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Abstract

Background: The Cox proportional hazards (CPH) model is a common choice for analyzing time-to-treatment interruptions
in patients on antiretroviral therapy (ART), valued for its straightforward interpretability and flexibility in handling time-
dependent covariates. Machine learning (ML) models have increasingly been adapted for handling temporal data, with added
advantages of handling complex, nonlinear relationships and large datasets, and providing clear practical interpretations.

Objective: This study aims to compare the predictive performance of the traditional CPH model and ML models in predicting
treatment interruptions among patients on ART, while also providing both global and individual-level explanations to support
personalized, data-driven interventions for improving treatment retention.

Methods: Using data from 621,115 patients who started ART between 2017 and 2023, in Kenya, we compared the perform-
ance of the CPH with the following ML models —gradient boosting machine, extreme gradient boosting, regularized gener-
alized linear models (Ridge, Lasso, and Elastic-Net), and recursive partitioning—in predicting first and multiple treatment
interruptions. Explainable surrogate technique (model-agnostic) was applied to interpret the best performing model’s predic-
tions globally, using variable importance and partial dependence profiles, and at individual level, using breakdown additive,
Shapley Additive Explanations, and ceteris paribus.

Results: The recursive partitioning model achieved the best performance with a predictive concordance index score of 0.81
for first treatment interruptions and 0.89 for multiple interruptions, outperforming the CPH model, which scored 0.78 and 0.87
for the same scenarios, respectively. Recursive partitioning’s performance can be attributed to its ability to model nonlinear
relationships and automatically detect complex interactions. The global model-agnostic explanations aligned closely with the
interpretations offered by hazard ratios in the CPH model, while offering additional insights into the impact of specific features
on the model’s predictions. The breakdown additive and Shapley Additive Explanations explainers demonstrated how different
variables contribute to the predicted risk at the individual patient level. The ceteris paribus profiles further explored the
time-varying model to illustrate how changes in a patient’s covariates over time could impact their predicted risk of treatment
interruption.
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Conclusions: Our results highlight the superior predictive performance of ML models and their ability to provide patient-spe-
cific risk predictions and insights that can support targeted interventions to reduce treatment interruptions in ART care.
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Keywords: antiretroviral therapy; explainable machine learning; machine learning; recursive partitioning; treatment interrup-

tions.

Introduction

The Cox proportional hazards (CPH) model has long been
a foundational tool for time-to-event analysis, widely used
in health care research to examine treatment interruptions,
including among patients on antiretroviral therapy (ART).
The CPH model is a favorable choice due to its straightfor-
ward interpretability; its coefficients can be easily understood
as hazard ratios, which quantify the relative effect of each
covariate on the likelihood of an event, offering clear insights
for clinical decision-making and risk assessment [1,2]. In
addition, its flexibility in handling time-dependent covariates
allows it to incorporate variables that change over time,
providing a more accurate reflection of patient dynamics
[3-5]. Our previous work [6] focused on using time-depend-
ent covariates within the CPH model to enhance its applica-
tion in modeling the complex patterns of multiple treatment
interruptions in patients on ART, aiming to capture the
nuanced and changing influences on treatment adherence.

Despite its popularity, the CPH model has limitations. A
key disadvantage is its handling of high-dimensional data
with many covariates, as it can be prone to overfitting and
may yield unreliable results due to multicollinearity [4].
This risk is particularly pronounced in time-dependent CPH
models, where changing covariates can amplify the potential
for erroneous inferences [4]. In addition, as a semiparametric
model, it does not fully specify the baseline hazard function,
potentially limiting its ability to capture complex, nonlinear
relationships [7]. These limitations highlight the need for
more flexible modeling approaches, especially when working
with complex health care datasets with nonlinear, time-vary-
ing, or high-dimensional characteristics.

