectives for a
deeper understanding of the pathogenesis of CWP.

Despite its contributions, this study has several limita-
tions. First, the cohort was derived from a single center
and a specific occupational group, which may introduce
regional or selection bias and limit generalizability to other
settings. Second, although model performance was evaluated
rigorously, interpretability remains limited and warrants

further investigation. Most importantly, smoking history
was not available in the retrospective physical examination
records. Because smoking is a major confounder for both
lung function and inflammatory biomarkers, part of the
observed discrimination may reflect unmeasured differen-
ces in smoking behavior rather than CWP status alone.
Furthermore, differences in physical demands and lifestyle
factors associated with distinct job roles could potentially
influence certain biomarkers. While our analysis indicates
strong independent predictive value for the biomarkers, future
studies should consider more granular lifestyle adjustments.

Conclusions

This study developed a ML-based model for CWP predic-
tion using multidimensional clinical features. The 6 candidate
models achieved consistently high performance, and Optuna-
based tuning resulted in only small changes, suggesting
robust prediction under the current protocol. SHAP analysis
identified age, FEV1/FVC, and PLT as key contributors to
CWP risk prediction. Moreover, ablation analysis showed
that the models remained highly accurate even without
job type, indicating that clinical biomarkers provide strong
predictive signals beyond occupational information. These
results support the potential of routine clinical data for early
CWP screening and intervention.
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