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Abstract
Background: Quantitative magnetic resonance imaging (MRI) is an advanced technique that can map the physical properties
(T1, T2, and proton density [PD]) of different tissues, offering crucial insights for disease diagnosis. Nonetheless, the practical
application of this technology is indeed constrained by several factors, with the most notable being the protracted scanning
duration.
Objective: This study aimed to explore whether deep learning (DL)–based superresolution reconstruction of ultrafast whole
brain synthetic MRI can obtain quantitative T1/T2/PD maps that are closely approximated to those from routine clinical scans,
while substantially shortening scan time and preserving diagnostic image quality.
Methods: A total of 151 healthy adults and 7 individuals with different pathologies were prospectively enrolled. Each
individual was examined twice on a 3.0T scanner using routine and fast synthetic MRI protocols. The routine scans (acquisi-
tion matrix: 320×256) were interpolated to 512 by 512 for clinical display and served as reference images. The fast scans
(acquisition matrix: 192×128) were preprocessed to 256 by 256 and used as inputs to a superresolution generative adversarial
network (SRGAN), which reconstructed them to the same 512 by 512 interpolated resolution as the reference. For each
quantitative chart, 120 (75.95%) healthy individuals’ images were used for training, and 38 (24.05%) individuals’ images
(healthy individuals: n=31, 19.62%; patients: n=7, 4.43%) were used for testing. Agreement was assessed with a paired t test,
two 1-sided tests, Bland-Altman analysis, and coefficients of variation.
Results: DL reconstructed and reference T1/T2/PD values were strongly correlated (T1: R²=0.98; T2: R²=0.97; and PD:
R²=0.99). The slopes of the linear regression were near 1.0 both for T1 (0.9418) and PD (0.9946), whereas T2 values were
moderate, as the slope of the linear regression was 0.8057. Additionally, the average biases of T1, T2, and PD values were
small (0.93%, −0.85%, and 0.31%, respectively). The intra- and intergroup coefficient of variation for most of the brain
regions stayed below 5%, especially for PD values, and after DL reconstruction, it still has quantitative accuracy for lesions.
Quantitative and qualitative analyses of image quality also indicate that SRGAN markedly suppressed noise and artifacts in
fast acquisitions, restoring structural fidelity (structural similarity image measure) and signal fidelity (peak signal-to-noise
ratio) close to the level of routine scans while substantially improving perceptual naturalness over fast scans (as measured by
the naturalness image quality evaluator), although not yet matching that of routine imaging.
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Conclusions: SRGAN superresolution applied to ultrafast synthetic MRI yields whole brain T1, T2, and PD maps that
show strong correlation with routine synthetic MRI while halving acquisition time and maintaining diagnostic image quality.
Although T1 and PD values exhibit near-ideal agreement, and T2 values demonstrate a moderate systematic underestimation,
this approach represents a promising step toward accelerating clinical deployment of quantitative brain imaging.
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Introduction
Quantitative magnetic resonance imaging (qMRI) can reflect
the inherent properties of human tissue relaxation times and
proton density (PD), providing valuable support for verifying
visual assessments of structures and tissues against a normal
quantitative standard, thereby holding significant clinical
diagnostic value [1]. Nevertheless, the extended scan time of
qMRI imposes limitations on its practical use. Synthetic MRI,
based on multidynamic, multiecho sequences, can provide
multiple quantitative information and multicontrast images in
a single scan, enabling fast qMRI scans [2,3]. It has been
proven to have comparable diagnostic value to conventional
scanning methods, with the generated quantitative data being
valuable for disease identification [4-7]. However, the single
scan time of this imaging method still typically ranges from 4
to 7 minutes, particularly for brain MRI imaging, which can
lead to individual discomfort and potentially impact image
quality. Therefore, improving the imaging speed of synthetic
MRI is the key to realizing ultrafast qMRI.

It is also crucial to ensure the quality of qMRI and the
reliability of quantitative values while accelerating imaging.
Usually, fast imaging methods such as parallel acquisition
and compressed sensing may result in a loss of image
quality [8]. The reconstruction technology based on deep
learning (DL) has been applied in various medical image
reconstruction tasks, and its development makes it possible
to solve the trade-off between image quality and scan time.
Generative adversarial networks, renowned for generating
high-fidelity superresolution images, have been successfully
used in MRI [9]. Many researchers have implemented the
concept of generative adversarial networks for MRI image
reconstruction, achieving high-quality reconstruction from
highly undersampled data [10-14]. In addition, the generative
adversarial approach can be used for tasks, such as artifact
correction and denoising in MRI [15,16]. In clinical practice,
in addition to focusing on image quality, it is more important
to determine whether the DL-based reconstruction method
can provide less bias and consistent quantitative data [17].

To shorten synthetic MRI quantitative acquisitions and
increase clinical throughput, we hypothesized that DL
superresolution can generate T1/T2/PD maps that are close to
routine long acquisition quantitative values while maintaining
image quality, thereby providing faster yet equally reliable
neuroimaging and ultimately enhancing diagnostic precision
and patient comfort.

