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Abstract

Background: There is increasing research on machine learning in predicting venous thromboembolism after joint arthro-
plasty, but the quality and clinical applicability of these models remain uncertain.

Objective: This systematic review aims to evaluate the predictive performance and methodological quality of machine
learning models for venous thromboembolism risk after joint replacement surgery.

Methods: Web of Science, Embase, Scopus, CNKI, Wanfang, Vipro, and PubMed were searched until December 15,
2024. The risk of bias and applicability were evaluated using the PROBAST (Prediction Model Risk of Bias Assessment
Tool) checklist. A qualitative comprehensive analysis was conducted to extract and describe the data related to the model’s
characteristics and performance.

Results: This review encompassed 34 prediction models from 9 studies. The most frequently used machine learning models
were extreme gradient boosting and logistic regression. The results showed that all studies had significant heterogeneity and
high risk of bias. Although some models reported nearly flawless area under the curve (>0.9), they lacked external validation
and may have overfitted. The models tested on large external datasets demonstrated more conservative performance.

Conclusions: The predictive performance of machine learning models varied greatly. Although the reported area under the
curve values indicated that some models have good discriminative ability, this performance varied greatly and was inconsistent
among the included studies. These models have a high risk of bias, and it is necessary to take this into account when they
are used in clinical practice. Future studies should adopt a prospective study design, ensure appropriate data handling, and use
external validation to improve model robustness and applicability.

Trial Registration: PROSPERO CRD42024625842; https://www .crd.york.ac.uk/PROSPERO/view/CRD42024625842
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Introduction to the aging population and the advancement of medical
technology, more and more patients have undergone joint
replacement surgery. But surgical complications are a big
risk that can change how well joint replacement surgery
works. Venous thromboembolism (VTE), including deep
vein thrombosis (DVT) and pulmonary embolism (PE), is a

Joint replacement surgery is one of the main treatment
methods for severe joint injuries, which can alleviate patients’
pain and improve joint function [1,2]. In recent years, due
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serious postoperative complication that significantly affects
the prognosis of patients [3 4].

Studies have shown that for patients who did not receive
preventive medication before undergoing major orthopedic
surgeries, such as total hip arthroplasty (THA) or total knee
arthroplasty (TKA), the incidence of postoperative VTE can
be as high as 26.6% to 60.8% [5]. Asymptomatic VTE
may not present any obvious clinical symptoms but can be
detected through ultrasound examination or other diagnos-
tic techniques. Some patients with VITE may experience
discomfort and swelling in the affected limb, and their
functional condition may be poor, which may even affect
their postoperative recovery [6,7]. Furthermore, PE also has
a significant impact on patients’ lives and prognosis. Studies
have shown that up to 34% of postoperative deaths may be
caused by PE [8.9].

Being able to accurately identify which patients are at high
risk of VTE is of great significance for the prognosis of these
patients. Accurate predictions can maximize the effective-
ness of anticoagulant drugs and reduce side effects, such as
bleeding [10,11]. Through the analysis of vast volumes of
high-dimensional data, machine learning (ML) may uncover
hidden patterns and intricate nonlinear relationships, aiding
illness early warning [12,13]. In recent studies, ML models
have been developed to predict the incidence of postoperative
VTE. The most commonly used algorithms include extreme
gradient boosting (XGB), random forest (RF), and support
vector machine (SVM) [14]. In the prediction of VTE, ML
technology exhibits many advantages. For instance, compared
to traditional approaches, it can provide superior predictions
by combining several types of information, such as imaging
data, biomarkers, and clinical data [15,16]. Although these
studies provide new methods for the field, there are some
uncertainties in the consistency and reliability of the results in
the existing literature owing to the single data source, small
sample size, and the model’s limited capacity for generali-
zation. In addition, there are justified concerns about bias,
explainability, and applicability [17]. Therefore, this study
aimed to assess the effectiveness and methodological quality
of ML models in predicting VTE following joint replacement
through a systematic review in order to provide evidence-
based support for their clinical application, identify current
research gaps, and offer guidance for future high-quality
studies.

