JMIR MEDICAL INFORMATICS Zhuetd

Original Paper

Neutrophil Percentage—to-Albumin Ratio as a Novel Prognostic
Biomarker in Adult Diffuse Gliomas: Retrospective Study
Integrating 3 Machine Learning Models and Cox Regression

Congcong Zhu'?, MD; Jiyang An®, PhD; Lili Zhou*, PhD

1Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
2Department of Oncology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, L uoyang,
Henan, China

3Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China

Corresponding Author:

Lili Zhou, PhD

Department of Oncology

The First Affiliated Hospital of Zhengzhou University
No. 1, East Jian She Road, Er Qi District

Zhengzhou, Henan, 450052

China

Phone: 86 176371002322

Email: zhoulili0@126.com

Abstract

Background: Adult-type diffuse glioma (ADG) is the most common primary malignant tumor of the central nervous system.
Its highly invasive nature, marked heterogeneity, and resistance to therapy contribute to a high risk of recurrence and poor
prognosis. At present, thelack of reliable prognostic tools poses a significant barrier to the development of individualized treatment
strategies.

Objective: This study aimed to develop an effective prognostic model for ADG by integrating multiple machine learning
algorithms, in order to enhance the precision of individualized clinical decision-making.

Methods: In this retrospective study, 160 newly diagnosed patients with ADG who underwent surgical resection and
histopathological confirmation at our institution between June 2019 and September 2021 were included. A total of 32 variables,
including clinical characteristics, molecular biomarkers, and preoperative hematological indicators, were collected. Overall
survival (OS) and progression-free survival (PFS) were defined as the study endpoints. Feature selection was performed using
least absol ute shrinkage and sel ection operator regression, extreme gradient boosting, and random forest algorithms. Kaplan-Meier
survival curvesand log-rank testswere used for survival analysis. Multivariate Cox proportional hazards modelswere constructed
to identify independent prognostic factors, and nomograms were developed accordingly. The model’s discriminative ability,
calibration, and clinical utility were evaluated using the concordance index, area under the receiver operating characteristic curve
(areaunder the curve), calibration plots, and Kaplan-Meier analysis.

Results: Age, neutrophil percentage-to-albumin ratio (NPAR), and platelet-to-mean platelet volume ratio were identified as
independent prognostic factors for OS, while age and NPAR were independent predictors for PFS (all P<.001). The prognostic
models based on these variables demonstrated good predictive performance, with concordance index values of 0.731 and 0.763
for thetraining and validation cohortsin the OS model, respectively. The PFS model al so showed robust performance. Areaunder
the curve values and calibration curves further supported the models' accuracy and stability. Risk stratification analysis revealed
clear survival differences between risk groups (all P<.05), indicating strong clinical applicability.

Conclusions: Thisstudy isthefirst to identify preoperative NPAR as asignificant prognostic biomarker for ADG using machine
learning approaches. The prognostic model incorporating NPAR, platelet-to-mean platel et volume ratio, and age demonstrated
favorable predictive performance, offering anovel perspectivefor accurate risk stratification and personalized treatment in patients
with ADG.
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Introduction

Glioma is the most common primary malignant tumor of the
central nervous system, with an annua incidence of
approximately 4.5 per 100,000 individuals[1]. Among its
subtypes, adult-type diffuse glioma (ADG) congtitutes the
predominant pathological category, characterized by high
invasiveness, frequent postoperative recurrence, and poor overall
survival (OS) [2]. Epidemiological data indicate that ADG
incidence exhibits age and sex specificity, with the highest
prevalence observed in individuals aged 45-70 years (peak
incidence at age 65-75 years) and a male predominance
(male-to-female ratio: 1.3-1.6:1) [3].

Despite advancesin multimodal treatment—including maximal
surgical resection combined with radiochemotherapy—ADG
survival outcomes have shown limited improvement over the
past decade [4,5]. Novel therapies such asimmune checkpoint
inhibitors (eg, anti—PD-1 monoclonal antibodies) and targeted
agents (eg, epidermal growth factor receptor inhibitors) offer
promise, but their clinical benefits are restricted to specific
molecular subgroups and are frequently accompanied by
immune-rel ated adverse events, such as pneumonitis (reported
in 15%-20% of cases) and acquired resistance[6]. As such,
there remains an urgent need for precise prognostic tools to
identify  treatment-sensitive subpopulations and guide
individualized therapeutic decision-making.

Currently, prognostic evaluation of ADG largely depends on
traditional clinicopathological parameters, including age,
isocitrate dehydrogenase 1 (IDH1) mutation status, and
06-methylguanine-DNA methyltransferase (MGMT) promoter
methylation [7,8]. However, these markers alone exhibit limited
predictive accuracy for treatment response or survival. Emerging
evidence suggests that inflammation within the tumor
microenvironment (TME) plays a critical role in glioma
progression by promoting angiogenesis and suppressing
antitumor immune activity [9]. Peripheral blood—derived
inflammatory biomarkers, such asthe neutrophil-to-lymphocyte
ratio (NLR), lymphocyte-to-monocyte ratio (LMR), and
platelet-to-lymphocyte ratio (PLR), have demonstrated
prognostic relevance in several malignancies, including breast
and colorectal cancer [10,11]. However, their utility in ADG
remains underinvestigated.

Recently, the neutrophil percentage-to-albuminratio((NPAR)—a
composite marker integrating systemic inflammation and
nutritional status—has been proposed as a novel prognostic
indicator in solid tumors [12]. Nevertheless, its prognostic value
in ADG, particularly in the context of long-term survival and
treatment response, remains unclear.

Moreover, most existing prognostic modelsin gliomas are based
on conventional Cox regression analysis, which is limited in
handling high-dimensional data and complex nonlinear
interactions [13,14]. In contrast, machine learning algorithms
such asleast absolute shrinkage and sel ection operator (LASSO)
regression, extreme gradient boosting (X GBoost), and random
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forest (RF) have shown superior performance in variable
selection and pattern recognition [15-18]. However, no studies
to date have integrated these 3 algorithms to enhance the
robustness of prognostic modeling in ADG.

Therefore, this study proposes an innovative machine
learning—based approach that integrates L ASSO regression (for
feature selection), XGBoost (a gradient-boosted decision tree
method), and RF (an ensemble learning model) to develop a
multidimensional prognostic tool based on clinical, molecular,
and inflammatory parameters. The objective is to improve
predictive accuracy and provide refined support for clinical
decision-making in patients with ADG.

Methods

Ethical Consider ations

This retrospective study was conducted in accordance with the
Declaration of Helsinki and was approved by the Ethics
Committee of The First Affiliated Hospita of Zhengzhou
University (Approval No 2023-KY-0223-002). Given the
retrospective nature of this study, the requirement for informed
consent was waived by the ethics committee. All patient data
were anonymized and deidentified prior to analysis. Personal
identifiers were removed, and each patient was assigned a
unique study code to ensure confidentiality throughout the
research process. No financial compensation was provided to
the participants.