Methods
Participants
This study was approved by the Medical Research Eth-
ics Committees of the Beijing Friendship Hospital, Capi-
tal Medical University (2020-P2-122-02). Written informed
consent was obtained from all participants prior to enroll-
ment. A total of 151 healthy individuals were prospectively
recruited at 1 institution for this study. The inclusion criteria
were as follows: (1) the age of the individual was greater
than or equal to 18 years, (2) the individual showed no
structural changes or signs of disease in brain MRI, and
(3) the individual showed no contraindications or adverse
reactions to MRI examination. The exclusion criteria were as
follows: (1) there were obvious artifacts in the images, and
(2) the individual failed to complete all MRI examinations.
In addition, we also collected images from 7 individuals
with different pathologies (white matter [WM] hyperintensi-
ties, cerebral infarcts, and encephalomalacia) to evaluate the
potential for clinical application.
Synthetic MRI Acquisition
All MRI examinations were performed using a SIGNA
Pioneer 3.0 T MRI scanner (GE Healthcare). All individ-
uals underwent two synthetic MRI scans using the mul-
tidynamic multiecho sequence (MDME sequence, named
MAGiC in the GE scanner): a routine scan protocol and a
fast scan protocol. The routine scan uses commonly used
clinical acquisition parameters: TR=4000 ms; TE1=18.3 ms;
TE2=91.4 ms; TI=28.2 ms; thickness=5 mm; FOV=220×220
mm; acquisition matrix=320×256; echo-train length=16;
bandwidth=31.25 kHz; delay times=170, 670, 1840, and 3840
ms; and acceleration factors=2, 24 slices, with a pixel size
of 0.7×0.8 and an acquisition time of 4 minutes 55 seconds.
Fast scan modifies the acquisition matrix and acceleration
factor, which affect the acquisition time, by changing the
acquisition matrix to 192×128 and the acceleration factor to
3. The remaining parameters remained the same as those of
the routine scan, with a pixel size of 1.1×1.7 and an acquisi-
tion time of 1 minute 52 seconds.
Data Preprocessing
The same method was used to retrieve the quantitative maps
(T1 maps, T2 maps, and PD maps) as mentioned in a
previous study [18]. In this study, quantitative maps from the
routine scan (reconstruction matrix=512×512, 0.43×0.43 mm²
pixel) served as the high-resolution (HR) reference, whereas
those from the fast scan (reconstruction matrix=256×256,
0.86×0.86 mm² pixel) were used as low-resolution (LR)
inputs. DICOM images were directly read and prepared for
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network training. It should be noted that the maximum image
intensities of T1 maps, T2 maps, and PD maps are 43,000,
20,000, and 1600, respectively, which correspond to 10 times
the actual values. This scaling is due to the rescaling slope
value of 0.1 specified in the DICOM header file.
Network Architecture
The detailed generator network structure is shown in Figure
1A. It starts with a 9 by 9 convolutional filter and connects
to 5 residual blocks, each of which consists of two 3 by
3 convolutional layers alternating with batch normalization
layers, and activation is performed using a rectified linear
unit (ReLU) function. After the residual network, a 3 by 3
convolution and a 1 by 1 convolution are connected, and a

subpixel convolutional layer is used to upsample the image.
In the generator network, except for the last layer that uses
tanh as the activation function, all other layers use ReLU as
the activation function. The discriminator network structure
is shown in Figure 1B. In the discriminator network D,
our model first uses an architecture comprising eight 3×3
convolutional layers and Leaky ReLU function activation.
All convolutional layers except the first have batch normali-
zation layers. The Sigmoid activation function is applied to
the last fully connected layer, which outputs the probability
of discriminating whether the input HR image is a real HR
image or an image generated by the generator. The network
architecture includes a pretrained VGG-19 network, which is
used for feature extraction and loss function calculation.

Figure 1. The architecture of the superresolution generative adversarial network. BN: batch normalization; DL: deep learning; HR: high resolution;
ReLU: rectified linear unit.

Loss Function
The pixel-by-pixel error method used is the L1 loss function,
also known as the mean absolute error, which is calculated
using equation 1. Although SRGAN completely discards
the pixel-by-pixel error, we still add this error in a certain
proportion during the actual training process to amplify the
difference and guide the optimization of the model. The
cross-entropy loss function of the discriminator is used as
the adversarial error of the network, and the calculation
method is expressed using equation 2. In addition to using the

adversarial error, SRGAN also uses a content error, which is
defined as the Euclidean distance between the superresolved
image and the feature map of the reference image, and
the calculation method is expressed using equation 3. The
content error is used to align the content of LR images and
HR images, which plays the same role as the mean square
error. In this network, the pretrained VGG-19 network is
used to extract the feature parameter map. Therefore, the loss
function for the generator in this network is described using
equation 4.
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(1)Lmae = 1CHW i, j, k Ii, j, kDL − Ii, j, kGT
where IDLis the output image of the generator and IGTis the
input reference image.

(2)Lgan = − i logD G IDL
where G and D are the generative network and the discrimina-
tive network, respectively.