Methods

Registration of the Study

This study adheres to PRISMA (Preferred Reporting Items
for Systematic Reviews and Meta-Analyses; Checklist 1)
guidelines for conducting systematic reviews [18]. The
study protocol was registered on PROSPERO (International
Prospective Register of Systematic Reviews; registration
number: CRD42024625842).
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Data Sources and Search Strategy

A comprehensive search was conducted in both Chinese
and English databases, including Web of Science, Embase,
Scopus, CNKI, Wanfang, Vipro, and PubMed, from the time
of their formation until December 15, 2024. The following
search terms were applied: “joint arthroplasty,” ‘“venous
thromboembolism,” “machine learning,” “risk prediction,”
“prediction models,” and their synonyms and variant terms.
A manual search of reference lists containing studies to
find related publications was conducted. For detailed search
strategies, see Multimedia Appendix 1, which includes
keyword combinations and database settings.

<

Inclusion or Exclusion Criteria

The following were the inclusion criteria: (1) studies on
patients after joint replacement; (2) observational stud-
ies, case-control studies, cohort studies, and randomized
controlled trials; (3) postoperative VTE risk was predicted
using an ML model; (4) studies that provide performance
evaluation metrics (eg, accuracy, sensitivity, specificity, area
under the curve [AUC]) for the model and give clear
statistical analysis results; and (5) studies published in
English or Chinese.

The following were the exclusion criteria: (1) review
articles, case reports, opinion pieces, commentaries,
conference abstracts, and other nonoriginal research; (2)
studies that do not mention particular kinds of ML models
or algorithms; (3) animal experiments, simulation studies, and
other nonclinical research; and (4) studies for which the entire
text was not retrievable.

Study Selection and Data Synthesis

The retrieved results were imported into EndNote 21, and
duplicates were eliminated. Two researchers trained in
systematic evaluation techniques independently conducted
the study selection process based on preestablished eligibil-
ity criteria. First, the titles and abstracts of the literature
were screened, and the studies failing to meet the eligibil-
ity criteria were initially excluded. Second, it was filtered
through full-text reading, and if 2 researchers disagreed, a
third researcher stepped in to reach an agreement.

The data extraction process was also performed inde-
pendently by 2 researchers following CHARMS (Critical
Appraisal and Data Extraction for Systematic Reviews of
Prediction) guidelines [19], and a third researcher settled any
discrepancies. There are 2 groups into which the data taken
from the chosen studies are separated: (1) basic information:
author, year of publication, country, study design, partici-
pants, data source, clinical outcome, and sample size and
(2) model information: missing data handling, candidate
predictors, screening variable methods, prediction timepoint,
prediction horizon, model development, internal verification,
external verification, model performance, number of variates,
calibration, and method of visualization.
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Risk of Bias Assessment

The included studies’ applicability and bias risk were
evaluated using the PROBAST (Prediction Model Risk of
Bias Assessment Tool) tool. The assessment has 20 questions,
including 4 basic areas: participants, predictors, outcomes,
and analysis. There are answers to the questions in each
domain: “yes/probably” (low risk of bias), “no/probably not”
(high risk of bias), and “no information” (unclear). A domain
was deemed to have a high risk of bias if its answer contained
“no/probably not.” If every question had a “yes/probably yes”
response, the domain was deemed to have a low risk of bias.
When there is “no information,” it is deemed to be highly
biased if it cannot be explained by the original or additional
material. If each domain was considered low risk, then the
total bias risk was considered low. Furthermore, the total risk
of bias was deemed high if any domains were deemed to be at
high risk.

The bias risk in each model is assessed independently
by 2 researchers, and if there are differences, they will be
discussed to reach an agreement. Due to the majority of
research using various models or having several outcomes,
the bias risk is evaluated independently for each model and
outcome. Finally, since there are no differences in the risk of
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bias between models in a single study, each study only shows
the result once.

