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Abstract

Retrieval-augmented generation (RAG) systems have emerged as a powerful technique to enhance the capabilities of large
language models by enabling them to access external, up-to-date knowledge in real time, and RAG systems are being
increasingly adopted by researchers in the medical field. In this viewpoint article, we explore the ethical imperatives for
implementing RAG systems in clinical nursing environments, with particular attention to how these technologies affect patient
care quality and safety. The purpose of this paper is to examine the ethical risks introduced by RAG-enhanced large language
models in clinical nursing and to propose strategic guidelines for their responsible implementation. Key considerations include
ensuring accuracy, fairness, transparency, and accountability, as well as maintaining essential human oversight, as discussed
through a structured analysis. We argue that robust data governance, explainable artificial intelligence (AI) techniques,
and continuous monitoring are critical components of a responsible RAG implementation strategy. Ultimately, realizing
the benefits of RAG while mitigating ethical concerns requires sustained collaboration among health care professionals, Al
developers, and policymakers, fostering a future where Al supports patient safety, reduces disparities, and improves the quality

of nursing care.
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Introduction

Advances in artificial intelligence (Al) are rapidly transform-
ing the health care field, with large language models (LLMs)
playing a pivotal role in revolutionizing nursing practice
[1,2]. These models enhance human capabilities by learn-
ing patterns from large amounts of text data and generat-
ing contextually relevant information, offering benefits such
as improved decision support, streamlined care planning,
and personalized patient education [3]. LLMs can assist
nurses by providing comprehensive insights and generating
evidence-based recommendations. However, their integration
into clinical workflows faces significant challenges [4],
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partly because LLMs do not operate like traditional rule-
based programs. Instead, they generate responses based on
statistical patterns learned from large text corpora, rather
than performing logical reasoning or interpreting meaning as
humans do.

While this generative capability allows LLMs to produce
contextually relevant and fluent text, it also gives rise to
several critical limitations in specialized clinical applications.
These include biases inherited from training data and the
“black-box” nature of their decision-making processes, which
make it difficult to understand how outputs are produced.
Such issues lead to concerns about trust and transparency,
ultimately undermining the reliability of model-generated

JMIR Med Inform 2026 | vol. 14 1e79922 I p. 1
(page number not for citation purposes)


https://doi.org/10.2196/79922
https://medinform.jmir.org/2026/1/e79922

JMIR MEDICAL INFORMATICS

recommendations in high-stakes health care environments [5,
6].

To address these shortcomings, the retrieval-augmented
generation (RAG) system has emerged as an enhancement to
LLMs. By combining external knowledge retrieval with the
language patterns an LLM has learned during training, RAG
can provide more accurate, up-to-date, and context-sensitive
information [7]. In this paper, the term “RAG system” refers
to the practical implementation of the RAG approach, in
which an LLM retrieves external information from databa-
ses or documents and integrates it with the patterns learned
during training to generate context-aware responses. While
this approach aims to overcome the static nature of traditional
LLMs, it introduces new ethical risks, particularly related
to the quality and reliability of external data sources, the
complexity of information traceability, and privacy concerns

[4].

This article examines the ethical challenges introduced
by RAG-optimized LLMs in clinical nursing and proposes
strategies for responsible implementation. We focus on three
core ethical imperatives: ensuring accuracy, fairness, and bias
mitigation; promoting transparency, explainability, and trust;
and maintaining responsibility, accountability, and oversight.
By addressing these challenges proactively, we can harness
the benefits of RAG to enhance nursing practice while
safeguarding patient well-being.

The Promise and Peril of RAG in
Nursing

Overview

RAG offers significant opportunities to enhance clinical
nursing practice by providing more accurate, up-to-date,
and context-specific information. By combining the language-
pattern learning capability of LLMs with external knowl-
edge retrieval, RAG can address some of the limitations
of traditional LLMs [8]. However, alongside its potential
benefits, RAG also introduces unique risks that need to be
carefully considered, particularly in the context of clinical
nursing.