(3)LVGG = 1CjHjWj x = 1
Wj

y = 1
Hj

c = 1
Cj ϕj G(IDL)x, y, c − ϕj G(IGT)x, y, c 2

where ∅j  is the feature map obtained from the jth convolu-
tional layer of the VGG-19 network, Cj, Hj, and Wj are the
number of channels and height and width of the feature map,
respectively, IDL is the output image of the generator, and IGT
is the input reference image.

(4)Ltotal = Lmae + 10−3Lgan + 2 × 10−6LVGG
Implementation
Approximately 80% (120 healthy individuals) of the dataset
were allocated to training, and the remaining individuals
(healthy individuals: 31, 19.62%; and patients: 7, 4.43%)
were used for testing. Slices from each individual were

pooled and randomly shuffled within their respective sets
to prevent any sequential bias and improve the perform-
ance of the model. Before training, all quantitative maps
(T1, T2, and PD) underwent intensity normalization to
match the output range of the generator network, that
is, imagenorm = pixelvalue/normalizepara × 2 − 1, where
normalize_para is set to 45,000, 22,000, and 1800 for T1,
T2, and PD maps, respectively.

The DL models for T1, T2, and PD maps were trained
separately but with identical hyperparameters. Each model
was implemented using the TensorLayer framework [19]
and optimized via the adaptive moment estimation (Adam)
optimizer with a learning rate of 1×103 and step-wise decay
every 1000 iterations. Training was performed on an NVIDIA
Tesla V100 GPU with a batch size of 8 and a total of
200 epochs. All other parameters were kept at their default
settings.
Quantitative Value Measurements
The flowchart illustrating the process of quantitative value
measurements is presented in Figure 2.

For healthy participants, quantitative value analysis of
brain tissue and brain regions was conducted. First, brain
tissue segmentation was performed on each individual’s
quantitative map using the New Segment tool within SPM
[20] software. Then, quantitative value extraction of gray
matter (GM) and WM was performed using self-written
programs in the MATLAB (The MathWorks Inc.) platform.

Figure 2. The process of quantitative value measurements for healthy participants. AAL: anatomical automatic labeling; GM: gray matter; JHU:
Johns Hopkins University; WM: white matter.

In addition to analyzing quantitative values for both GM and
WM tissue, analysis was also performed by different brain
regions for clinical evaluation and application. Using the
anatomical automatic labeling atlas of the Montreal Neuro-
logical Institute (MNI), 10 GM regions of interest (ROIs)

were created on anatomical structures, including frontal
cortex, temporal cortex, parietal cortex, occipital cortex,
insula, hippocampus, caudate nucleus, putamen, pallidum,
and thalamus. Additionally, using the JHU-WhiteMatter-48
atlas, 9 WM ROIs were generated, including the middle
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cerebellar peduncle, genu of corpus callosum, splenium of
corpus callosum, cerebral peduncle, internal capsule, anterior
corona radiata, superior corona radiata, posterior corona
radiata, and external capsule [21]. In all analyses, right and
left quantitative data were averaged. The quantitative value
of the corresponding brain region in the quantitative map
reconstructed by DL and from routine scans was obtained for
each individual for subsequent statistical analysis.

For the images of individuals with pathologies, an
experienced radiologist used the ITK-SNAP software (version
3.8.0; [22]) to delineate the ROI of typical lesions manually
and acquired the mean value of the signal in the ROI. To
ensure paired comparison, identical ROI size and location
were replicated on the DL reconstructed and reference routine
scan images. A total of 12 ROIs were obtained from 7
(4.43%) patients (individual 3: 3 ROIs, individual 5: 3 ROIs,
individual 7: 2 ROIs, and the remaining 4 individuals: 1 ROI
each).
Image Quality Evaluation
Two full-reference evaluation indices—peak signal-to-noise
ratio (PSNR) and structural similarity image measure (SSIM)
—were used in this study for image quality assessment [23].
The larger the value of the 2 indices, the better the image
quality. The PSNR was defined by equation 5:

MSE = ∑m = 1M ∑n = 1N R m, n − I m, n 2M × N
(5)PSNR = 20log L2MSE

The calculation method of SSIM is given by equation 6:

(6)SSIM(X, Y) = (2μXμY + C1)(2σXY + C2)(μX2 + μY2 + C1)(σX2 + σY2 + C2)
C1 = K1L 2, C2 = K2L 2

where μₓ and μᵧ, σₓ and σᵧ, and σₓᵧ are the local means,
SDs, and cross-covariance for the DL quantitative images and
routine scans, respectively, and C1 and C2 are 2 quantities
used to stabilize the division in the case of a weak denomina-
tor, with L=65,535, K1 = 0.01, and K2= 0.03.