Study Population

This retrospective study enrolled 160 treatment-naive patients
with ADG who underwent maximal safe surgical resection with
histopathological confirmation at our institution between June
2019 and September 2021. The postoperative trestment regimen
followed the standard protocol, consisting of concurrent
chemoradiotherapy followed by adjuvant temozolomide
chemotherapy. In cases of disease progression, targeted therapies
such as bevacizumab or BRAF (B-Raf proto-oncogene,
serine/threonine kinase) inhibitors (eg, for tumors harboring the
BRAF V600E mutation) were administered based on clinical
indications [19].

Inclusion criteriawere asfollows: (1) age =18 years, diagnosis
of ADG in accordance with the 5th edition of the WHO
Classification of Tumors of the Central Nervous System (World
Health Organization [WHO] grade 3-4); (2) completion of
preoperative magnetic resonance imaging or computed
tomography evaluation; (3) no prior antitumor therapy; (4)
receipt of standard treatment protocol; (5) availability of
complete clinical data, including general characteristics,
preoperative blood tests, cardiac, hepatic, and rena function
assessments, as well as postoperative immunohistochemistry
and molecular profiling; and (6) complete follow-up records.

Exclusion criteria were (1) postoperative mortality within 30
daysdueto surgical complications or nonneoplastic causes; (2)
presence of severe systemic disease or active infection
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potentially affecting study outcomes; (3) diagnosis of other
concurrent malignancies; (4) significant cardiac, hepatic, or
renal dysfunction; and (5) history of prior cranial surgery.

Postoperative follow-up included clinical and radiological
evaluations every 3 months during the first year and every 6
months thereafter, until October 1, 2024. Progression-free
survival (PFS) was defined as the time from diagnosis to
radiographic or clinical disease progression or death from any
cause. OS was defined as the time from diagnosis to death or
the last follow-up.

Study Variables

Clinical datawere collected from patients with ADG who met
the inclusion and exclusion criteria. The variables analyzed in
this study included: clinical characteristics, molecular
biomarkers, genetic alteration markers, preoperative peripheral
hematological indicators, and inflammation-related ratios.

Clinical Characteristics

Age, gender, preoperative tumor location, extent of tumor
resection, maximum tumor diameter, and midline shift.

Molecular Biomarkers

Immunohistochemical markers included P53 protein (P53),
oligodendrocyte transcription factor 2 (Olig-2), S100
calcium-binding protein (S100), epithelial membrane antigen
(EMA), synuclein (SY N), a pha-thal assemia/mental retardation
syndrome X-linked (ATRX), cluster of differentiation 34
(CD34), neurona nuclei (NeuN), glia fibrillary acidic protein
(GFAP), and proliferation cell nuclear antigen-67 (Ki-67).

Genetic Alteration Markers

IDH1 immunophenotype, telomerase reverse transcriptase
(TERT) promoter region mutation, BRAF V600E point
mutation, epidermal growth factor receptor (EGFR)
amplification, MGMT promoter methylation status, 1p loss of
heterozygosity (1pLOH), and 19q loss of heterozygosity
(19gLOH).

Preoperative Peripheral Hematological Indicators

White blood cell (WBC), platelet (PLT), neutrophil (Neut),
monocyte (Mono), lymphocyte (Lym), prothrombin time (PT),
activated partial thromboplastin  time (APTT), lactate
dehydrogenase (LDH), and serum abumin (ALB). All
preoperative peripheral hematological indicators, including
NPAR, were measured from blood samples collected within 1
week prior to surgery, before the administration of any
corticosteroids or other interventions that could significantly
alter these values.

I nflammation-Related Ratios

According to international standards for inflammatory
biomarkers, the following parameters were calculated and
defined: PLR = PLT/Neut, NLR = Neut/Lym, LMR =
Lym/Mono, monocyte-to-lymphocyte ratio (MLR) =
Mono/Lym, prognostic nutritional index (PNI) = ALB + 5 x
Lym, systemic inflammation response index (SIRI) = (Neut x
Mono)/Lym, systemic immune-inflammationindex (SII) = (PLT
x Neut)/Lym, aggregate index of systemic inflammation (AlSI)
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= (Neut x PLT x Mono)/Lym, NPAR = (Neut/WBC%)/ALB,
neutrophil-lymphocyte-platelet ratio (NLPR) = Neut/(Lym x
PLT).

Study Design and Statistical Analysis
The study designisillustrated in Figure 1.

A random seed was set to divide the 160 cases into a training
cohort (n=112) and a validation cohort (n=48) at a 7:3 ratio.
The primary endpoint was OS, and the secondary endpoint was
PFS. A total of 32 variables were included, encompassing
clinica characteristics (age, gender, tumor location, etc),
molecular biomarkers (Ki-67, IDH1, R132H, etc), and
inflammatory indicators (NPAR, NLR, etc).

Continuous variables were dichotomized using the median as
the cutoff. This approach was chosen to simplify the clinical
interpretation of the model and to facilitate risk stratification,
whilealso mitigating theimpact of potential outliersand meeting
the model’s assumption of proportional hazards for categorical
predictors. Categorical variableswere expressed as frequencies
(percentages), and group comparisons were conducted using
the chi-square test (expected frequency >5) or Fisher exact test
(expected frequency <5). The Shapiro-Wilk test was used to
assess the normality of continuous variables. For normally
distributed data, comparisons between groups were performed
using the 2-tailed independent-samplest test (2 groups) or 1-way
ANOVA (3 or more groups), with data presented as mean (SD).
For nonnormally distributed data, comparisonswere performed
using the Mann-Whitney U test (2 groups) or the Kruskal-Wallis
H test (3 or more groups), with post hoc pairwise comparisons
adjusted using the Bonferroni method. These datawere reported
as median (IQR). A 2-tailed P value <.05 was considered
statistically significant for all analyses.

A total of 3 machinelearning algorithmswere applied: LASSO
regression (using the glmnet package with 10-fold
cross-validation to optimize A), XGBoost (using the xgboost
package with max depth=6 and learning rate=0.01), and RF
(using the randomForest package with ntree=1000). Venn
diagramswere used to identify overlapping important variables
selected by all 3 agorithms. Survival differences between groups
werevisuaized using Kaplan-Meier (KM) curves and compared
using the log-rank test.

A Cox proportional hazards regression model was constructed
to estimate hazard ratios (HRs) and 95% Cls. Based on
multivariate Cox results, a nomogram was devel oped using the
rms package. Time-dependent receiver operating characteristic
(ROC) curves were generated, and the area under the curve
(AUC) at 1, 3, and 5 years was calculated. The concordance
index (C-index) was used to eval uate the model’ s discrimination
ability. Calibration was assessed using calibration curves based
on 1000 bootstrap resamples. KM survival analysis based on
the median nomogram score was performed to evaluate clinical
utility. The validation cohort was used to assess the model’s
predictive performance.