The Promise of RAG in Nursing

The primary advantage of RAG lies in its ability to enhance
decision support by integrating real-time, relevant knowledge
from external sources. In high-pressure environments, such
as hospitals, where quick decision-making is critical, RAG
can significantly improve the accuracy of clinical recommen-
dations by ensuring they are based on the latest research
and guidelines [7,9]. By enabling real-time access to updated
information, RAG helps reduce errors that may arise from
outdated or incomplete data [9].

Additionally, RAG systems build on what the LLM has
learned from language data to provide personalized and
context-specific recommendations by incorporating patient-
specific data, such as medical history, treatment plans, and
current health status. This ability to tailor recommendations
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to the individual needs of patients ensures that health care
providers can deliver more accurate and effective care [10].
In settings with limited resources, RAG can provide vital
support for nurses by offering evidence-based recommenda-
tions that might otherwise be difficult to access due to time
constraints or a lack of available resources [9].

The Peril of RAG in Nursing

Overview of Risks

Despite its advantages, the use of RAG systems in nurs-
ing also introduces a range of ethical challenges and risks.
Many of these challenges stem from the limitations of the
underlying LLMs on which RAG is built—including issues
such as bias, opacity, and a lack of accountability. At
the same time, RAG introduces additional, system-specific
risks because it retrieves and integrates external information
dynamically at query time. These additional risks center
on data quality, source reliability, semantic coherence, and
information provenance and must be carefully addressed in
clinical applications.

Common Risks of LLMs

Many of the risks associated with RAG are rooted in the
inherent challenges of LLMs, which include the following:

* Bias and fairness: LLMs may perpetuate biases that
are present in their training data, such as racial,
gender, or cultural biases [11]. Since RAG systems
rely on external sources, they can also inherit and even
amplify these biases if the external data sources are
not sufficiently diverse or representative [4]. This is
particularly concerning in nursing, where such biases
can lead to unequal treatment and care disparities,
potentially exacerbating health inequalities [12].

* Transparency and explainability: The “black-box”
nature of LLMs remains a significant issue, mak-
ing it difficult for clinicians to understand how the
model produces its responses [13,14]. While RAG can
improve transparency by citing the sources of external
information, the process may still be opaque. This lack
of explainability can undermine trust in the system,
especially when nurses are unable to interpret the
reasoning behind a recommendation [5,15].

e Accountability: Another concern is who should bear
responsibility when a RAG system provides a recom-
mendation that leads to an error or harm. It may be
unclear who is responsible—whether it is the develop-
ers of the model, the clinical staff who implemented it,
or the health care institution as a whole. This ambigu-
ity complicates accountability and the governance of
Al-driven health care systems [16].

Risks Specific to RAG

While many of the risks in RAG are shared with LLMs, there
are several risks that are unique to RAG systems due to their
reliance on outside information sources.
* Information provenance and quality: RAG systems
pull data from many different websites, databases, and
documents. Some of these sources may not undergo
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rigorous peer review, and there may be discrepancies in
the information retrieved [17,18]. When the information
used by RAG is incomplete or unreliable, the guidance
it gives can also be misleading. It can also be difficult
to check exactly where the information came from,
which makes it harder for nurses to judge whether a
recommendation can be trusted [19].

* Semantic integration and coherence: When a RAG
system combines information drawn from many
sources, the final advice may sound uneven or use
different styles of wording. For a nurse using it, this
means different parts of the output may suggest slightly
different approaches, which can create confusion or
reduce confidence in applying the recommendation
[20]. Merging text generated from different materials
may result in conflicting or incompatible pieces of
information, which can cause confusion or misinterpre-
tation [21]. This issue is particularly problematic in
clinical contexts, where accuracy and consistency are
essential for patient safety [22].

* Privacy and security risks: To offer personalized
advice, RAG systems may need access to sensitive
patient data, such as medical histories, to provide
personalized recommendations [18,23]. If the system’s
security is weak, or if it does not meet privacy
standards like HIPAA (Health Insurance Portability and
Accountability Act) or GDPR (General Data Protection
Regulation), confidential information could be exposed.
Such data breaches could harm both patients and the
health care institution [5].