In addition, a no-reference image quality assessment
method, the naturalness image quality evaluator (NIQE), was
used to evaluate the quality of quantitative images reconstruc-
ted by DL, with fast scan and with routine scan, respectively
[24]. Unlike PSNR and SSIM, the lower the value of NIQE,
the less distortion and higher image quality.
Statistical Analysis
For the quantitative analysis of brain tissue in healthy
participants, Paired t-test was used to compare the dif-
ferences in quantitative values between DL and routine

scans, and equivalence was confirmed using two one-sided
tests (TOST). Linear regression analysis and Bland-Altman
analysis were used in the study, and we combined GM
and WM to comprehensively evaluate overall bias. This
method captures the overall trends and variability of different
tissue types, which is crucial for evaluating the perform-
ance of DL reconstruction in clinically relevant contexts.
For the region-based quantitative value analysis in healthy
participants, coefficients of variation (CVs) were calculated
within each imaging method (intragroup CV) and across
each imaging method (intergroup CV). Intergroup CV was
calculated using the average of the quantitative values from
each method. For the images of individuals with pathologies,
Paired t-test was used to compare quantitative values in
different ROIs between groups. All statistical analyses were
performed using SPSS 22.0 and GraphPad Prism 9. A P value
<.05 was considered statistically significant.
Ethical Considerations
This study was approved by the Medical Research Ethics
Committees of Beijing Friendship Hospital, Capital Medi-
cal University (2020-P2-122-02). All participants provided
informed consent before participating. Participants’ privacy
and confidentiality were protected, with all data being
deidentified during analysis. No compensation was provided
for participation. No identifiable information of participants
was included in the paper or supplementary materials in
Multimedia Appendix 1. All procedures adhered to ethical
guidelines for participant autonomy, safety, and confidential-
ity.

Results
Time Consumption
The average whole brain acquisition time was 4 minutes
55 seconds for routine scans, with an additional 1 minute
for vendor postprocessing. Fast scans were completed in 1
minute 52 seconds; applying the SRGAN network trained in
this study then reconstructed, the 512 by 512 quantitative
T1/T2/PD maps were completed in approximately 1 second.
Thus, the combined acquisition and reconstruction time was
reduced from 5 minutes 55 seconds to 1 minute 53 sec-
onds, promoting the wider clinical application of quantitative
neuroimaging and synthetic MRI.
Quantitative Value Accuracy
A paired t test showed significant differences in GM tissue
values between DL and fast scans (T1: P<.001, PD: P=.002),
while there was no significant difference in GM tissue
values between DL and routine scans at T1 (P=.66) and PD
(P=.18). However, compared with routine scans, T2 values
still showed significant differences after DL (P<.001). For
WM, compared with routine scans, there was no significant
difference in T2 after DL (P=.11). Although there were still
significant differences in T1 and PD, the differences were
reduced compared with fast scans (Table 1).
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Table 1. The quantitative value of brain tissue obtained by fast scan, deep learning (DL), and routine scan.
Fast, mean (SD) DL, mean (SD) Routine, mean (SD) P valuea P valueb

GMc

  T1 (ms) 1200.03 (36.01) 1230.17 (34.12) 1232.65 (34.98) <.001 .66
  T2 (ms) 97.87 (2.07) 91.36 (2.60) 93.33 (3.50) <.001 <.001
  PD (%) 79.69 (2.35) 80.29 (1.51) 80.11 (1.23) .002 .18
WMd

  T1 (ms) 814.88 (35.78) 855.06 (32.12) 837.86 (35.88) <.001 <.001
  T2 (ms) 84.57 (2.17) 80.23 (1.61) 79.92 (2.05) <.001 .11
  PD (%) 67.55 (1.94) 68.49 (1.44) 68.21 (1.29) <.001 .01

at test results between DL and fast scans.
bt test results between DL and routine scans.
cGM: gray matter.
dWM: white matter.

Setting the clinically acceptable brain tissue quantification
value limit to ±5% of the mean values from the routine
scans (T1_GM epsilon: 61.63 ms, T2_GM epsilon: 4.67 ms,
PD_GM epsilon: 4.01%, T1_WM epsilon: 41.89 ms, T2_GM
epsilon: 4.00 ms, and PD_WM epsilon: 3.41%), the 90%
TOST CI for the brain tissue in 3 quantitative maps (T1_GM:
−11.88 to 6.91, T2_GM: −2.48 to−1.46, PD_GM: −0.04
to 0.41, T1_WM: 10.94 to 23.46, T2_WM: −0.01 to 0.03,
and PD_WM: 0.10 to 0.45) were all within the predefined
margins (P<.001).

Figure 3 shows the relationship and Bland-Altman plots
between the T1, T2, and PD values obtained by DL and
routine scans (reference). The correlations to the reference
value were excellent, as the R2 for the T1, T2, and PD
values of DL compared to the reference value was 0.98, 0.97,
and 0.99, respectively. The slopes of the linear regression
were near 1.0 both for T1 (0.9418) and PD (0.9946). In
contrast, the T2 values were moderate, as the slope of the
linear regression was 0.8057 (Figure 3A,C,E). In addition,