All statistical analyseswere conducted using R software (version
4.4.1; R Foundation for Statistical Computing). A 2-sided P
value <.05 was considered statistically significant.
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Figure 1. Flowchart of the study design.
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disease progression. The median OS was 23.0 months (IQR
15.0-38.3 months), while the median PFS was 10.5 months
(IQR 6.8-17.5 months). The 1-, 3-, and 5-year OS rates were

Survival Outcomes , )
i i . 85.6%, 27.1%, and 12.8%, respectively. The corresponding 1-,
Among the 160 patients included in this study, atotal of 132 5 = 4 S5-year PFS rates were 40.0%, 6.5%, and 3.4%

(82.5%) experienced death events, and 152 (95%) experienced  regnectively. KM survival curves are presented in Figure 2.

Results
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Figure 2. Postoperative survival curves of 160 patients with adult-type diffuse glioma: (A) overall survival (OS) and (B) progression-free survival

(PFS).
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Baseline Characteristics

A total of 160 patients were included in this study, with a
male-to-femaleratio of approximately 1.4:1. The mean agewas
51.3 (SD 13.6) years, and the median age was 53 (IQR 44-61)
years. The maximum tumor diameter ranged from 1.0 to 9.5
cm, with a mean of 4.7 (SD 1.7) cm and a median of 5.0 cm
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(IQR 3.4-5.9 cm). Tumors were predominantly unilateral, with
76 cases (47.5%) on theleft, 80 (50%) on theright, and 2 (2.5%)
involving both sides. Midline shift was observed in 59.4%
(95/160) of patients. All cases were classified as WHO grade
3-4. No significant differences in baseline characteristics were
found between the training and validation cohorts (all P>.05).
Detailed information is provided in Table 1.
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Table 1. Baseline characteristics of 160 patients with adult-type diffuse glioma (ADG) stratified by group.

Variable Training group, n (%) Validation group, n (%) P value

Age (years) 58
<53 56 (50) 21 (44)
>53 56 (50) 27 (56)

Sex .06
Male 71 (63.4) 22 (46)
Female 41 (36.6) 26 (54)

Maximum tumor diameter (cm) 892
<5.0 55 (49.1) 23(47)
>5.0 57 (50.9) 25 (52)

L ocation 740
Left 54 (48.2) 22 (46)
Right 56 (50.0) 24 (50)
Double 2(18) 2(4)

Midline shift .16
No 41 (36.6) 24 (50)
Yes 71 (63.4) 24 (50)

Neutrophil percentage-to-albumin ratio o0
<1578 55 (49.1) 24 (50)
>1578 57 (50.9) 24 (50)

Aggregateindex of systemic inflammation .60
<272.854 58 (51.8) 22 (46)
>272.854 54 (48.2) 26 (54)

Immune-inflammation index .86
<146.649 55 (49.1) 25 (52)
>146.649 57 (50.9) 23 (48)

Lymphocyte-to-monocyte ratio .39
<3.750 59 (52.7) 21 (44)
>3.750 53 (47.3) 27 (56)

Neutrophil-to-lymphocyte ratio 12
<2677 51 (45.5) 29 (60)
>2.677 61 (54.5) 19 (40)

Platelet-to-lymphocyteratio .23
<138.251 52 (46.4) 28 (58)
>138.251 60 (53.6) 20 (42)

M onocyte-to-lymphocyteratio .39
<0.267 53 (47.3) 27 (56)
>0.267 59 (52.7) 21 (44)

Prognostic nutritional index A7
<50.55 52 (46.4) 26 (54)
>50.55 60 (53.6) 22 (46)

Systemic inflammation response index .86
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Variable Training group, n (%) Validation group, n (%) P value
<1.166 55 (49.1) 25 (52)
>1.166 57 (50.9) 23 (48)

L actate dehydrogenase (IU/L) 54
<174 53 (47.3) 26 (54)
>174 59 (52.7) 22 (46)

Albumin (g/L) 12
<42.35 51 (45.5) 29 (60)
>42.35 61 (54.5) 19 (40)

Prothrombin time/Activated partial thromboplastin time .39
<0.372 53 (47.3) 27 (56)
>0.372 59 (52.7) 21 (44)

Platelet-to-mean platelet volumeratio 12
<25.322 61 (54.5) 19 (40)
>25.322 51 (45.5) 29 (60)

Proliferation cell nuclear antigen-67 .16
<30 28 (25) 18 (37)
>30 84 (75) 30(63)

Glial fibrillary acidic protein > ggP
Positive 108 (96.4) 47 (98)
Negative 4(3.6) 1(2)

S$100 calcium-binding protein 74b
Positive 105 (93.8) 44.(92)
Negative 7(6.2) 4(8)

Oligodendrocyte transcription factor 2 >.09P
Positive 107 (95.5) 46 (96)
Negative 5(4.5) 2 (4)

P53 protein .09
Positive 103 (92) 39 (81)
Negative 9(8) 9(19)

Alpha-thalassemia/mental retardation syndrome X-linked 27
Positive 96 (85.7) 37(77)
Negative 16 (14.3) 11 (23)

Cluster of differentiation 34 .66
Positive 34(30.4) 17 (35)
Negative 78 (69.6) 31 (65)

Epithelial membrane antigen 5P
Positive 12 (10.7) 3(6)
Negative 100 (89.2) 45 (94)

Synuclein 40
Positive 22 (19.6) 13 (27)
Negative 90 (80.4) 35 (73)

Neuronal nuclei >.09P
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Variable Training group, n (%) Validation group, n (%) P value
Positive 2(19 1(2)
Negative 110 (58.1) 47 (98)

0O6-methylguanine-DNA methyltransfer ase promoter methylation >.09P
Methylated 6 (5.4) 24
Unmethylated 106 (94.6) 46 (96)

I socitrate dehydrogenase 1 R132 780
Positive 12 (10.7) 4(8)
Negative 100 (89.2) 44.(92)

1p loss of heterozygosity o7°
Positive 2(1.9) 4(8)
Negative 110 (58.1) 44.(92)

19q loss of heterozygosity 74b
Positive 7(6.2) 4(8)
Negative 105 (93.8) 44 (92)

8 ndicates without continuity correction.
B ndiicates Fisher exact test.

Differencesin PFS and OS Between Groups

Since the measurement data did not meet the assumption of
normality according to the Shapiro-Wilk test, the nonparametric
Wilcoxon rank-sum test was applied to evaluate the impact of
different clinical characteristics on PFS and OS. Data are
presented as median (IQR).

Using PFS as the outcome variable, significant differences (all
P<.05) were observed in the following 10 variables. age
(P<.001), tumor location (P=.03), NPAR (P=.002), NLR
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(P=.002), PNI (P=.01), SYN (P=.003), MGMT promoter
methylation (P=.004), IDH1 R132 (P<.001), 1pLOH (P=.04),
and 19qLOH (P<.001).