 Shifting trust foundations: Traditional LLMs depend
only on the language relationships learned during
training, but RAG depends on both internal and external
sources. This means that the reliability of RAG depends
not only on the model itself but also on the trustwor-
thiness of the outside information it uses [24,25]. If
that outside data is wrong or biased, the recommenda-
tions produced by the RAG system may be wrong too,
reducing nurses’ confidence in using the system [18,19,
26].

An example is as follows: A nurse used a RAG-based tool
to check evidence for pressure injury prevention. The system
retrieved the 2014 second edition of the international pressure
ulcer guideline, which recommended turning the patient every
2 hours on standard foam surfaces. However, the upcoming
2025 fourth edition emphasizes individualized repositioning
schedules, the use of alternating-pressure mattresses, and
closer monitoring for deep tissue injury in high-risk or obese
patients. Because the RAG system relied on outdated data, the
nurse followed the older 2-hour rule and missed early signs of
a deep tissue injury. This case shows how outdated retrieval
sources can lead to substandard care and highlights the need
for RAG systems to verify and update their evidence sources
regularly.
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Focused Ethical Challenges

Overview

The introduction of RAG systems into clinical nursing
presents several ethical challenges that need to be carefully
considered. These challenges are not only rooted in the
inherent limitations of how LLMs learn from data but also
amplified by the integration of external knowledge sour-
ces [18,27]. In this section, we focus on three core ethi-
cal challenges: accuracy, bias, and fairness; transparency,
explainability, and trust; and responsibility, accountability,
and human oversight. These challenges must be addressed to
ensure that RAG-enhanced LLMs support ethically evidence-
based decisions in nursing practice [28].

Accuracy, Bias, and Fairness

One key ethical concern when using RAG systems is
maintaining the accuracy of the information they generate,
especially for clinical decisions [3,19]. The accuracy of
RAG depends directly on how reliable and up-to-date the
outside sources are [9]. If the outside sources are outdated,
incomplete, or inaccurate, the systems’ recommendations may
mislead nurses and lead to unsafe decisions that could harm
patients [18,19]. Therefore, RAG systems should only use
checked and high-quality data that fits the medical context
[18].

Additionally, bias remains a significant challenge. RAG
systems can carry bias from both the training data used to
develop the LLMs and the outside sources it pulls infor-
mation from [26,29]. These biases can manifest in various
forms, such as racial, gender, or socioeconomic biases, and
can show up as racial, gender, or economic differences and
may cause unfair care for some patients [30,31]. In clinical
settings, where health gaps already exist, Al-related bias
can make these gaps worse. For example, if RAG systems
draw information from databases that underrepresent minority
populations, the resulting recommendations may be less
accurate or effective for these groups [32].

To reduce these risks, we need continued work to make
Al systems fair [16,18]. This means checking that outside
sources cover different patient groups and reviewing the
system’s outputs regularly for bias. Furthermore, health care
institutions and developers should also focus on including
a wide range of patients in Al training data and retrieval
sources to avoid making health gaps worse [33,34].

Transparency, Explainability, and Trust

Another significant ethical challenge is transparency and
explainability. While RAG systems can increase transpar-
ency by showing the sources of information, the process by
which these models generate their responses is still not very
clear [18,35]. Because their internal workings are complex
and often hidden, it can be hard for clinicians to see how
external data and built-in knowledge come together to form a
recommendation [36]. This lack of clarity can reduce trust in
the system, since clinicians might hesitate to use a tool whose
reasoning process cannot be easily interpreted [15,37,38].
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Explainability is particularly important in clinical settings,
where nurses and health care professionals need to under-
stand the basis for Al-generated suggestions in order to trust
them and incorporate them into their decision-making process
[15,39.40]. It is essential for RAG systems to explain their
answers in a way that is easy for health care professionals
to understand. For example, providing confidence scores or
source citations can help clinicians evaluate the reliability of
the information and determine whether it fits the patient’s
situation [38,41].