Machine learning (ML) models are increasingly used in
time-to-event analysis due to their ability to capture com-
plex, nonlinear relationships at scale. In HIV and ART
research, however, most survival ML applications such as
random survival forests and gradient boosting primarily rely
on baseline or time-invariant covariates, limiting their ability
to reflect the dynamic nature of ART care. Although some
methods, including recursive partitioning (RP), have been
adapted to incorporate temporal structures and time-vary-
ing effects [8-10], support for fully time-varying covari-
ates remains limited in many survival ML frameworks.
RP provides a flexible alternative by modeling nonlinear
effects and interactions with time-varying covariates, yet
its application to large-scale, longitudinal ART cohorts has
been limited. In addition, advances in model interpretability
have made ML models more explainable, helping to bridge
the gap between predictive accuracy and practical applica-
bility. Through methods such as permutation importance,
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partial dependence plots, and Shapley Additive Explanations
(SHAP) values [11-13], ML models now provide insights into
variable importance and individual predictions, making them
increasingly useful for clinical decision-making and patient-
centered care.

The aim of this paper is first to compare the perform-
ance of traditional CPH model and ML models in pre-
dicting treatment interruptions among patients on ART.
This comparison aims to evaluate whether ML models,
with their flexibility in handling nonlinear relationships and
time-dependent covariates, can provide more accurate and
reliable predictions than the CPH model. Second, provide
clear, intuitive explanations for the predictions at both the
global level to understand overall patterns and key risk
factors and the local level for individualized predictions for
a patient. By combining predictive accuracy with interpreta-
bility, this study aims to support health care providers in
identifying patients at high risk for treatment interruption
and in implementing personalized interventions to enhance
treatment retention.

Methods

Study Population and Data

The analysis used longitudinal, deidentified electronic
medical record (EMR) data from patients initiated on ART
between January 1, 2017, and November 30, 2023, across
2156 facilities in all 47 counties of Kenya. Eligible patients
had at least 2 follow-up visits or drug pickups after ART
initiation, were followed for more than 28 days postinitiation,
and had returned to care if they had experienced an initial
treatment interruption.

Data Preprocessing and Definitions

The preprocessing, cleaning, feature engineering, and
covariate definitions are detailed in our previous work
[6]. Treatment interruption was defined as no ART drug
pickup and no clinical contact for greater than 28 days
after the last expected contact [14]. Time-invariant covari-
ates included age, gender, education, marital and employment
status, noncommunicable disease, baseline regimen, and ART
initiation year, while time-varying covariates were adher-
ence, alcohol intake, World Health Organization stage, viral
load, clinical stability assessment, regimen line, multimonth
dispensing (MMD), differentiated service delivery (DSD)
model, and prevention with positives package. Full list
of covariates and description is included in Table S1 in
Multimedia Appendix 1. A key preprocessing step inclu-
ded creating an “unknown” category for categorical varia-
bles with missing data. Engineered features included the

JMIR Med Inform 2026 | vol. 14 178964 | p. 2
(page number not for citation purposes)


https://doi.org/10.2196/78964
https://medinform.jmir.org/2026/1/e78964

JMIR MEDICAL INFORMATICS

COVID-19 pandemic period—dummy variable to indicate the
COVID-19 pandemic; missed appointment—failure to attend
a scheduled visit within 1-3 days of the scheduled date;
defaulted appointment—failure to attend a scheduled visit
within 4-28 days; and the duration of treatment interruption—
average duration of any treatment interruption before a patient
returned to care.

Analysis and Models

We performed 2 sets of modeling, that is, time-invariant
model, for first-ever treatment interruption, and a time-vary-
ing model, for multiple interruptions. The data structure
differs between the models: in a time-invariant model,
covariates were fixed, with 1 row per patient containing the
time to interruption and interruption status. In a time-vary-
ing model, covariates change over time, with multiple rows
per patient representing different time intervals and multiple
interruption statuses.

Our base reference model was the traditional CPH model.
The time-invariant CPH assessed the effect of fixed covari-
ates on time to first interruption, with an assumption that the
hazard ratio remains constant over time, while the time-vary-
ing allowed covariates to change over time, capturing the
dynamic effects of these covariates on the hazard at different
intervals.