Using OS asthe outcome variable, atotal of 12 variables showed
significant associations (all P<.05): age (P<.001), NPAR
(P<.001), LMR (P=.03), NLR (P=.02), MLR (P=.03), PNI
(P=.01), LDH (P=.04), SYN (P=.009), MGMT (P=.04), IDH1
R132 (P<.001), 1pLOH (P=.003), and 19gLOH (P<.001).
Detailed results are presented in Table 2.
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Table 2. Comparison of progression-free survival (PFS) and overall survival (OS) among patients with glioblastoma between groups, median (1QR).
The z and H values denote the test statistics for the Wilcoxon rank-sum test used in 2-group comparisons and the Kruskal-Wallis test used in multigroup

comparisons, respectively.

Variable Frequency,n PFS (year), median (IQR) zorH Pvaue OS (year), median (IQR) zorH P value
Age (years) 4.422 <.001 6.672 <.001
<53 77 1.02 (0.74-2.37) 2.76 (1.96-3.67)
=253 83 0.73 (0.36-1.07) 1.36 (1.03-2.07)
Sex 049* 63 016 88
Male 93 0.90 (0.63-1.43) 2.03 (1.22-3.06)
Female 67 0.84 (0.52-1.61) 1.95 (1.29-2.90)
Maximum tumor diameter (cm) 1142 25 1042 30
<5.0 78 0.85 (0.59-1.45) 1.87(1.21-2.91)
>5.0 82 0.92 (0.54-1.49) 2.13(1.33-3.02)
Location 7.050° 03 32602 .20
Left 76 0.90 (0.65-1.54) 2.05 (1.35-2.89)
Right 80 0.86 (0.59-1.46) 1.98 (1.21-3.21)
Double 4 0.33(0.27-0.41) 1.13(0.82-1.62)
Midline-shift _0542 59 _08s® -39
No 65 0.85 (0.55-1.52) 1.80 (1.21-2.91)
Yes 95 0.90 (0.58-1.45) 2.09 (1.33-3.00)
Neutrophil percentage-to-albumin ratio 2862 004 3732 <001
<1578 79 0.99 (0.67-1.74) 2.47 (1.53-3.58)
>1578 81 0.83 (0.36-1.18) 1.72 (1.03-2.44)
Aggregate index of systemic inflammation 1352 .18 1282 20
<272.854 80 0.89 (0.67-1.47) 2.13(1.32-3.38)
>272.854 80 0.88 (0.39-1.46) 1.91 (1.26-2.71)
Immune-inflammation index 1692 09 0682 498
<146.649 80 0.89 (0.66-1.72) 2.07 (1.22-2.99)
>146.649 80 0.83 (0.50-1.24) 1.95 (1.30-2.90)
Lymphocyte-to-monocyte ratio 0592 56 2132 03
<3.750 80 0.85 (0.53-1.43) 1.85 (1.22-2.52)
>3.750 80 0.89 (0.59-1.54) 2.45 (1.33-3.49)
Neutrophil-to-lymphocyte ratio 2832 .005 2412 .02
<2.677 80 0.94 (0.67-1.81) 2.33(1.35-3.56)
>2.677 80 0.83(0.35-1.24) 1.85(1.15-2.52)
Platelet-to-lymphocyteratio 0.852 .40 0472 .64
<138.251 81 0.88 (0.61-1.54) 2.07 (1.22-3.13)
>138.251 79 0.88 (0.48-1.44) 1.94 (1.30-2.92)
Monocyte-to-lymphocyte ratio 0592 .56 2132 .03
<0.267 80 0.89 (0.59-1.54) 2.45 (1.33-3.49)
>0.267 80 0.85 (0.53-1.43) 1.85(1.22-2.52)
Prognostic nutritional index 2262 .02 3272 .001
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Variable Frequency,n PFS (year), median (IQR) zorH Pvaue OS (year), median (IQR) zorH P value
<50.55 78 0.83 (0.37-1.24) 1.79 (1.04-2.49)
>50.55 82 0.98 (0.64-1.61) 2.35 (1.51-3.21)

Systemic inflammation response index 1632 10 1.822 .07
<1.166 80 0.90 (0.67-1.53) 2.39(1.33-3.49)
>1.166 80 0.84 (0.38-1.46) 1.87 (1.22-2.56)

L actate dehydrogenase 1.042 .30 2112 .04
<174 79 0.90 (0.51-1.79) 2.21 (1.34-3.21)
>174 81 0.85 (0.60-1.19) 1.80 (1.22-2.61)

Albumin _0622 54 1612 11
<42.35 80 0.85(0.64-1.27) 1.80(1.21-2.63)
>42.35 80 0.92 (0.50-1.70) 2.15(1.38-3.07)

Prothrombin time/activated partial thromboplastin time 0122 91 0.522 .60
<0.372 80 0.87 (0.51-1.47) 1.98 (1.21-3.56)
>0.372 80 0.88 (0.61-1.41) 2.00 (1.38-2.75)

Platelet-to-mean platelet volumeratio 1032 30 010® 92
<25.322 80 0.88 (0.66-1.68) 1.96 (1.29-2.92)
225.322 80 0.87 (0.50-1.31) 2.01(1.26-2.97)

Proliferation cell nuclear antigen-67 1.08* 28 1332 .19
<30 46 0.92 (0.62-1.72) 2.36 (1.37-3.79)
>30 114 0.87 (0.52-1.43) 1.92 (1.24-2.74)

Glial fibrillary acidic protein 0.212 .84 1.09% .28
Positive 155 0.88 (0.58-1.46) 1.96 (1.25-2.92)
Negative 5 1.28(0.21-2.76) 2.55 (2.22-4.35)

S100 calcium-binding protein o572 .57 0372 71
Positive 149 0.88 (0.59-1.46) 1.98 (1.22-2.92)
Negative 11 0.88 (0.35-1.29) 2.55 (1.42-3.00)

Oligodendrocyte transcription factor 2 _0742 46 015® -89
Positive 153 0.88 (0.58-1.46) 2.03 (1.22-2.92)
Negative 7 0.83(0.55-0.94) 1.89 (1.76-2.54)

P53 protein 1082 28 0582 .57
Positive 142 0.87 (0.58-1.43) 1.98 (1.22-2.89)
Negative 18 1.13 (0.55-2.36) 1.97 (1.33-3.18)

Alpha-thalassemia/mental retardation syndrome X-linked 1712 09 1482 14
Positive 133 0.85 (0.54-1.43) 1.94 (1.22-2.76)
Negative 27 1.13 (0.70-2.35) 2.73 (1.40-3.55)

Cluster of differentiation 34 0392 .70 0472 .64
Positive 51 0.85 (0.60-1.57) 2.07 (1.34-3.03)
Negative 109 0.89 (0.51-1.43) 1.95 (1.22-2.89)