Results

Results of Literature Screening

The study selection process is detailed in the PRISMA
flow diagram (Figure 1). A total of 4344 records were
initially identified from 6 electronic databases (PubMed,
n=2001; Embase, n=661; Web of Science, n=1415; Wanfang,
n=112; CNKI, n=73; and Wipro, n=82). After removing
1466 duplicates, 2878 unique records remained for screening.
During the title and abstract screening phase, 2863 records
were excluded because they were either unrelated to the
topic (n=2,641) or were nonoriginal research, such as reviews
and newspaper articles. This left 15 reports to be sought for
full-text retrieval. The subsequent critical appraisal excluded
6 studies based on predefined criteria: 3 did not use an ML
approach, 2 had incomplete outcome data, and 1 did not
involve a model development process. Ultimately, 9 studies
met the full inclusion criteria and were included in this
systematic review.

Figure 1. Literature screening process. CNKI: China National Knowledge Infrastructure.

Identification of studies via databases and registers
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General Study Characteristics

Table 1 shows the basic characteristics of the 9 studies. These
studies were published from 2018 to 2024 and included 1
prospective study [3] and 8 retrospective studies [20-27].
Among them, 4 studies [3,20,21,25] were conducted in
China; 3 studies [22-24] were from the United States; 1
was conducted in the Netherlands; and 1 transnational study
used data from the Netherlands, the United Kingdom, and
Denmark. In terms of study population, 2 studies [3,20]

Table 1. Basic characteristics of the included studies.
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focused on patients with THA, 1 study [21] targeted patients
with TKA, and the remaining studies [22-27] focused on
both THA and TKA. In terms of clinical outcomes, 2 studies
[20,21] concentrated solely on DVT, while the remaining 7
studies [3,22-27] evaluated both DVT and PE. In addition, the
studies’ sample sizes ranged from 60 to 3,92,661. Cases of
VTE ranged from 24 to 4042, with an incidence of 0.9% to
40%.

Clinical Cases/sample
Author (year) Country Research type Data source Participants outcome size
Ding et al (2023) [3] China Prospective study  Shanghai Changzheng Hospital THA? VTEP 76/1481
Chen and Jiang (2022) China Retrospective Clinical database of a hospital in ~ TKA® pvTd 24/60
[21] study Chongqing
Harris et al (2019) [22] United Retrospective VASQIP data, VA Corporate Data TKA,THA VTE 566/70,569
States study Warehouse

Rasouli Dezfouli et al ~ United Retrospective The Cerner Health Facts data TKA,THA VTE 4042/392,661
(2022) [23] States study warehouse
Shohat et al (2023) United Retrospective Rothman Orthopedic Institute at TKA,THA DVT,PE® 308/35,963
[24] States study Thomas Jefferson University
Wang et al (2023) [25] China Retrospective A health system TKA, THA VTE 1161/6897

study
Xu et al (2024) [20] China Retrospective A hospital in Wenzhou, China THA DVT 92/333

study
Sweerts et al (2022) Netherlands Retrospective Multiple databases from the Dutch TKA,THA VTE 26/3776
[26] study
Nemeth et al (2024) Netherlands, Retrospective Multiple databases from the TKA,THA VTE 897/64,032
[27] Denmark, study United Kingdom, the Netherlands,

England and Denmark

2THA: total hip arthroplasty.
YVTE: venous thromboembolism.
°TKA: total knee arthroplasty.
dpVT: deep vein thrombosis.
€PE: pulmonary embolism.

Characteristics and Performance of ML
Models

Table 2 provides a detailed summary of the methodologi-
cal design and data characteristics of the included studies.
Table 3 presents a summary of the performance of the model
development, validation, and inclusion of the studies. Among
the 9 studies included, 5 studies [3,20,23-25] evaluated
multiple ML algorithms, and 4 studies [21,22,26,27] used

a single algorithm. Across these studies, 15 kinds of ML
algorithms were used to develop 34 predictive models, and
each study developed 1-5 models. Logistic regression (LR)
and XGB were the most common algorithms, appearing in 5
studies (5/9, 56%) each. This is followed by RF (3/9, 33%)
[23-25] and SVM (3/9, 33%) [20,24,25]. In particular, the
XGB model showed strong performance in predicting DVT
and PE, with an AUC range of 0.71-0.982. Figure 2 details
the frequency of the model used.