Our choice of ML models was based on algorithms with
the ability to fit time-varying covariates and their computa-
tional feasibility at scale. We evaluated 3 classes of algo-
rithms: boosting methods for their efficiency and predictive
performance, regularized shrinkage models for handling
multicollinearity and improving generalization, and RP for
its ability to capture nonlinear relationships and interactions
while remaining interpretable. Although random survival
forests are widely used in survival analysis, their computa-
tional demands and limited support for fully time-varying
covariates constrained their applicability in this study. The
trained models are as described:

* Gradient boosting machine (GBM): an ensemble
learning method that builds a series of decision trees,
where each new tree corrects the errors of the previ-
ous ones. It is powerful for time-invariant survival
analysis due to its ability to handle complex, nonlin-
ear relationships and improve predictive accuracy by
minimizing loss iteratively.

* Extreme gradient boosting (XGBoost): an optimized
version of GBM, known for its speed and performance,
especially with large datasets. It is well suited for our
analysis due to its efficiency, scalability, and ability
to manage missing data, offering robust predictions in
survival tasks. The Accelerated Failure Time model
was trained for a time-varying dataset.

* Regularized generalized linear models: Extends
traditional regression models with regularization
techniques—Ridge (L.2), Lasso (L1), and Elastic Net
(a combination of both) —to prevent overfitting and
handle multicollinearity. These models are benefi-
cial in time-invariant survival analysis for selecting
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relevant covariates while improving model generaliza-
tion, especially with high-dimensional data.

¢ Recursive partitioning (LTRCtrees/Rpart): Uses
decision trees to model survival data, splitting the
dataset based on covariates to form homogeneous
subgroups. It is advantageous due to its interpretability
and ability to handle nonlinear relationships without
making parametric assumptions.

We initially trained each model using default hyperparame-
ters as a baseline, followed by hyperparameter tuning through
a 10-fold cross-validation over a grid of parameter combina-
tions. The optimal set of hyperparameters was selected based
on the highest Harrell’s concordance index (C-index) score,
reflecting the study’s primary objective of ranking patients by
treatment interruption risk. The optimal parameter sets were
then used for final model training. All analysis and modeling
were performed using R Statistical Software (version 4.4.0; R
Foundation for Statistical Computing).

Model Evaluation

We evaluated model performance using an 80:20 train-test
split (including the Cox models to ensure comparability).
Likewise, a 10-fold cross-validation was performed on the
train set, and models were trained on k-1 folds and validated
on the remaining fold, repeating this process 10 times, with
each fold serving as the validation set once.

Final model evaluation and comparison were performed
using the C-index, a widely used metric for assessing the
performance of survival models. The C-index measures
the model’s ability to correctly rank pairs of observations
based on survival times, with values ranging from 0.5
(random prediction) to 1.0 (perfect ranking). We calculated
the C-index for each model on both the training and test
sets to evaluate predictive accuracy. This approach ensured
that the models performed well during training and on
validation data, providing a reliable measure of generaliza-
bility. Furthermore, to assess the sensitivity and uncertainty
of the predictive performance measures, we conducted 200
bootstrap resampling iterations to estimate the IQR distribu-
tion of the scores for our best performing model.

Model Interpretability

To interpret our model predictions, we used the DALEX
package in R [15] and applied 2 levels of model-agnos-
tic explanation, that is, model level global explanations—
using permutation variable importance and partial depend-
ence plots, and individual-level explanations—using variable
attribution —breakdown and SHAP values and ceteris paribus
(CP) analysis.

Global-Level Explanations

The global-level explanations are listed as follows:
1. Variable importance: Using a permutation-based
approach, we assessed how removing the effect
of selected variables through multiple permutations
impacts model performance.
2. Partial dependence profiles: We explored the effects
of selected variables by examining how the model’s
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predicted values change as a function of individual
variables, based on randomly selected observations.

Individual-Level Explanations

The individual-level explanations are listed as follows:

1. Variable attributions: This explains how a model’s
prediction for a single observation differs from the
average prediction and distributes the difference among
explanatory variables. We applied two methods: (1)
Breakdown additive attribution, a procedure that
decomposes the model’s prediction into contributions
from each explanatory variable. (2) SHAP, the
averaging of variable attribution values over all (or
several) possible orderings to show their individual
impacts.

CP profiles: This explores how the model’s prediction
changes when the value of a single explanatory variable
is altered, while keeping all other variables constant.