the average percentage bias for T1, T2, and PD was
0.93%, −0.85%, and 0.31%, respectively. The 95% limits of
agreement were 6.20% to −4.34% for T1, 3.00% to −4.70%
for T2, and 1.98% to −1.35% for PD (Figure 3B,D,F).
Similarly, Figure 4 shows the relationship and Bland-Altman
plots of the T1, T2, and PD acquired by DL and fast scans.
The results of linear regression analysis also showed a strong
correlation between the 2 methods in T1 and PD (T1: R2=0.99
and PD: R2=0.98), with a slightly lower correlation in T2
(R2=0.80). The slopes of the linear regression were near 1.0
both for T1 (0.9680) and PD (0.9381). In contrast, the T2
values were moderate, as the slope of the linear regression
was 0.7755 (Figure 4A,C,E). The results of the bias trend of
T1, T2, and PD between these 2 methods also showed similar
results, that is, the mean percentage difference for T1 and
PD was smaller (3.66% and 1.09%, respectively), whereas
the mean percentage difference for T2 was slightly higher
(−6.32%) (Figure 4B,D,F).
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Figure 3. Scatterplots and Bland-Altman plot results for deep learning versus routine scans. The linear regression lines represent a strong linear
relationship with a robust fit between the tissue value measurements of T1, T2, and proton density (PD) obtained from the 2 magnetic resonance
imaging methods. Bland-Altman plots show mean percentage differences (solid red line) and the 95% CIs (dashed black line). SRGAN: superresolu-
tion generative adversarial network.
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Figure 4. Scatterplots and Bland-Altman plot results for deep learning versus fast scans. The linear regression lines represent a strong linear
relationship with a robust fit between the tissue value measurements of T1, T2, and proton density (PD) obtained from the 2 magnetic resonance
imaging methods. Bland-Altman plots show mean percentage differences (solid red line) and the 95% CIs (dashed black line). SRGAN: superresolu-
tion generative adversarial network.

Table 2 presents the intragroup CV and intergroup CV of
brain regions’ quantitative values acquired by DL and routine
scans. The intragroup variability of the quantitative values
obtained by these 2 methods is small, as the intragroup CV
for the routine scan’s PD values ranges from 1.64% to 6.44%,
and the PD values for DL range from 1.98% to 5.84%. The
highest intragroup CV of T1 and T2 values was noted in
the pallidum (T1: 18.77% vs 17.25%; and T2: 17.00% vs
16.33%). The intergroup CV was lower than the intragroup
CV for all brain regions. For intergroup CV, there were no
significant differences in the quantitative values of T1, T2,

and PD for the WM region after DL reconstruction. However,
significant differences in T2 values were observed in the GM
regions, including the frontal cortex, temporal cortex, parietal
cortex, occipital cortex, insula, and hippocampus.

Table 3 presents the quantitative values in ROI of typical
lesions acquired by DL and routine scans. Compared with
the quantitative values under routine scans, there were no
significant differences in the quantitative values reconstructed
by deep learning (T1, P=.67; T2, P=.73; and PD, P=.75).
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Table 2. Intragroup and intergroup coefficient of variation (CV) for T1, T2, and proton density (PD) based on anatomical automatic labeling (AAL)
and Johns Hopkins University (JHU) atlas in healthy individuals.

Brain region
Intragroup CV (%) Intergroup CV (%)

(T1/T2/PD)
P value
(T1/T2/PD)

DLa (T1/T2/PD) Routine (T1/T2/PD)
AAL atlas
  Frontal 7.41/7.28/3.62 8.20/7.14/3.44 2.07/5.17/0.61 .29/.001/.94
  Temporal 5.10/8.00/3.31 5.50/8.62/3.27 1.65/4.98/0.40 .38/.003/.83
  Parietal 9.32/14.40/3.02 9.08/15.90/2.97 1.30/8.11/0.45 .38/<.001/.42
  Occipital 7.43/11.07/2.15 7.19/13.32/2.41 1.72/5.10/0.47 .60/.005/.55
  Insula 9.03/15.23/2.39 9.86/13.44/2.53 1.80/7.12/0.72 .95/.02/.36
  Hippocampus 8.95/11.43/2.53 9.02/14.30/2.71 2.62/6.08/0.72 .22/.005/.34
  Caudate 13.69/16.20/5.29 14.65/17.14/5.37 2.60/5.32/0.76 .70/.35/.92
  Putamen 13.48/12.37/2.62 14.48/17.33/3.47 2.04/5.44/0.73 .99/.11/.92
  Pallidum 18.77/16.33/2.26 17.25/17.00/2.61 3.54/3.37/0.85 .51/.56/.50
  Thalamus 13.37/12.39/2.38 13.99/13.96/3.00 1.69/4.05/0.88 .77/.27/.67
JHU atlas
  MCPb 7.28/7.04/1.72 5.89/8.13/1.64 1.67/2.79/0.51 .50/.08/.28
  GCAc 15.33/9.77/5.84 15.22/9.11/6.44 1.99/2.89/0.76 .87/.52/.55
  SCAd 6.44/3.70/1.98 6.00/4.64/1.94 1.74/1.71/0.63 .19/.05/.13
  CPe 10.16/7.81/4.77 9.62/7.54/5.01 2.73/2.55/1.08 .41/.14/.55
  ICf 9.55/4.29/3.95 9.63/4.52/4.20 1.30/1.74/0.68 .83/.21/.45
  ACRg 9.01/5.62/2.94 9.78/6.91/3.86 1.97/1.34/0.91 .92/.97/.98
  SCRh 9.95/4.68/3.73 8.35/4.95/3.07 2.16/1.31/1.03 .27/.14/.28
  PCRi 14.19/3.72/4.25 12.20/4.59/3.69 2.60/2.49/0.96 .42/.03/.23
  ECj 11.32/5.02/2.82 11.23/4.89/3.36 1.38/0.92/0.95 .65/.69/.21