Epithelial membrane antigen 1272 .20 0512 61

Positive 15

1.02 (0.85-1.59)

1.81 (1.45-3.29)

https://medinform.jmir.org/2026/1/€79945 JMIR Med Inform 2026 | val. 14 | €79945 | p. 10

(page number not for citation purposes)

RenderX


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR MEDICAL INFORMATICS Zhuet a

Variable Frequency,n PFS (year), median (IQR) zorH Pvaue OS (year), median (IQR) zorH P value
Negative 145 0.86 (0.54-1.46) 2.03(1.22-2.92)

Synuclein 2862 .004 2632 .009
Positive 35 0.67 (0.35-0.92) 1.44 (1.01-2.39)
Negative 125 0.91 (0.64-1.54) 2.15 (1.35-3.14)

Neuronal nuclei 1112 27 0352 73
Positive 3 1.72(1.27-1.83) 1.96 (1.95-2.35)
Negative 157 0.88 (0.55-1.46) 1.99 (1.22-2.94)

0O6-methylguanine-DNA methyltransfer ase promoter methylation 08?004 2092 .04
Positive 8 1.96 (1.25-2.44) 2.87(2.16-3.63)
Negative 152 0.86 (0.54-1.43) 1.94 (1.22-2.90)

I socitrate dehydrogenase 1 R132 4572 <.001 4362 <001
Positive 16 1.88 (1.39-3.10) 3.34 (2.84-3.82)
Negative 144 0.85 (0.51-1.23) 1.85(1.21-2.72)

1p loss of heterozygosity _1082 .049 _300* 003
positive 6 2.08 (1.19-2.52) 3.69 (3.31-4.27)
negative 154 0.87 (0.56-1.43) 1.94 (1.22-2.89)

19q loss of heterozygosity 3762 <.001 3692 <001
positive 11 1.79 (1.32-3.73) 3.68 (2.63-4.19)
negative 149 0.85 (0.53-1.42) 1.89 (1.21-2.84)

8z values determined using the Wilcoxon rank sum test with two-group comparisons.

bH values determined usi ng the Kruskal-Wallis test with multiple-group comparisons.

Construction and Validation of an OS-Based
Prediction M odel

Feature Variable Selection

Using OS asthe outcome variable, atotal of 3 machinelearning
algorithms—L ASSO regression, X GBoost, and RF—were used
to screen feature variables.

LASSO regression: based on the minimum A value (A_min), a
total of 9 variables with nonzero coefficients were selected,
including age, NPAR, platelet-to-mean platelet volume ratio

https://medinform.jmir.org/2026/1/€79945
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(PMR), CD34 expression, SYN expression, EMA expression,
IDH1 R132, 19gLOH, and MGMT promoter methylation
(Figures 3A and B).

XGBoost model: according to featureimportance scores, atotal
of 10 variableswere selected, including age, PMR, SIRI, LMR,
PNI, NPAR, maximum tumor diameter, PT/APTT, PLR, and
LDH (Figure 3C).

RF: based on the mean decrease in Gini index, a total of 9
variables were selected, including age, PMR, NPAR, SIRI,
NLR, PNI, LDH, SII, and PT/APTT (Figures 3D-F).
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Figure 3. Feature variable selection based on 3 machine learning methods:. (A) least absolute shrinkage and selection operator (LASSO) regression
coefficient path plot: variable coefficients as a function of A; (B) LASSO regression A value tuning: 10-fold cross-validation to select the minimum A
value (A\_min); (C) extreme gradient boosting (X GBoost) feature importance: top 10 variables; (D) random forest (RF) error rate change: error rate as
afunction of the number of decision trees; (E) feature importance: assessed by Gini index; and (F) RF selected variables: top 9 variables. 19gL OH: 19q
loss of heterozygosity; 1pLOH: 1p loss of heterozygosity; ALB: abumin; ATRX: alpha-thalassemia/mental retardation syndrome X-linked; CD34:
cluster of differentiation 34, EMA: epithelial membrane antigen; GFAP: glial fibrillary acidic protein; IDH1R132: isocitrate dehydrogenase 1 R132;
Ki-67: proliferation cell nuclear antigen-67; LDH: lactate dehydrogenase; LMR: lymphocyte-to-monocyte ratio; MGMT: O6-methylguanine-DNA
methyltransferase; MLR: monocyte-to-lymphocyte ratio; NeuN: neuronal nuclei; NLR: neutrophil-to-lymphocyte ratio; NPAR: neutrophil
percentage-to-albuminratio; Olig-2: oligodendrocyte transcription factor 2; P53: P53 protein; PLR: platelet-to-lymphocyteratio; PMR: platel et-to-mean
platelet volumeratio; PNI: prognostic nutritional index; PT/APTT: prothrombin time/activated partial thromboplastin time; S100: S100 cal cium-binding
protein; SlI: immune-inflammation index; SIRI: systemic inflammation response index; SY N: synuclein.
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NPAR <1.578 had significantly better OSthan thosewith NPAR
>1.578 (P<.001), while no significant difference in OS was
observed between patients with PMR <25.322 and those with
PMR >25.322 (P=.18).

Multivariate Cox proportional hazards regression analysis
identified age (HR 1.05, 95% CI 1.03-1.07; P<.001), NPAR

Survival Analysis

Based on the combined screening results from LASSO,
XGBoost, and RF, Venn diagram intersection analysisidentified
age, NPAR, and PMR as key factors influencing OS (Figure
4A).

The prognostic impact of each individual variable was assessed
using KM survival analysis(Figures4B-D). Log-rank test results
indicated that patients aged <53 years had significantly longer
OS compared to those aged >53 years (P<.001), patients with
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(HR 3.65, 95% Cl 1.89-7.05; P<.001), and PMR (HR 0.96, 95%
Cl 0.93-0.98; P<.001) as independent prognostic factors for
Os.
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Figure 4. I|dentification of independent prognostic factors for overall survi

impact of age group on patient OS, (C) impact of neutrophil percentage-to-

platelet volume ratio (PMR) level on patient OS, and (E) forest plot of mul
and selection operator.

Zhu et a

val (OS): (A) intersection analysis of feature variables from 3 models, (B)
albumin ratio (NPAR) level on patient OS, (D) impact of platelet-to-mean
tivariate Cox regression analysis for OS. LASSO: least absolute shrinkage
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Construction and Validation of the OS Nomogram

Based on the multivariate Cox regression analysis, age, NPAR,
and PMR were identified as independent prognostic factors for
OS. A nomogram was constructed using these variables to
predict 1-, 3-, and 5-year OS probabilities. Each variable was
assigned a corresponding risk score, and the total score was
used to estimate individual survival probability (Figure 5A).
The calibration curve showed good agreement between the
predicted and observed 1-, 3-, and 5-year OSrates (Figure 5B).
Time-dependent ROC analysis demonstrated that the AUCsfor
2-, 3-, and 4-year OS in the training cohort were 0.836, 0.820,
and 0.801, respectively, indicating strong predictive performance
across multiple timepoints (Figure 5C).