Ethical Considerations

This study was reviewed and approved as nonhuman subject
research by the institutional review boards of the University

Table 1. Hyperparameters for the machine learning models.

Salami et al

of Maryland, Baltimore (HP-00108126), and the Aga Khan
University Nairobi (2023/ISERC-94 (v2)). The analysis used
secondary EMR data that were fully deidentified prior to
receipt by the study team in accordance with Kenya’s Data
Protection Act and institutional guidelines; therefore, written
informed consent was not required.

Results

Our dataset comprised 621,115 unique patients on ART,
with 432,041 first treatment interruption events and 959,170
multiple treatment interruption events. Data were split into
an 80:20 ratio for the training and test sets, respectively.
The hyperparameters for each model, along with the final
parameter combinations used in the final model, are shown in
Table 1. The predictive performance of ML models and their
comparison with the CPH are shown in Table 2 and Figure 1,
summarized by the estimated C-index scores and 95% Cls for
both the train and test sets.

Model (R package) and parameter

Chosen value (time-invariant model)

Chosen value (time-varying model)

Cox proportional hazards (survival)
N/A?
Gradient boosting machine (gbm3)

N/A

distribution coxPH (ties = Efron)
n.trees 100

interaction.depth 3

n.minobsinnode 5

shrinkage 0.01

bag.fraction 1

cv.folds 10

id Unique value of patient ID

Extreme gradient boosting (xgboost)

Objective survival:cox
eval_metric cox-nloglik
max_depth 5

eta 0.2
colsample_bytree 0.8
min_child_weight 5
subsample 1

n_folds 10

best nrounds 99
aft_loss_distribution N/A
aft_loss_distribution_scale N/A

Regularized generalized linear models
(glmnet)

lambda

Length of 100, ranging logarithmically from
1019 t0 102. With minimum lambda = ¢

N/A

coxph (ties = Efron)
3000

3

20

0.001

0.5

10

Unique value of patient ID

survival:aft—accelerated failure time
aft-nloglik
6

03

1

1

1

10

N/A
normal

1

Length of 100, ranging logarithmically from 100
to 1072, With minimum lambda=c (Ridge: 0.01,
Lasso: 0.01, Elastic Net: 0.01)
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Model (R package) and parameter

Chosen value (time-invariant model)

Chosen value (time-varying model)

type.measure
nfolds
maxit

alpha

Recursive partition (LTRCtrees/rpart)
complexity parameter
xval (cross validations)
maxsurrogate
maxdepth
minsplit

maxcompete

(Ridge: 0.01, Lasso: 0.023, Elastic Net:
0.01748)

“C”—Harrel’s concordance measure

10

1.00E+05

c(0,05,1)

where

0—Ridge penalty, L2 regularization only®.
0.5—Elastic-Net, L1 and L2 regularization®.

1—Lasso, L1 regularization onlyd.

0.0001
10

5

20

20
4

“C”—Harrel’s concordance measure

10

1.00E+05

c(0,05,1)

where

0—Ridge penalty, L2 regularization onlyb.
0.5—Elastic-Net, L1 and L2 regularization®.

1—Lasso, L1 regularization only.

0.0214
10

0

30

10
4

AN/A: not applicable.

bRidge—applies L2 regularization which penalizes the sum of the squared coefficients and is effective in cases where multicollinearity is present in

the predictor variables.

CElastic-Net regression—applies a combination of L1 and L2 regularization.
dLasso—applies L1 regularization which can shrink some coefficients to zero, effectively performing feature selection.

Figure 1. Models’ comparison: C-Index with 95% ClIs. (A) C-Index comparison for the time-invariant models. (B) C-Index comparison for the

time-varying models.
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Table 2. Models’ comparison of the time-invariant and time-varying models, using C-index scores for train and test sets.