Table 2. Summary of methodological design and data characteristics of the included studies.

Number
Candidate Screening variable  Prediction of
Author (year) Missing data handling predictors methods timepoint Prediction horizon variates
Singh et al (2019) [1]  Data were excluded, or 67 LASSO? regression  Preoperative  During postoperative 27
mean imputation, or hospitalization
mode imputation
Yau et al (2022) [2] NRP NR Single-factor Postoperativ ~ Within 3-5 days after 8
analysis e surgery
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Number
Candidate Screening variable Prediction of
Author (year) Missing data handling predictors methods timepoint Prediction horizon variates
Ding et al (2023) [3] Treats missing dataasa NR NR Preoperative  Within 30 days after 22
separate category surgery
Simon et al (2023) [4] NR NR Genetic algorithm Preoperative  Within 30 days after 25
surgery
Lee et al (2013) [5] NR 56 Univariate analysis ~ Postoperativ.  Within 90 days after 27
e surgery
Malcolm et al (2020) NR 66 NR Preoperative  Within 5 weeks after 66
[6] surgery
Lewis et al (2019) [7]  missForest 26 Recursive feature Postoperativ  During postoperative 10
elimination S hospitalization
Meng et al (2021) [8]  Multiple imputation 5 Literature, clinical Preoperative  Within 1 year after surgery 5
reasoning,
eyeballing
Runner et al (2021) [9] No missing data 39 LR Preoperative  Within 90 days after 12
surgery
4LASSO: least absolute shrinkage and selection operator regression.
PNR: not reported.
°LR: logistic regression.
Table 3. Summary of model development, validation, and performance of included studies.
Author Model External Method of
(year) development Internal verification verification AUC? (95% CI) Calibration visualization
Singhetal ~ MLPP, XGBC, 10-fold cross- None 0.955 (0.917-0.993); NR! ROC! curve, DCAJ
(2019) [1] AdaBoostd, GBC®, validation, random 0.982 (0.954-1.000); curve, Shapley additive
KNNf, LR® split validation 0.980 (0.944-1.000); explanations,
0.978 (0.953-1.000); nomogram
0.837 (0.743-0.931);
0.944 (0.878-1.000)
Yau et al XGB Random split None 0.832(0.748-0916) NR ROC curve
(2022) [2] validation
Ding et al LASSOX Internal cross- Yes 0.613 (0.608-0.617)  Calibration plot  Calibration curve
(2023) [3] validation
Simon et al RFI, GBT™, TE", Random split None 0.698;0.638;0.635; NR ROC curve
(2023) [4] FCDNN° validation 0.780
Lee et al XGB, RF,LASSO, Random split None DVTY: 0.759 (0.667-  Calibration plot ROC curve, PR" curve,
(2013) [5] SVMP validation, repeated 0.881); 0.71; 0.68; calibration curve
cross-validation 0.64; PE: 0.774
(0.683-0.835); 0.8;
0.8;0.67
Malcolmet XGB, RF,SVM, 5-fold cross- None 0.914 (0.894-0.935); NR ROC curve
al (2020) [6] BPNNS,LR,EM! validation, 0.907 (0.883-0.931);
GridSearchCV 0.903 (0.874-0.930);
0.910 (0.8949-0.926);
0.885 (0.868-0.902);
0.921 (0.896-0.936)
Lewisetal  XGB,KNN,SVM, Random split None 0.800 (0.674-0.927);  Brier score Shapley additive
(2019) [7] NBY, MLP',LR validation, 10-fold 0.755 (0.634-0.874); explanations, feature
cross-validation 0.753 (0.627-0.878); importance
0.681 (0.571-0.788);
0.739 (0.611-0.846);
0.579 (0.450-0.696)
Mengetal  Multiple LR None 0.663 (0.627-0.699)  Hosmer- ROC curve, calibration
(2021) [8] imputation Lemeshow, curve

calibration plot,
Brier score
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Author Model External Method of

(year) development Internal verification  verification AUC? (95% CI) Calibration visualization
Runner etal No missing data LR Yes 0.65 (0.63-0.67) Calibration plot  Calibration curve
(2021) [9] external validation:

0.64 (0.61-0.67)

2AUC: area under the curve.