aDL: deep learning.
bMCP: middle cerebellar peduncle.
cGCA: genu of corpus callosum.
dSCA: splenium of corpus callosum.
eCP: cerebral peduncle.
fIC: internal capsule.
gACR: anterior corona radiata.
hSCR: superior corona radiata.
iPCR: posterior corona radiata.
jEC: external capsule.

Table 3. Quantitative value in the region of interest (ROI) of typical lesions acquired by deep learning (DL) and routine scan.
ROI Description T1a (ms) T2b (ms) PDc,d (%)

DL Routine DL Routine DL Routine
1 WMHe 1019.68 1052.20 100.84 112.9 80.70 79.16
2 WMH 1034.41 1052.78 96.32 96.71 75.21 77.09
3 WMH 955.68 1013.20 94.78 104.52 70.77 72.97
4 CIf 1217.30 1398.16 126.53 149.71 80.00 81.26
5 Encephalomalacia 3597.26 3683.45 310.67 276.99 102.83 106.59
6 WMH 1088.41 1214.51 109.50 121.23 82.11 84.70
7 CI 1832.00 1679.00 136.10 133.80 90.50 90.90
8 Encephalomalacia 3719.04 3892.54 292.16 272.32 101.31 104.98
9 WMH 1734.53 1517.03 163.45 182.01 85.14 86.37
10 WMH 1171.00 1238.00 110.60 124.70 80.70 81.10
11 Encephalomalacia 3666.00 3469.00 350.20 295.80 107.80 106.30
12 WMH 1253.00 1285.00 113.20 105.20 78.70 83.00
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aP=.67.
bP=.73.
cPD: proton density.
dP=.75.
eWMH: white matter hyperintensities.
fCI: cerebral infarcts.

Image Quality
Figure 5 and Tables 4 and 5 compare image quality among
the 3 protocols. After SRGAN reconstruction, DL maps

simultaneously preserved quantitative accuracy and outper-
formed fast acquisitions in every objective metric, demon-
strating high image quality.

Figure 5. Representative results of the proposed method. Results of fast scans (left), deep learning (DL) reconstruction (middle), and routine scans
(right) are displayed for T1 map, T2 map, and proton density (PD) map.

Table 4. Comparison of image quality between the deep learning quantitative maps and routine scans using the structural similarity image measure
(SSIM) and peak signal-to-noise ratio (PSNR).

PSNR, mean (SD)
SSIM, mean
(SD)

T1 maps 21.94 (2.36) 0.82 (0.08)
T2 maps 29.14 (1.81) 0.93 (0.03)
PDa maps 58.01 (3.15) 0.99 (0.01)

aPD: proton density.

Table 5. The naturalness image quality evaluator of quantitative maps under fast scan, deep learning (DL), and routine scan.

Fast scan, mean (SD) DL, mean (SD)
Routine, mean
(SD)

T1 maps 29.46 (6.42) 13.36 (1.88) 10.90 (1.84)
T2 maps 30.56 (5.57) 18.79 (1.46) 15.21 (1.78)
PDa maps 34.66 (2.99) 11.74 (2.17) 10.85 (2.53)

aPD: proton density.
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Discussion
Principal Findings
In this paper, we trained an SRGAN network to reconstruct
whole brain T1, T2, and PD maps from accelerated synthetic
MRI data. Experimental results show that the application of
DL for reconstruction can generate quantitative maps from
fast scans with a 50% reduction in acquisition time. The
quantitative instability caused by LR acquisition is reduced,
with no significant difference between the reconstructed and
routine scan values, and intra- and inter-CVs are small in
most brain regions. Our study also found that the resulting
maps still allow clear visual detection of common patholo-
gies, thereby helping to shorten clinical scanning time.
Comparison With Prior Work
In previous studies, the use of commercial algorithms for
fast image reconstruction resulted in a total brain acquisi-
tion time exceeding 3 minutes [25]. Our research further
reduces the collection time to less than 2 minutes while
maintaining accuracy. DICOM raw data were used as input
and output for the network, which conforms to the stand-
ard practice of DICOM image processing, where metadata
(including rescaled slopes) are crucial for accurate image
analysis and quantitative measurement. By adhering to these
specifications, the study maintains the integrity of the qMRI
data, facilitating a reliable evaluation of the DL reconstruc-
tion techniques’ impact on the accuracy of quantitative brain
tissue values.