Salami et al

Model

Time-invariant model

C-Index —train (95% CI)

C-Index —test (95% CI)

Time-varying model

C-Index —train (95% CI) C-Index—test (95% CI)

Coxph
glmnet—Lasso
glmnet—Ridge
glmnet— Elastic-net
gbm

Xgboost

LTRCtrees

0.7873 (0.7865-0.7881)
0.7801 (0.7793-0.7809)
0.7799 (0.7791-0.7807)
0.7801 (0.7793-0.7809)
0.5765 (0.5758-0.5773)

0.7157 (0.7149-0.7165)
0.8115 (0.8108-0.8123)

0.7886 (0.7871-0.7903)
0.7797 (0.7780-0.7813)
0.7794 (0.7778-0.7810)
0.7796 (0.7780-0.7812)
0.5764 (0.5749-0.5780)

0.7143 (0.7127-0.7157)
0.8105 (0.8091-0.8120)

0.8757 (0.8754-0.8761)
0.7747 (0.7741-0.7754)
0.7816 (0.7810-0.7821)
0.7795 (0.7789-0.7801)
0.5334 (0.5330-0.5337)

0.8351 (0.8346-0.8356)
0.8918 (0.8915-0.8921)

0.8755 (0.8748-0.8762)
0.7745 (0.7732-0.7758)
0.7812 (0.7800-0.7824)
0.7793 (0.7780-0.7805)
0.5335(0.5328-0.5342)

0.8347 (0.8338-0.8357)
0.8901 (0.8895-0.8907)

In the time-invariant analysis, the glmnet models—Lasso,
Ridge, and Elastic-Net—produced comparable results to the
CPH model, with train C-index values ranging from 0.7799
to 0.7801 and test C-index values ranging from 0.7794 to
0.7796. XGBoost performed slightly worse than the CPH
model, while the GBM model had the lowest performance.
The LTRCtrees model outperformed all other ML models
and the CPH model with a C-index value of 0.8115 for the
train set and 0.8105 for the test set. The LTRCtrees model
remained the top performer in the time-varying analysis with
a C-index of 0.8918 for the train set and 0.8901 for the
test set. XGBoost was the next best performing ML model
and slightly comparable with the CPH model. We further
evaluated the best-performing model (ie, LTRCtrees), using
a 200-bootstrap resamples; the C-index interquartile range
remained stable across resamples.

Figures 2 and 3 show the permutation-based variable
importance for the top 10 variables in both the time-invariant

and time-varying models. MMD emerged as the most
important variable in the time-invariant model, while the
duration of treatment interruption was most important in the
time-varying model. In addition, variables such as viral load,
ART start year, stability assessment, baseline regimen, and
occupation were consistently ranked among the top 10 most
influential variables in both models. The permutation-based
variable importance results were similar to the ranking of
the absolute values of the coefficients of the CPH mod-
els (Table 3). MMD, missed and defaulted appointments,
year of ART initiation, occupation, and stability assessment
consistently ranked among the top 10 variables in both the
time-invariant LTRCtree and CPH models. In the time-vary-
ing models, duration of interruption, MMD, year of ART
initiation, baseline regimen, and occupation were consistently
top influencers in both LTRCtree and CPH models.

Figure 2. LTRCtree time-invariant model top 10 most important variables. ART: antiretroviral therapy; MMD: multimonth dispensing; PwP:

prevention with positives package.

Top 10 most important variables

Time-invariant LTRCtrees model

MMD
ARTStartYear
MissedAppointment
DefaultAppointment
CovidLockDown
PwP

ViralLoad
Occupation
StabilityAssessment

BaselineRegimen

0.05

0.10

Permutation importance score
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Figure 3. LTRCtree time-varying model top 10 most important variables. ART: antiretroviral therapy; MMD: multimonth dispensing.

InterruptionDuration

Alcohollntake

ViralLoad

CovidLockDown

MaritalStatus

Occupation

MMD

DefaultedAppointment

DifferentiatedCare

AgeARTStart

Time varying LTRCtrees model

Top 10 most important variables

-r-r-r-r-r'rlll—-‘

e
N

0.2

<
IS

0.3

Permutation importance score

Table 3. Hazard ratio of the top 10 variables from the time-invariant and time-varying Cox proportional hazards models.