PMLP: multilayer perceptron.

“XGB: extreme gradient boosting.
dAdaBoost: adaptive boosting.

®GBC: gradient boosting classifier.

fKNN: k-nearest neighbors.

8LR: logistic regression.

hNR: not reported.

IROC: receiver operating characteristic.
JDCA: decision curve analysis.

KLASSO: least absolute shrinkage and selection operator regression.
IRF: random forest.

MGBT: gradient boosting tree.

"TE: tree-based ensemble methods.
°FCDNN: fully connected deep neural network.
PSVM: support vector machines.

49DVT: deep vein thrombosis.

'PR: precision-recall.

SBPNN: back propagation neural network.
{EM: ensemble method.

UNB: naive Bayes.

YMLP: multilayer perceptron.

Figure 2. Frequency of machine learning models. adaBoost: adaptive boosting; BPNN: back propagation neural network; EM: ensemble method;
FCDNN: fully connected deep neural network; GBT: gradient boosting tree; GBC: gradient boosting classifier; KNN: k-nearest neighbors; LASSO:
least absolute shrinkage and selection operator regression; LR: logistic regression; MLP: multilayer perceptron; NB: naive Bayes; RF: random forest;

SVM: support vector machine; TE: tree-based ensemble methods; XGB: extreme gradient boosting.
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Algorithms

The included studies used a variety of metrics to evaluate
ML models, of which AUC was the most common (8/9,
89%). The predicted AUC range for DVT and PE was
0.579-0.982. One study did not report AUC but reported
C-statistic [22]. XGB, popularized by Chen and Guestrin
[28] in 2016, is a widely adopted ML algorithm on the

https://medinform jmir.org/2026/1/e79886

basis of gradient boosting [29,30]. The included XGB studies
[3,20,21,24,25] reported AUC ranging from 0.71 to 0.982,
demonstrating strong model performance. LR estimates the
association of one or more independent variables with binary
dependent variables [31,32]. The included LR studies [3,20,
25-27] reported AUC ranging from 0.579 to 0.944. RF is
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a widely used ML algorithm that helps mitigate overfitting
and improves the model’s stability and accuracy by aggre-
gating the outcomes from various decision trees [33]. It
functions as a modeling algorithm as well as a variable
selection technique. Three studies [23-25] used RF, with
reported AUC ranging from 0.698 to 0.907. In addition,
calibration plots were provided in 3 studies [22,24,27]; Brier
scores were provided in 1 study [20]; and 1 study [26]
also provided Hosmer-Lemeshow, calibration plot, and Brier
score. The other 4 studies did not include data on calibra-
tion performance. Additional reported metrics encompass
accuracy, sensitivity, and specificity.

These 9 studies differ in terms of the optimal tim-
ing for risk assessment. Six studies have created preopera-
tive prediction models [3,22,23,25-27] to identify high-risk
individuals before surgery. The last 3 studies focused on
postoperative prediction, assessing immediate risks using
postoperative data [20,21,24]. Additionally, there is diversity
in the risk assessment’s predictive horizon. Its duration ranges

Ma et al

from a brief period following the procedure, such as “within
3-5 days after surgery” or “during the postoperative hospital
stay” [3,20], to a lengthy risk assessment that might continue
for up to a year following the procedure [26]. Common time
horizons include 30 days [22,23] and 90 days [24,27].

From a low of 5 [26] to a high of 66 [25], the number
of predictor variables that ultimately made it into the model
varied widely. The descriptive analysis of the predictive
factors used in each study (as shown in Figure 3) shows
that a constant core set of variables is regularly utilized,
despite the wide variations in the number of predictive factors
used in each investigation. These variables can be broadly
classified into four categories: (1) demographic and biological
characteristics of the patients (such as age, gender, BMI); (2)
major comorbidities (such as hypertension, diabetes, coronary
heart disease, and malignant tumors); (3) specific VTE risk
histories (such as previous VTE); and (4) key laboratory
indicators (such as D-dimer).