Enhancing transparency and explainability will not only
help build trust in AI systems but also foster responsible
and ethical Al adoption in clinical practice. As RAG systems
become more integrated into health care systems, transpar-
ency will be key to ensuring that their use aligns with
professional standards and ethical guidelines [6].

Responsibility, Accountability, and
Human Oversight

Responsibility and accountability are key ethical concerns in
the context of Al-driven decision-making. One of the main
challenges in using RAG systems is that responsibility can
become blurred when many parties—such as Al developers,
health care providers, and institutions—take part in the same
process [42]. If an error occurs because of a recommendation
from a RAG system, it may be unclear who should bear
responsibility for it. This uncertainty can make legal and
ethical management of such situations more difficult [43,44].

To address this issue, it is important to have clear
guidelines that define the roles and duties of everyone
involved in the Al decision-making process [45]. Health care
institutions must ensure that there are well-defined account-
ability structures in place to determine who is responsible
when Al systems make errors [6]. Furthermore, RAG systems
should be designed with human supervision in mind. While
they can enhance decision support, they should never replace
human judgment. Nurses and clinicians must be able to step
in or question the Al-generated recommendations if they
believe the advice is not in the patients’ best interest [46,47].

Keeping humans actively in each stage of the process,
which is often called “human-in-the-loop” oversight, is
crucial to maintaining ethical standards in Al-assisted clinical
care [48.,49]. This approach ensures that clinical decisions are
ultimately guided by human expertise, with Al acting only
as a support tool. To support this approach, ongoing training
for health care professionals on the use of Al systems, along
with mechanisms for reporting and addressing errors, will
help uphold ethical standards and ensure that the use of RAG
systems benefits patients while minimizing risks.

Addressing these ethical concerns requires not only
awareness but also systematic strategies to guide responsible
use of RAG systems in nursing practice.
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Strategies for Responsible RAG
Implementation

Overview

Building on the ethical challenges discussed in the Focused
Ethical Challenges section, it is essential to implement
strategies that ensure the responsible and effective use of
RAG systems in clinical nursing. While RAG systems offer
significant advantages, such as real-time decision support
and personalized care recommendations, they also introduce
unique risks. To maximize the benefits of RAG and minimize
its ethical concerns, we propose several key strategies for
responsible implementation. These strategies are designed as
direct responses to the ethical challenges identified in the
Focused Ethical Challenges section, translating theoretical
imperatives into actionable guidance for nursing practice.

Data Governance and Bias Mitigation

Building on the discussion of bias and fairness in Accuracy,
Bias, and Fairness, effective data governance provides the
foundation for responsible RAG implementation. Because
RAG systems rely on external knowledge sources, ensuring
the integrity and representativeness of these data is essential.
Biases in the external data used for retrieval can have a
significant impact on the outputs generated by the system,
potentially leading to unfair or discriminatory outcomes [12,
50,51].

To mitigate these risks, bias detection and correction
mechanisms must be implemented at multiple stages of the
RAG system’s development and deployment. Specifically,
RAG systems should incorporate bias auditing practices to
identify potential biases in the external datasets used for
retrieval. This includes regular audits of the data sources to
ensure they are inclusive and reflect a broad range of patient
demographics and clinical scenarios [12,50]. Additionally,
techniques such as fairness-aware machine learning and
adversarial debiasing can be employed to reduce the impact
of bias in the model’s generated recommendations. By
continuously monitoring and correcting for bias, health care
organizations can help ensure that RAG systems provide fair
and equitable information support for all patients [43].

Explainable Al and Transparent Decision-
Making

Building on the transparency challenges identified earlier,
explainable Al techniques should be integrated into RAG
systems to enhance transparency and help nurses and
clinicians trust the information these systems produce. By
improving the explainability of RAG systems, health care
professionals can better assess the basis of Al-generated
suggestions and integrate them into their decision-making
processes [5].