Covariates

Time invariant—first treatment interruption

N=497,208; events=346,118%

Time varying—multiple treatment interruption
N=7,352,030; events=842,500

Hazard ratio (95% CI)b P value Hazard ratio (95% CI)¢ P value

Marital status

Other Reference category Reference category

Cohabiting 1.02 (0.97-1.07) .39 1.02 (0.99-1.05) 26

Divorced 1.00 (0.95-1.04) 91 0.98 (0.95-1.01) 21

Married, monogamous 1.00 (0.95-1.05) .89 0.99 (0.96-1.02) 45

Married, polygamous 1.07 (1.02-1.12) 01 0.86 (0.84-0.89) <.001

Separated 1.10 (1.03-1.18) <.001 1.18 (1.13-1.23) <.001

Single 1.06 (1.01-1.11) 02 1.01 (0.98-1.04) 45

Widowed 1.07 (1.02-1.13) <.001 1.00 (0.97-1.03) 91
Employment status

Employed Reference category Reference category

Unemployed 1.00 (0.99-1.01) 72 1.00 (0.99-1.01) 75

Unknown 1.34 (1.33-1.36) <.001 1.24 (1.23-1.25) <.001
Adherence

Good Reference category Reference category

Fair 1.26 (1.23-1.29) <.001 0.97 (0.95-0.99) <.001

Bad 1.81 (1.69-1.94) <.001 1.09 (1.03-1.15) <.001

Unknown 1.13 (1.10-1.17) <.001 0.95 (0.93-0.97) <.001
Alcohol intake

Never Reference category Reference category

Monthly or less 0.93 (0.89-0.97) <.001 0.98 (0.95-1.00) 08

2-4 times a month 0.95 (0.89-1.02) 13 1.02 (0.98-1.07) 26

2-3 times a week 0.99 (0.94-1.05) 85 1.02 (0.98-1.05) 36

4 or more times a week 0.96 (0.91-1.01) 09 1.01 (0.98-1.04) .59

Unknown 0.99 (0.95-1.03) 53 1.18 (1.15-1.21) <.001
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Covariates Time invariant—first treatment interruption Time varying—multiple treatment interruption
N=497,208; events=346,118% N=7,352,030; events=842,500
Hazard ratio (95% CI)b P value Hazard ratio (95% CI)¢ P value

Viral load

<200 Reference category Reference category

200-999 1.10 (1.09-1.11) <.001 1.00 (1.00-1.01) 27

>1000 1.14 (1.12-1.16) <.001 1.10 (1.09-1.11) <.001

Unknown 0.82 (0.81-0.83) <.001 1.11 (1.10-1.11) <.001
Clinical stability assessment

Stable Reference category Reference category

Unstable 1.31 (1.30-1.32) <.001 1.09 (1.08-1.09) <.001
Baseline ARTY regimen

Other Reference category Reference category

2NRTIs® + Boosted PIf. 0.85 (0.83-0.87) <.001 0.89 (0.88-0.91) <.001

2NRTIs + INSTIS. 1.11 (1.08-1.13) <.001 1.02 (1.01-1.04) <.001

2NRTIs + NNRTI" 1.59 (0.79-3.17) .19 0.99 (0.71-1.39) 97

NRTI + INSTI 1.14 (1.04-1.25) 01 1.30 (1.24-1.36) <.001
Multimonth dispensing (months)

1 Reference category Reference category

2 0.57 (0.57-0.58) <.001 0.75 (0.75-0.76) <.001

3-5 0.28 (0.28-0.28) <.001 0.46 (0.46-0.46) <.001

6 0.15(0.14-0.15) <.001 0.27 (0.27-0.28) <.001

6+ 0.04 (0.04-0.05) <.001 0.22 (0.21-0.22) <.001
Prevention with positives package

0 Reference category Reference category

1 0.86 (0.85-0.86) <.001 0.93 (0.92-0.94) <.001

2 0.61 (0.60-0.62) <.001 0.85 (0.84-0.86) <.001

3 or more 0.59 (0.59-0.60) <.001 0.85 (0.84-0.85) <.001
ART initiation year

2017 Reference category Reference category

2018 1.21 (1.20-1.22) <.001 1.20 (1.19-1.21) <.001

2019 1.50 (1.48-1.52) <.001 1.48 (1.47-1.49) <.001

2020 1.68 (1.66-1.71) <.001 1.83 (1.82-1.85) <.001

2021 2.02 (1.99-2.05) <.001 222 (2.20-2.25) <.001

2022 2.08 (2.05-2.12) <.001 2.64 (2.61-2.68) <.001

2023 0.63 (0.61-0.65) <.001 3.51(3.42,3.60) <.001
COVID-19 pandemic period

Non-COVID-19 period Reference category Reference category

COVID-19 period 1.17 (1.16-1.18) <.001 0.92 (0.91-0.92) <.001
Prior missed appointment