Figure 3. Frequency of the predictors. APTT: activated partial thrombin time; ASA: American Society of Anesthesiologists; VTE: venous

thromboembolism.
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Model Validation Assessing Risk of Bias

All of the models in the included studies underwent internal
validation; however, only 2 studies [22,27] used external
validation and reported the AUC value of external valida-
tion. The main methods used for internal validation were
k-fold cross-validation and random-split validation. External
validation plays a key role in confirming whether a model
can maintain good performance in different populations and
clinical settings. The absence of external validation will limit
the generalization and clinical application of these models.

https://medinform jmir.org/2026/1/e79886

According to the PROBAST evaluation, all models had a high
risk of bias (Table 4). The assessment results showed that the
main sources of bias were concentrated in the “participants”
and “analysis” domains. In the participants domain, 8 studies
had a high risk of bias, mainly because these studies relied
on retrospective data. In the analysis domain, all models had
a high risk of bias. The PROBAST assessment pointed out
several specific methodological issues: 4 studies [21,23-25]
did not perform model calibration, 4 studies [3,21,23,25] did
not report the handling of missing data, and 2 studies [21,23]
were insufficient in measures to prevent model overfitting. In
contrast, the outcome domain was rated as having a low bias
risk level in all studies. In terms of applicability assessment,
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only 1 study [25] had poor applicability because the model

was overly complex and required 66 predictor variables.

Table 4. Prediction Model Risk of Bias Assessment Tool (PROBAST) results of the included studies.

Risk of bias Applicability Overall

Author Risk of

(year) Participants  Predictors Outcome Analysis Participants Predictors Outcome bias Applicability
Ding et al (2023) [3] +2 + + b + + + _ +

Chen et al (2023) [21] - + + - + ¥ + _ "

Harris et al (2019) [22]  — + + - + + + _ "

Rasouli et al (2022) [23] - + + - + + + — +

Shohat et al (2022) [24] - + + - + + + — +

Wang et al (2023) [25] - - + - + - + _ _

Xu et al (2024) [20] - + + - + + + _ "

Sweerts et al (2022) [26] - + + - + + + — +

Nemeth et al (2024) [27] - + + + + + + _ +

4L ow risk of bias.

PHigh risk of bias.

Discussion only b'e considered fqr pr‘actlcal application after undergoing

extensive external validation.

Principal Findings Another finding is that the XGB model demonstrates

VTE is a common and serious postoperative complication
that is preventable [10]. Risk assessment and management-
based strategies can help prevent or reduce the occurrence
of VTE [34]. Therefore, selecting an appropriate predictive
model for VTE is crucial. This systematic review examined
the methodological quality and clinical applicability of ML
methods in predicting VTE after joint replacement surgery.
Among the reviewed studies, 15 ML algorithms were utilized
to construct 34 predictive models. XGB and LR were the
most used model types, followed by RF and SVM. The AUC
values of the models ranged from 0.579 to 0.982, indicating
that the discrimination ability of the models varied greatly,
and some of the models showed excellent performance. Two
research [1,6] reports demonstrated extremely high discrimi-
nation ability, with their AUC values exceeding 0.9. Such
high performance often raises concerns about overfitting,
where the model learns specific statistical noise specific
to the training data rather than the generalizable underly-
ing biological signals, leading to an optimistically biased
performance estimate. Moreover, these models have not yet
undergone external validation. This deficiency is a major
limitation. In the clinical environment of joint replacement,
there may be significant differences among patients, and
surgical techniques as well as VTE prevention protocols
may also vary among different medical institutions. Models
trained based on data from a single hospital are likely to learn
the specific treatment patterns of that hospital rather than a
universally applicable VTE prediction signature. This may
lead to unreliable prediction results when the model is applied
to different patient groups. The risk of overfitting and the lack
of reliable external validation seriously undermine the clinical
value of these highly performing models. These models can
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superior predictive performance compared to other models.
For instance, 2 studies [3,20] compared the XGB and SVM
models with the LR models, and the results showed that the
XGB and SVM models outperformed the LR model. This
supremacy is probably due to the smart way the algorithm
was made. First, XGB has strong built-in features (such as
regularization) that keep the model from overfitting when
working with small datasets, making it stable even when the
data are noisy. Second, XGB is very good at identifying the
most important risk factors on its own. It can also capture
complicated nonlinear interaction relationships, which typical
linear models cannot do. Furthermore, the fact that XGB
functions so effectively most likely indicates that the research
team spent a great deal of time and energy optimizing the
hyperparameters and determining the ideal configurations for
their particular dataset. However, research has indicated that
LR models may be more successful and easier to apply
in some situations, whereas XGB and SVM models may
not necessarily perform better. LR’s fundamental structure
makes it simple to comprehend and analyze. Additionally, it
produces dependable findings and has strong convergence,
particularly when used for small datasets [35]. The Caprini
score is a clinically prevalent instrument utilized to evaluate
VTE risk by analyzing many clinical risk factors, including
age, surgical history, malignancy, and obesity [36]. One study
[25] compared the Caprini Score to ML models and showed
that the ML models were better at predicting VTE risk.
Although the predictive performance of most models ranged
from moderate to good, the risk of bias in all studies restricted
the applicability of these models in clinical practice.
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Related Work