Patients were stratified into high- and low-risk groups based on
the median nomogram score. KM survival analysis revealed
that the high-risk group had significantly poorer OS compared
with the low-risk group (P<.001), supporting the nomogram’s
utility in risk stratification (Figure 5D).
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To further evaluate the discriminative ability of the nomogram
score, a raincloud plot was used to visuaize the score
distribution between the survival and death groups. This plot,
which integratesadensity plot, box plot, and scatter plot, clearly
illustrated the differences in score distribution, providing
additional evidence of the nomogram’s effectiveness in
prognostic assessment (Figure 5E).

The calibration curve in the validation group indicated good
predictive accuracy of the model for 1-, 2-, and 3-year survival
in patients with ADG (Figure 6A). Time-dependent ROC
analysis showed that the AUCs for 1-, 3-, and 4-year OS were
0.822, 0.797, and 0.722, respectively (Figure 6B). Risk
stratification based on the nomogram score reveal ed asignificant
difference in score distribution between survivors and
nonsurvivors. Patients in the high-risk group had significantly
poorer OS compared with those in the low-risk group (P<.01),
supporting the prognostic discriminatory power of the
nomogram (Figure 6C). The C-index remained high in both the
training and validation sets, suggesting robust and consistent
predictive performance (Figure 6D).
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Figure5. Predictive performance of the overall survival (OS) nomogram: (A) prognostic nomogram integrating age, neutrophil percentage-to-albumin
ratio (NPAR), and platelet-to-mean platelet volume ratio (PMR) to predict 1-, 3-, and 5-year OS probabilities through score conversion. For individual
prediction, assign points for each variable, sum them to obtain atotal score, and project this score downward to the bottom probability axes; (B) the
calibration curve demonstrates the agreement between predicted and observed 1-, 3-, and 4-year OS probabilitiesin thetraining group; (C) time-dependent
receiver operating characteristic (ROC) curves show areaunder the curve (AUC) values of 0.836, 0.820, and 0.801 for 2-, 3-, and 4-year OS, respectively;
(D) survival analysis based on the median nomogram score reveals significant differences in OS between the high-risk and low-risk groups (P<.001);
and (E) raincloud plot comparing the distribution of nomogram scores between the survival and death groups.
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Figure 6. Validation of the overal survival (OS) nomogram: (A) the calibration curve demonstrates the agreement between predicted and observed
1-, 2-, and 3-year OS probabilitiesin the validation group; (B) time-dependent receiver operating characteristic (ROC) curves show areaunder the curve
(AUC) vaues of 0.822, 0.797, and 0.722 for 1-, 3-, and 4-year OS, respectively; (C) survival analysis based on the median nomogram score reveals
significant differences in OS between the high-risk and low-risk groups; and (D) comparison of the concordance index (C-index) between the training

and validation groups.
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Construction and Validation of the PFS Prediction
Model for ADG

Feature Variable Selection

Using PFS as the outcome variable, 3 machine learning
algorithms—L ASSO regression, X GBoost, and RF—were used
to screen feature variables.

LASSO regression: based on the minimum A value (A_min), a
total of 6 nonzero coefficient variableswere selected, including
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age, NPAR, MLR, MGMT methylation, 1pLOH, and 19gL OH
(Figure 7A and B).

XGBoost model: based on feature importance scores, atotal of
10 variables were selected, including age, PT/APTT, PMR,
SIRI, NPAR, NLR, maximum tumor diameter, PLR, SlI, and
Ki-67 expression (Figure 7C).

RF: based on the mean decrease in Gini index, a total of 9
variables were selected, including age, NPAR, ALB, tumor
location, PNI, NLR, Ki-67, maximum tumor diameter, and LDH
(Figures 7D and E).
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Figure 7. Feature variable selection based on 3 machine learning methods: (A) least absolute shrinkage and selection operator (LASSO) regression
coefficient path plot: variable coefficients as a function of A, (B) LASSO regression parameter A tuning based on the minimum criterion, (C) top 10
variables ranked by importance in the extreme gradient boosting (XGBoost) model, (D) change in error rate as a function of the number of decision
trees during random forest (RF) model training, (E) RF feature importance: assessed by Gini index, and (F) RF selected variables: top 9 variables.
199gL OH: 19qloss of heterozygosity; 1pL OH: 1plossof heterozygosity; ALB: abumin; ATRX: alpha-thal assemia/mental retardation syndrome X-linked;
CD34: cluster of differentiation 34, EMA: epitheliad membrane antigen; GFAP: glial fibrillary acidic protein; IDH1R132: isocitrate dehydrogenase 1
R132; Ki-67: proliferation cell nuclear antigen-67; L DH: lactate dehydrogenase; LMR: lymphocyte-to-monocyteratio; MGMT: O6-methylguanine-DNA
methyltransferase; MLR: monocyte-to-lymphocyte ratio; NeuN: neuronal nuclei; NLR: neutrophil-to-lymphocyte ratio; NPAR: neutrophil
percentage-to-albuminratio; Olig-2: oligodendrocyte transcription factor 2; P53: P53 protein; PLR: platelet-to-lymphocyteratio; PMR: platel et-to-mean
platelet volumeratio; PNI: prognostic nutritional index; PT/APTT: prothrombin time/activated partial thromboplastin time; S100: S100 cal cium-binding
protein; SlI: immune-inflammation index; SIRI: systemic inflammation response index; SY N: synuclein.
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. . longer PFS than those in the age >53 years group (P<.001);
Survival Analysis patients in the NPAR <1.578 group had significantly longer
Based on theimportant variables screened by LASSO, XGBoost, PFS than those in the NPAR >1.578 group (P<.001).
and RF, Venn diagram intersection analysisidentified ageand  Multivariate Cox proportional hazards regression analysis
NPAR as key factorsinfluencing PFS (Figure 8A). Theimpact  revealed that age (HR 1.04, 95% Cl 1.02-1.05; P<.001) and
of each single factor on prognosis was assessed using KM NPAR (HR 3.04, 95% Cl 1.58-5.86; P<.001) were independent
survival analysis (Figures 8B and C). Log-rank test results prognostic factors for PFS (Figure 8D).
showed that patientsin the age <53 years group had significantly
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Figure 8. Identification of independent prognostic factors for progression-free survival (PFS): (A) intersection analysis of feature variables from 3
models, (B) impact of age group on patient PFS, (C) impact of neutrophil percentage-to-albumin ratio (NPAR) level on patient PFS, and (D) forest plot

of multivariate Cox regression analysis for PFS. LASSO: least absol ute shrinkage and selection operator.
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Construction and Validation of the PFS Nomogram

Based on multivariate Cox regression analysis, age and NPAR
were identified as independent prognostic factors for PFS. A
nomogram was constructed using these variables to predict 1-,
3-, and 5-year PFSrates. Each predictive variable was assigned
a corresponding risk score, and the total score estimated the
patient’s probability of disease progression (Figure 9A).