No Reference category N/A N/A

Yes 0.35 (0.34-0.35) <.001 N/A N/A
Prior default appointment

No Reference category N/A N/A

Yes 0.52 (0.51-0.53) <.001 N/A N/A
Missed appointments

0 N/A N/A Reference category

1-3 N/A N/A 0.93 (0.93-0.94) <.001
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Covariates Time invariant—first treatment interruption Time varying—multiple treatment interruption
N=497,208; events=346,118% N=7,352,030; events=842,500
Hazard ratio (95% CI)b P value Hazard ratio (95% CI)¢ P value
4-6 N/A N/A 0.81 (0.80-0.82) <.001
7+ N/A N/A 0.73 (0.72-0.75) <.001
Default appointments
0 N/A N/A Reference category
1-3 N/A N/A 1.00 (1.00-1.01) .1
4-6 N/A N/A 0.97 (0.96-0.98) <.001
7+ N/A N/A 0.95 (0.94-0.96) <.001
Duration of treatment interruptions
0 (No interruptions) N/A N/A Reference category
<30 days N/A N/A 29.94 (29.63-30.26) <.001
30-197 days N/A N/A 19.63 (19.51-19.75) <.001
180-364 days N/A N/A 8.15 (8.08-8.23) <.001
365 days or more N/A N/A 2.85(2.82-2.88) <.001

4N=number of observations in the train dataset, that is, 80% of the entire dataset; events=number of treatment interruptions.

bConcordance=0.79 (se=0).

¢Concordance=0.88 (se=0).

dART: antiretroviral therapy.

°NRTIs: nucleoside analog reverse transcriptase inhibitors.
fPI: protease inhibitor.

8INSTL: integrase strand transfer inhibitor.

?‘NNRTI: nonnucleoside analog reverse transcriptase inhibitor.
'N/A: not applicable.

The full results of the time-invariant and time-varying CPH
models are included in Table S2 in Multimedia Appendix 1.
The partial dependence plots for the top 4 variables from both
models are displayed in Figures 4 and 5. These plots show
the average predicted risk for each of these variables. Short
dispensing interval (MMD of 1 month), initiating ART in
2021, and having not missed or defaulted on an appointment
were associated with higher predicted risks of first treatment
interruption. Conversely, longer dispensing intervals (6+

https://medinform jmir.org/2026/1/e78964

months MMD), initiating ART in 2023, and having missed
or defaulted on an appointment had a lower predicted risk
of first treatment interruption. Short interruption durations
(<30 days), unknown viral load, separated marital status,
and unspecified alcohol use were all associated with higher
predicted risk of multiple treatment interruption, while having
no prior interruptions (ie, interruption duration of zero), lower
viral load (<200), and no alcohol consumption showed lower
predicted risk of multiple treatment interruption.
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Figure 4. Time-invariant model; partial dependence plots for top 4 variables. Panels show the marginal effect of each variable on the average
predicted risk of treatment interruption. (A) Multimonth dispensing duration, (B) ART initiation year, (C) missed appointment, and (D) defaulted

appointment. ART: antiretroviral therapy; MMD: multimonth dispensing.
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Figure 5. Time-varying model; partial dependence plots for top 4 variables. Panels show the marginal effect of each variable on the average predicted
risk of treatment interruption. (A) Treatment interruption duration, (B) viral load count, (C) alcohol use, and (D) marital status.
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To examine individual-level predictions for the time-invari-
ant model, we randomly selected 2 observations from the
dataset: one representing a patient (labeled “patient A”)
who experienced a first treatment interruption, and another
representing a patient (labeled “patient B”) who did not
experience an interruption by the end of the follow-up period.
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The row labeled “intercept” represents the overall average
prediction value (1.516) for the model—baseline prediction
(Figure 6A). The subsequent rows show how the mean
prediction changes when a specific covariate is fixed. Green
bars indicate an increase in the risk of treatment interruption,
while red bars show a decrease in the risk. The final row
(prediction), shown with a blue bar, displays the overall
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mean value and change, giving the final predicted risk of
treatment interruption for the patient. Patient A had a high
predicted risk of treatment interruption, with a risk score of
2.051, which is 0.535 points higher than the model’s average
prediction (Figure 6). Covariates influencing this prediction
are short MMD intervals (1 month), viral load of 200-999,
did not receive a prevention with positive package, not