The PROBAST assessment results indicate that all the models
have a high risk of bias, suggesting that their predictive
performance in practical applications may be lower than
the reported levels. This widespread bias is mainly due to
the flaws in the research design and the statistical analysis
methods adopted by the models. In terms of the research
design, most studies rely on retrospective data, which
increases the risk of selecting an unrepresentative patient
population, thereby weakening the generalization ability of
the models beyond the original dataset. Additionally, there
are numerous flaws in the analysis aspects of the model
construction and testing processes. The main issues are that
some studies did not check the calibration process. This
makes it impossible for us to determine whether the “30%
risk of venous thrombosis” predicted by the model truly
means a 30% probability in reality, thus preventing its use
in clinical decision-making. Some studies also failed to
provide enough protections against the “overfitting” problem,
in which the model just remembered the noise in the training
data instead of identifying the true risk patterns, while others
did not provide solutions for handling missing patient data.
These analytical flaws make these models likely to perform
poorly when applied to new patients. Furthermore, the actual
usability is also an issue. One model used an excessive 66
predictive variables, making it overly complex and unsuitable
for clinical use. To raise the accuracy and clinical applica-
tion of predictive models, future studies should apply more
rigorous methodological methods. Moreover, the significant
bias risk indicates inconsistency in the development and
validation of current models, which could influence their
widespread application. Future studies should give priority
to enhancements in a number of important domains, including
the research design (ie, cohort or case-control study design),
the number of events, the method for predictor selection, the
processing of complicated data, and the processes of model
calibration and fitting.

One serious and widespread flaw in these studies is the
absence of model calibration reports. Although most of the
included studies reported high discrimination metrics such
as AUC, the discrimination does not guarantee that the
predicted probabilities are accurate. Calibration addresses a
more fundamental clinical question: Does the predicted “30%
risk of venous thrombosis” really mean that there will be
a 30% incidence rate among a group of similar patients?
Inaccurate calibration might have very harmful consequen-
ces. For example, a model that consistently overestimates
risks may incorrectly identify patients with low risks as
having high risks [37]. This may lead to the improper use
of potent anticoagulant drugs, thereby exposing patients to a
serious risk of bleeding, a risk that could have been avoi-
ded. However, if the model underestimates the risks, it may
prevent doctors from taking necessary preventive measures to
ensure the safety of patients with high risk. This could lead
to potentially fatal thrombosis incidents [38]. Consequently,
owing to the absence of calibration data, most of these models
are unreliable for informing individual patient decisions,
irrespective of their quoted AUC values. Future research

https://medinform jmir.org/2026/1/e79886

Ma et al

must prioritize calibration as the principal measure of model
performance. We strongly urge that studies include both
visual calibration plots and quantitative indicators (such as the
Brier Score) at the same time to make sure their predictions
are accurate in the actual world. Additionally, most of the
included studies did not provide reports on the sensitivity and
specificity of their models. This affects the overall assessment
of model performance, as the reported AUC values may not
fully reflect its clinical applicability. Future research should
follow standardized reporting guidelines to evaluate its model
performance.