One effective way to enhance transparency is by incor-
porating confidence scores and contextual explanations.
Confidence scores provide an indication of how certain the
system is about a given output, giving clinicians a clearer
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understanding of the model’s reliability [52]. Contextual
explanations, on the other hand, help clarify the basis for
a given response by linking it to relevant patient data or
clinical guidelines. For instance, a RAG system might explain
that a particular medication recommendation is based on the
patient’s medical history, current health status, and recent
clinical studies [18]. This additional layer of information will
not only improve trust in the system but also empower nurses
to make informed decisions based on Al recommendations
[47].

Operationalizing Human Oversight and
Collaborative Intelligence

Extending the discussion of accountability from the Respon-
sibility, Accountability, and Human Oversight section, it is
crucial to emphasize the role of human-in-the-loop oversight.
RAG systems should not replace human judgment but rather
augment it. Nurses, doctors, and other health care professio-
nals should remain central to the decision-making process,
with RAG systems serving as assistive tools to support
clinical judgment rather than a substitute for clinical expertise
[9,19,26].

To ensure the effectiveness of human-Al collaboration,
health care organizations should establish clear guidelines
for collaborative intelligence. This includes defining roles
and responsibilities for both human and Al components of
the decision-making process. Nurses and clinicians should be
trained to understand the strengths and limitations of RAG
systems and to intervene when they believe the Al-generated
recommendation is not appropriate for the patient’s context
[6,37,53]. In addition, RAG systems should be designed to
provide options for clinicians to modify or override sys-
tem-generated outputs when necessary, allowing for greater
flexibility and ensuring that human expertise is always part of
the decision-making process [19,54,55].

Continuous Monitoring and Evaluation

To ensure the ongoing effectiveness and ethical integrity
of RAG systems, continuous monitoring and evaluation
are essential. After RAG systems are deployed in clinical
practice, they must be regularly assessed for both technical
accuracy and ethical impact. This process should include
performance audits, where the system’s outputs and their
clinical relevance are evaluated against real-world data.
Continuous monitoring should also include version control
and scheduled updates of external data sources to prevent
outdated or inconsistent information from influencing clinical
recommendations [56].

Tuetal

Moreover, it is equally important to assess the ethical
implications of RAG systems over time. This involves
gathering feedback from health care professionals who use
the system, as well as patients who are impacted by the
decisions. Implementing a structured feedback mechanism is
critical to identify potential ethical risks such as new biases,
privacy concerns, or trust issues that may arise after the
model has been in use for some time [6,57]. By continuously
monitoring the performance and ethical consequences of
RAG systems, health care organizations can make necessary
adjustments to ensure that these systems remain aligned with
ethical standards and improve patient care without causing
harm.

Conclusion

RAG systems have the potential to significantly enhance
nursing practice by providing accurate, context-aware,
and timely information support for clinical decisions. By
integrating external knowledge sources into clinical reason-
ing, RAG can improve patient outcomes, particularly in
high-pressure environments where rapid, evidence-based
decisions are crucial. However, as with any emerging
technology, the deployment of RAG systems in clinical
settings must be approached with caution, taking into account
both the opportunities and the ethical risks they introduce.

The ethical challenges associated with RAG, including
issues of accuracy, fairness, transparency, explainability,
accountability, and human oversight, must be proactively
addressed to ensure that these systems are used responsi-
bly. By implementing robust data governance, ensuring the
explainability of Al recommendations, maintaining human-in-
the-loop oversight, and continuously monitoring the model’s
performance and ethical impact, health care organizations can
harness the benefits of RAG while minimizing the potential
risks.

Ultimately, responsible RAG implementation will require
collaboration between health care professionals, Al develop-
ers, and policymakers. By prioritizing ethical considerations
in the deployment of RAG systems, we can ensure that they
support patient safety, reduce health care disparities, and
contribute to the overall improvement of nursing practice.
Through careful, responsible integration, RAG systems have
the potential to transform the future of clinical decision-mak-
ing and enhance the quality of care delivered to patients
worldwide.
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