The MDME sequence was used to acquire the quan-
titative maps, and several studies have investigated the
repeatability and reproducibility of quantitative values using
this sequence. In this study, we applied multiple quanti-
tative metrics and statistical methods to analyze differen-
ces among DL reconstructed, fast scan, and routine scan
values. The results of our study, as indicated by the paired
t tests, provide valuable insights into the performance of
DL reconstruction and demonstrate that it improves the
accuracy of fast quantitative MRI scans, bringing tissue-
specific T1, T2, and PD values closer to those of rou-
tine clinical acquisitions. In GM, the method achieved no
statistically significant difference compared to routine scans.
However, a small but statistically significant underestimation
in T2 remained. A previous study examining the influence
of parameter modifications on MDME-derived quantitative
values reported that alterations in acquisition matrix or
acceleration factor induced negligible variance in measured
constants, with the exception of CSF T2 estimation [26,27].
Notably, this investigation was performed on an isolated,
homogeneous phantom; consequently, partial volume effects
and other anatomical confounders were absent. The present
fast scan protocol, in contrast, simultaneously varies both
matrix size and acceleration factor without a commensurate
increase in the number of echo times. This divergence in
experimental design may compromise the accuracy of T2
mapping—particularly through reduced sampling density in

echo space—thereby introducing systematic bias into the
fitted relaxation constants. However, TOST analysis further
indicates that the 90% CIs of all brain tissue parameters in the
3 quantitative maps are within clinically acceptable ranges,
providing the possibility for the clinical applications of DL
quantitative reconstruction.

In our quantitative analysis, the linear regression slope
for T2 values (DL vs routine) was 0.8057, which deviates
from the ideal value of 1.0. Clinically, this may affect the
diagnostic accuracy of high T2 lesions, leading to misdiag-
nosis or delayed intervention. Most of the samples in this
study were healthy volunteers, and the accuracy of DL for
T2 values under specific pathological manifestations was not
validated. Such bias may arise primarily from the L1 loss
component, which enforces pixel-wise fidelity at the expense
of high-frequency details and can lead to oversmoothing—
particularly in regions with high tissue contrast or rapid T2
decay. Consequently, although the average T2 error across
healthy tissue may satisfy TOST criteria, it may reduce the
accuracy of this method in extreme cases of dynamic range
that often occur in pathology. Despite this limitation, the
SRGAN model demonstrated good performance in overall
image quality metrics, indicating its practicality in routine
clinical workflows, although it requires appropriate attention.

Linear regression and Bland-Altman plots also demonstra-
ted that the vast majority of quantitative parameters exhibited
high correlation and agreement between the DL and routine
scans, with 95% of data points lying within the limits of
agreement, which is in line with previous research [28,29].
In contrast, T2 estimates derived from the DL exhibited a
marked bias relative to the reference (Figure 3 vs Figure
4). These findings indicate that the DL model successfully
compensates for systematic errors introduced by the fast scan,
yielding quantitative values that closely approximate those
obtained under routine scans. Such error mitigation directly
supports the primary objective of this study: to establish the
feasibility of using DL for accurate, ultrafast quantitative MR
reconstruction.

In addition to measuring the quantitative values of gray
and WM, the study also applied classic atlases from brain
science analysis: the anatomical automatic labeling and the
Johns Hopkins University atlases [30]. These atlases divide
the brain into regions based on structure or function, which
allows for a more comprehensive characterization of the
accuracy and reliability of the quantitative values. Generally,
the intragroup CV should ideally be below 10%, and the
intergroup CV should remain under 15%, yet a significant
intragroup CV was observed in deep GM nucleus regions,
such as pallidum. This may be due to the inhomogeneity
of B1 and differences in data acquisition parameters or
variations in the age and gender of the individuals, which
have also been shown and analyzed in previous studies
[31-33]. Additionally, these numerical disparities may stem
from spatial registration errors between individual quantita-
tive maps and brain region templates, potentially affecting
the extraction of quantitative values. Our study also observed
significant differences in the T2 CVs between DL and routine
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scans in some GM brain regions. This difference indicates
that although the SRGAN model has good consistency at
the overall organizational level, it may introduce variability
at the regional scale, which may be due to the model’s
sensitivity to local texture or noise, potentially limiting its
practicality in precise quantitative neuroimaging applications.
However, the intra- and inter-group CV for the remaining
brain regions remained below 5%, especially for PD values,
which show minimal intragroup and intergroup variation
across all brain regions. This implies that T2 is relatively
sensitive in quantitative analysis and should be a key focus in
disease analysis.