External validation is critical to confirm the generaliz-
ability of the model’s performance and its applicability
to different populations [39,40]. However, all the studies
used internal validation methods, such as K-fold cross-val-
idation or random split validation, and only 2 studies
conducted external validation. Most of these models lack
external validation, further increasing the challenge of clinical
implementation. In such a sensitive sector as health care,
where predictive models are finally meant to be employed in
real-world situations, these ML models may not accurately
reflect their applicability and dependability without outside
validation [41]. Future studies should incorporate external
validation where possible, such as in different hospitals or
using publicly accessible databases, to optimize the model
generalization through data synthesis and larger datasets [42].
Additionally, we advise temporal validation to assess the
model’s resilience at different points in time.

The ML model’s predictive variables found in this study
have a number of important effects on clinical practice. First,
the predictive factors frequently used in these models play
a very important role in current clinical practice and future
research. For instance, D-dimer is a well-known clinically
validated biomarker for VTE. Studies have shown that it
is highly sensitive in predicting the risk of VTE. Prothrom-
bin time, activated partial thromboplastin time, and interna-
tional normalized ratio are a few other markers that may
assist physicians better understand the risk of blood clots and
quickly identify and treat patients with high risk [43]. Another
established risk factor for VTE is age. Research has indicated
that the risk of VTE rises with age. People over the age of
60 years account for around 70% of occurrences of VTE [44].
Considering age while evaluating patients before surgery may
enhance outcomes and diminish complication rates. Common
chronic disorders, such as diabetes and hypertension, were
also among recurring factors. Research has shown that these
disorders can raise VTE incidence. A personalized anticoagu-
lant treatment strategy might help those with past histories
of these disorders lower their VTE risk even more [45].
Second, the results of the 9 studies on the predictors can guide
the development of future predictive models and contribute
to later studies on related risk elements. For instance, 1
study [20] included bone cement prosthesis as a predictor
in the model, although further study is required to confirm
its association with VTE. However, variance in the choosing
and reporting of predictors in these studies may affect the
comparability and practical utility of the models in different
clinical settings.
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Limitations

To our knowledge, this is the first study to evaluate ML
in predicting VTE in patients undergoing joint replacement
surgery. Nevertheless, the study had certain limitations.
First, most of the included studies have been conducted in
China and the United States. This geographical concentration
restricts the general applicability of the model to different
areas. Second, numerous studies focused solely on developing
predictive models without considering external validation or
practical application of the model. The absence of external
validation may affect the credibility of our pooled estimates.
Third, since the traditional methods used to assess publica-
tion bias (such as funnel plots and Egger or Begg tests)
are not applicable to AUC data, no quantitative assessment
of publication bias was conducted for the included studies.
However, the risk of publication bias remains: “positive”
studies (eg, high AUC values) are more likely to be pub-
lished than “negative” or inconclusive ones. Therefore, the
studies included in this review may overestimate the true
performance of these models. Finally, the included studies
exhibited a high risk of bias and insufficient transparency.
These methodological shortcomings could affect the accuracy
of model predictions, therefore reducing the dependability
and application of the conclusions.

Ma et al

Conclusions

The study identified 9 studies with a total of 34 ML models
for predicting VTE after joint replacement. Most studies have
modest to good discriminative ability from their AUC values.
However, among these 9 studies, only 2 of them under-
went effective external validation. The widespread neglect
of external validation has left the generalization capabili-
ties of these models, which performed well on the original
dataset, completely unknown. In addition, these studies also
show a high risk of bias and significant heterogeneity. Most
of the studies had significant methodological shortcomings,
including a lack of rigorous study design and absence of
calibration measurements. These deficiencies will affect the
reliability of the model in clinical applications and reduce
the promotion value of the model. To improve the predic-
tion capabilities of ML models, future research must closely
follow the PROBAST criteria, which place a strong empha-
sis on meticulous study design and quality control. External
validation is also necessary to improve the generalization and
applicability of ML models in clinical settings.
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