The calibration curve demonstrated good agreement between
the model-predicted and observed 12-, 24-, and 30-month PFS
rates (Figure 9B). Time-dependent ROC curve analysis showed
that the AUC for 1-, 2-, and 3-year PFS in the training group
was 0.817, 0.864, and 0.873, respectively, indicating high
predictive accuracy of themodel at different timepoints (Figure
9C). Patients were divided into high-risk and low-risk groups
based on the median nomogram score. KM survival curves
revealed that the high-risk group had significantly lower PFS
than the low-risk group (P<.001), demonstrating that the
nomogram score effectively stratified patients’ prognostic risk
(Figure 9D).
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The raincloud plot provides avisual representation of the score
distribution differences between the 2 groups and further
supporting the effectiveness of the nomogram score in
prognostic assessment (Figure 9E).

Dueto the high risk of patient recurrence, the calibration curve
for the validation group demonstrated good predictive
performance for 6-, 12-, and 18-month disease progression risk
in patientswith ADG (Figure 10A). Time-dependent ROC curve
analysis showed that the AUC for 1-, 3-, and 5-year PFSin the
validation group was 0.709, 0.843, and 0.953, respectively
(Figure 10B). Based on the median nomogram score, patients
in the validation group were divided into high-risk and low-risk
groups. KM survival curves revealed significant differencesin
OS between the 2 groups (P<.05), further validating the
prognostic discriminative ability of the nomogram score (Figure
10C).

The C-index of the model was excellent in both thetraining and
validation groups, indicating stable predictive performance
across different datasets (Figure 10D).
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Figure 9. Predictive performance of the progression-free survival (PFS) nomogram: (A) prognostic nomogram integrating age and NPAR to predict
1-, 3-, and 5-year PFS probabilities through score conversion. For individual prediction, assign pointsfor each variable, sum them to obtain atotal score,
and project this score downward to the bottom probability axes. (B) The calibration curve demonstrates the agreement between predicted and observed
12-, 24-, and 30-month PFS probabilities in the training group. (C) Time-dependent receiver operating characteristic (ROC) curves show area under
the curve (AUC) values of 0.817, 0.864, and 0.873 for 1-, 2-, and 3-year PFS, respectively. (D) Survival analysis based on the median nomogram score

reveals significant differencesin PFS between the high-risk and low-risk groups (P<.001). (E) Raincloud plot comparing the distribution of nomogram
scores between the survival (alive) and death (death) groups.
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Figure 10. Validation of the progression-free survival (PFS) nomogram: (A) the calibration curve demonstrates the agreement between predicted and
observed 6-, 12-, and 18-month PFS probabilitiesin the validation group; (B) time-dependent receiver operating characteristic (ROC) curves show area
under the curve (AUC) values of 0.709, 0.843, and 0.953 for 1-, 3-, and 5-year PFS, respectively; (C) survival analysis based on the median nomogram
score reveal s significant differencesin PFS between the high-risk and low-risk groups; and (D) comparison of the concordance index (C-index) between

the training and validation groups.
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Discussion

Principal Results

ADG, characterized by high malignancy and strong
invasiveness, accounts for 45% of al gliomas[20,21]. The
tumor heterogeneity and infiltrative growth patterns of ADG
often lead to progressive neurological impairment, posing
significant challenges for clinical management [9,22]. This
study demonstrated that standardized comprehensive treatment
(surgery combined with concurrent chemoradiotherapy and
temozolomide) extended the median overall survival (mOS) to
23.0 (IQR 15.0-38.3) months, which is superior to the
approximately 15 monthsreported in previous studies [2,23,24].
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However, 95% (152/160) of patients experienced postoperative
recurrence, with amedian progression-free survival (mPFS) of
only 10.8 monthsand a5-year PFSrate of merely 1.9% (3/160).
Moreover, the long-term prognosis remains poor, with a 5-year
OS rate of just 12.8% (20/160) [25]. Therefore, it is of great
significance to further explore the key prognostic factors
affecting patientswith ADG, establish novel prognostic models,
and develop effective preventive strategies.

The key methodological advance of our work liesin the robust
feature selection achieved by integrating 3 distinct machine
learning algorithms (LASSO, XGBoost, and RF) [26]. This
integrative approach circumventsthe inherent pitfalls of relying
on a single method, be it traditional Cox regression or an
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individual machine learning model [13,14]. Consequently, it
ensures that the identified prognostic factors (age, NPAR, and
PMR) are consistently salient across different modeling
paradigms, thereby significantly strengthening the credibility
of our results.

Compared to existing prognostic models for ADG, our model
demonstrates superior predictive performance. WhileKim et al
[27] reported a C-index of 0.70 using asingle machinelearning
approach, the OS model in this study achieved C-indices of
0.731 and 0.763 in the training and validation cohorts,
respectively. Furthermore, the model maintained high
time-dependent AUC values at multiple timepoints (AUCs of
0.836, 0.820, and 0.801 for 2-, 3-, and 4-year OS, respectively)
along with favorable calibration. Importantly, our model
innovatively incorporates readily accessible hematological
biomarkers (NPAR and PMR). This provides a more
cost-effective and clinically feasible prognostic assessment tool
compared to traditional models that rely solely on clinical and
molecular parameters[7,8].

Analysis of 32 variables showed that longer survival was
observed in patients with canonical molecular markers such as
IDH1 mutation and MGMT promoter methylation, implicating
them as potential prognostic factors. IDH1 mutations play a
critical rolein suppressing tumor metabolism and proliferation
[28,29]. Patients with IDH1-mutant astrocytoma included had
an mOS of 40.0 (IQR 33.6-NA, NA is censored data—some
patientsremained alive at follow-up cutoff, so the upper quartile
was hot observed) months, markedly better than the 22.2 (IQR
14.4-34.7) months observed in IDH1 wild-type patients.
Similarly, MGMT methylation enhances sensitivity of tumor
cells to alkylating agents such as temozolomide by inhibiting
MGMT transcription and reducing DNA repair capacity, thereby
significantly prolonging both PFS and OS[29-31]. In this study,
a30-year-old patient with IDH-mutant astrocytomaand MGMT
methylation achieved a survival period exceeding 64 months,
demonstrating significant survival benefit [32].

Furthermore, by integrating multiple machine learning methods,
the  study  systematically identified  age, the
inflammation-nutrition marker NPAR, and the platel et quantity
and function marker PMR as independent prognostic factors
for patients with ADG [16]. These variables demonstrated
significant predictive power in forecasting the prognosis of
patients with ADG [33,34].