The outlined lesion areas in the study are predominantly
distributed in the WM. The average T1, T2, and PD quanti-
tative values within these lesion areas exceed 1000 millisec-
onds, 100 milliseconds, and 80 milliseconds, respectively,
which are higher than the ranges observed in the healthy
participants’ quantitative values. Furthermore, different types
of lesions exhibit distinct quantitative values. WM hyper-
intensities and acute-phase cerebral infarction have similar
quantitative values. In contrast, the quantitative values in
encephalomalacia are significantly higher than those in the
other 2 types of lesions, particularly the T1 values within
encephalomalacia (approaching 4000 ms), which are similar
to the T1 value of cerebrospinal fluid because the compo-
nents of encephalomalacia are similar to cerebrospinal fluid.
These findings align with clinical knowledge, indicating that
lesion areas generally have longer T1 and T2 relaxation times.
Importantly, the quantitative values obtained through DL
still maintain diagnostic efficacy. Through careful examina-
tion of quantitative values, it was found that with a small
amount of lesion data, although the difference in quantitative
values between DL and routine scans did not reach statisti-
cal significance, 5 reconstructed T2 values were lower than
those of the routine scan in 7 WMH and infarct ROIs. Given
that these lesions have already exhibited high T2 relaxation
times (usually >100 ms), any systematic underestimation may
weaken their abnormal manifestations. This may be because
superresolution networks are only trained on quantitative
images of healthy adults and do not include any pathological
cases. Therefore, the model has not yet learned the charac-
teristic diastolic curves of common brain injuries, such as
significant prolongation of WM hyperintensities on T2. This
lack of exposure may lead to the network interpreting high
T2 values in lesions as outliers or reconstruction artifacts,
thereby regressing these values to the healthy tissue distribu-
tion. Therefore, the sample size will continue to be expan-
ded in the future to verify the quantitative accuracy of DL
reconstruction in various neurological diseases.

While the DL maps have basically met the predefined
quantitative equivalence margins, the no-reference NIQE
metric reveals a residual perceptual gap: compared with fast
scanning, the DL image quality has significantly improved
(as indicated by a decreased NIQE score), but compared with
routine scans, the NIQE scores of the 3-parameter images
are slightly higher. This suggests that the current model
ensures the accuracy of clinical quantification and signifi-
cantly improves accuracy on the basis of fast scans, but

further improvement is needed to achieve complete percep-
tual equality with routine HR imaging.
Limitations
This study still has some limitations. First, the study
adopted the widely validated SRGAN framework and focused
on quantitative agreement and image quality comparison;
however, emerging architectures such as ESRGAN or SwinIR
were not compared, nor were traditional non-DL upsampling
methods used as baselines. Second, the network was trained
exclusively on data acquired with a GE 3.0 T scanner and
entirely on normal-appearing brain tissue (only 7 patients
with 3 common lesion types were used for testing), so
the performance of the method on pathological tissue is a
preliminary proof of concept rather than evidence of clinical
equivalence. The small number of pathology cases limits
statistical power and generalizability to diverse or high-con-
trast lesions, which may pose a barrier to routine clinical
deployment. Third, based on the current amount of data, using
the training set and testing set with a single subject-level
split of 8:2 may prevent data leakage from related slices
but may not fully capture the variability between multiple
random partitions. Due to limited training data, the model
runs on 2D slices instead of 3D volumes, which may result in
a loss of spatial continuity between slices. Fourth, accelera-
tion was limited to an R of 3, reconstruction was performed
on postprocessed quantitative maps, raw k-space data were
not used, and weighted images generated from the quanti-
tative maps were not evaluated. Additionally, the ground
truth images have been reconstructed from a matrix of 320
by 256 to a matrix of 512 by 512, and thus, the model
learns to reproduce the interpolated image content rather
than recovering genuine high-frequency details that would be
present in a natively HR acquisition. Finally, evaluation was
performed based on quantitative metrics without introducing
a qualitative visual assessment by radiologists.
Future Directions
Future research should focus on the following improve-
ments: systematically compare the current SRGAN imple-
mentation with newer superresolution networks and quantify
the individual contributions of perceptual and adversarial
losses to quantitative accuracy, and compare them with
non-DL baseline reconstruction methods to better illustrate
the benefits of DL. A prospective cohort including demye-
linating disease, tumor edema, and microhemorrhages will
be enrolled, and the model will be fine-tuned or retrained
if necessary before wider clinical deployment. To improve
robustness, we will collect both k-space and image-domain
data and develop a dual-domain joint reconstruction
framework. Future work will explore 3D or slice-aware
architectures based on richer training data and comput-
ing resources and attempt to use different data partition-
ing methods to validate generalization further. Finally, the
weighted images derived from the superresolved quantitative
maps will be generated and assessed for diagnostic quality.
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Conclusions
In conclusion, accelerating synthetic MRI is pivotal for its
broader clinical adoption in neuroimaging. In this study,
we undertook the optimization and enhancement of images
acquired through fast synthetic MRI via DL-based reconstruc-
tion techniques. Our efforts may result in a remarkable 50%
reduction in clinical scan time, all the while achieving better
image quality. Importantly, reconstructed T1 and PD maps
show excellent agreement with reference scans, supporting

their potential for reliable quantification, although T2 values
exhibit a consistent underestimation at higher intensities.
Despite this limitation, the overall strong correlations and low
average biases suggest that using DL methods to mitigate
biases in quantitative values is feasible. Furthermore, the
shortened scan time not only enhances patient comfort but
also reduces the likelihood of motion artifacts. This optimiza-
tion streamlines the scanning workflow, minimizes redun-
dancy, and maximizes the efficient use of MRI machines.
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