Age was confirmed as a key prognostic factor in our model.
Patients aged >53 years had a higher risk of disease progression
and significantly shorter survival time compared with those
aged <53 years. Thisfinding alignswith previousresearch trends
regarding the prognosis of older adults with ADG, which may
be related to reduced trestment tolerance and alterationsin tumor
biological characteristics in older individuals. It suggests that
clinicians should pay attention to age stratification and develop
personalized treatment plans accordingly [28].

This study is the first to identify NPAR as an independent
prognostic factor for ADG. Patientswith high NPAR levelshad
significantly shorter mOS and mPFS, along with a markedly
increased risk of disease recurrence and worse prognosis. Asa
novel indicator that comprehensively reflects systemic

https://medinform.jmir.org/2026/1/€79945
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inflammation and nutritional status, the NPAR hasincreasingly
been recognized for its prognostic valuein various cancers such
as pancreatic and urological cancersinrecent years. TheNPAR
integrates both systemic inflammation (reflected by neutrophil
percentage) and nutritional status (reflected by serum ALB), 2
key pathophysiological processes known to influence cancer
prognosis. Neutrophils can impair immune surveillance by
suppressing natural killer cell function and promote tumor cell
proliferation and metastasis[12,35]. Serum AL B levelsnot only
reflect the body’s protein metabolic status but are also closely
associated with immune dysfunction [36]. The prognostic value
of NPAR may stem from its correlation with systemic
inflammatory responses mediated by proinflammatory cytokines
inthe TME. This pathophysiological cascade can acceleratethe
progression of cachexiaand facilitate the evol ution of malignant
tumor phenotypes by modulating the TME [37,38].

The prognostic value of NPAR stems from its integration of 2
pivotal pathophysiological pathways: protumor inflammation
and host nutritional status. The neutrophil component reflects
systemic inflammation. Within the glioma TME, neutrophils
are polarized into tumor-associated neutrophils (TANS), which
facilitate tumor progression by secreting matrix
metall oprotei nasesto enhance invasion, releasing proangiogenic
factorslikevascular endothelia growth factor, and contributing
to T-cell dysfunction [39]. Emerging evidence specifically links
this protumorigenic neutrophil activity to glioma progression
[40]. Conversely, hypoalbuminemia, indicative of poor
nutritional status and diminished physiological reserve, is a
well-established marker of impaired immune competence and
poorer outcomes in patients with cancer [41]. Thus, NPAR
comprehensively captures this detrimental interplay between a
proinflammatory TME and a compromised host state.

Furthermore, this study identified a higher PMR as an
independent prognostic factor for prolonged overall survival in
patients with ADG. This finding is consistent with a study on
angiosarcoma, which also reported that a high mean platel et
volume-to—platelet count ratio served as an independent risk
factor for patient mortality [42]. This consistent pattern across
malignancies highlightsthe biological significance of composite
indices based on platelet count and volume.

While studies have established that platel ets can facilitate glioma
progression by releasing factors like platelet-derived growth
factor to stimulate proliferation [43] and by modulating the
immune microenvironment to promote an M2 phenotype and
immune escape [44], our discovery of PMR as a protective
factor suggests a more nuanced role. We hypothesize that an
elevated PMR reflectsadistinct platelet phenotype characterized
by alower mean platelet volume which is generally associated
with diminished platelet reactivity. Consequently, a high PMR
may indicate areduced capacity of platelets to engage in these
documented protumorigenic processes, thereby explaining its
association with improved survival in ADG.

The prognostic nomogram devel oped from the af orementioned
factors demonstrates significant translational potential. This
tool can be integrated into electronic medical record systems
to enable automated risk stratification at the time of diagnosis.
Consequently, high-risk patients could be considered for more
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aggressive treatment strategies—such as  intensified
chemoradiation following maximal safe resection—or more
intensive follow-up (eg, neuroimaging every 2-3 months), and
even enrollment in novel clinical trials. Conversely, low-risk
patients may be suitable candidatesfor treatment de-escal ation,
such as shortened adjuvant chemotherapy cycles or reduced
radiation doses, aiming to preserve oncological control while
enhancing quality of life. This nomogram-based
decision-making model represents a constructive step toward
precision neuro-oncol ogy.

Limitations

This study is subject to several limitations, including its
single-center retrospective design, which may limit
generalizability, and a variable-to-sample size ratio that raises
concerns about overfitting despite internal validation. These
limitations underscore the necessity for external validation in
independent multicenter cohorts as an essential next step.
Moreover, the molecular mechanisms linking NPAR and PMR
to glioma prognosis are not fully understood. To address these
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points and advance this research, future work must focus on
multicenter prospective validation, augmenting the model’s
power through the integration of radiomics and genomics, and
leveraging single-cell and multi-omicstechnol ogiesto decipher
the functional roles of these circulating biomarkers in glioma
pathogenesis.

Conclusion

In conclusion, this study significantly improved the robustness
of prognostic biomarkersthrough amultimodel cross-validation
strategy. Among the numerous factors, age, the preoperative
inflammati on-nutrition compositeindicator NPAR, and platel et
guantity and function marker PMR were key prognostic factors.
Patients with ADG with younger age and lower NPAR values
had a lower risk of disease progression and better prognosis,
meanwhile, patientswith higher PM R exhibited longer survival.
These biomarkers are not only easily accessible and
cost-effective but also highly beneficial, offering a new
perspective for personalized treatment of ADG.
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HR: hazard ratio

IDH1: isocitrate dehydrogenase 1

Ki-67: proliferation cell nuclear antigen-67
KM: Kaplan-Meier

LASSO: least absolute shrinkage and selection operator
LDH: lactate dehydrogenase

LMR: lymphocyte-to-monocyte ratio

Lym: lymphocyte

MGMT: O6-methylguanine-DNA methyltransferase
MLR: monocyte-to-lymphocyte ratio

Mono: monocyte

mOS. median overall survival

MPFS: median progression-free survival
NeuN: neurona nuclei

Neut: neutrophil

NLPR: neutrophil-lymphocyte-platelet ratio
NLR: neutrophil-to-lymphocyte ratio

NPAR: neutrophil percentage-to-albumin ratio
Olig-2: oligodendrocyte transcription factor 2
OS: overdl surviva

P53: P53 protein

PFS: progression-free survival

PLR: platelet-to-lymphocyte ratio

PLT: platelet

PMR: platelet-to-mean platelet volume ratio
PNI: prognostic nutritional index

PT: prothrombin time

RF: random forest

ROC: receiver operating characteristic

S100: S100 calcium-binding protein

SI: immune-inflammation index

SIRI: systemic inflammation response index
SYN: synuclein

TAN: tumor-associated neutrophil

TERT: telomerase reverse transcriptase
TME: tumor microenvironment

WBC: white blood cell

WHO: World Health Organization
XGBoost: extreme gradient boosting
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