Salami et al

defaulted on appointment, non—~COVID-19 pandemic period,
aged 25-34 years at the start of ART, and baseline regimen
of 2NRTIs + NNRTI. Patient B, on the other hand, had a low
predicted risk (0) of interruption, largely driven by the long
MMD interval (6+ months), enrolled in the DSD fast-track
model, and had prior missed and defaulted appointments
contributing to a reduced risk (Figure 7).

Figure 6. Time-invariant model breakdown and SHAP attribution plots for patient A. (A) Breakdown plot decomposing the model prediction into
cumulative covariate contributions. Intercept—model’s overall average prediction value; green bars, with (+) sign indicate increased risk of treatment
interruption; red bars, with (-) sign indicate decreased risk of interruption; and blue bar, “prediction” is the individual predicted risk of interruption
for the patient. (B) SHAP plot summarizing the direction and magnitude of individual covariate effects on the predicted risk of treatment interruption.
Note: variable labels shown in the plots represent categorical levels of the corresponding covariates; see Table S1 in Multimedia Appendix 1 for
full description. ART: antiretroviral therapy; MMD: multimonth dispensing; NNRTI: nonnucleoside analog reverse transcriptase inhibitor; NRTIs:
nucleoside analog reverse transcriptase inhibitors; PwP: prevention with positives package; SHAP: Shapley Additive Explanations.

Time-invariant break down attributions - patient-A

Time-invariant LTRCtrees model

Time-invariant SHAP attributions - patient-A

Time-invariant LTRCtrees model

intercept 1516 MMD =1 Month —
MMD = 1 Month +0.496 Occupation = Employed '
ARTStartYear = 2017 D 0405
ARTStartYear = 2017
Occupation = Employed - -0.195 -
ViralLoad = 200-999 +0.058 ViralLoad = 200-999 ===
PwP =0 +0.103 i
StabilityAssessment = Stable
DefaultAppointment = 0 +0.247
PwP =0
MissedAppointment = 0 - -0.123 i E
CovidLockDown = 0 +0.122 MissedAppointment = 0 -
AgeARTStart = 25-34 +0.068
DefaultAppointment = 0 |
BaselineRegimen = 2NRTIs + NNRTI +0.088
R ooy +0.074 EducationLevel = Secondary |
125 1.50 1.75 2.00 225 -05 0.0 0.5
A B contribution

Figure 7. Time-invariant model breakdown and SHAP attribution plots for patient B. (A) Breakdown plot decomposing the model prediction into
cumulative covariate contributions. Intercept—model’s overall average prediction value; green bars, with (+) sign indicate increased risk of treatment
interruption; red bars, with (—) sign indicate decreased risk of interruption; and blue bar, “prediction” is the individual predicted risk of interruption
for the patient. (B) SHAP plot summarizing the direction and magnitude of individual covariate effects on the predicted risk of treatment interruption.

ART: antiretroviral therapy; MMD: multimonth dispensing; PwP: prevention with positives package; SHAP: Shapley Additive Explanations.
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The right plots of both Figures 6 and 7 show the SHAP
plots for the patients, where the SHAP values represent the
computed mean attribution across 25 random orderings of
the explanatory variables. The red bars indicate an average
increase in risk, while the green bars show a decrease in
risk. The violet box plots summarize the distribution of the
attributions over the 25 orderings. The plots reveal similar
influential variables as in the breakdown attributions, with a
slight reordering of importance and the inclusion of additional
variables—such as education level and stability assessment
for patient A, and COVID-19 pandemic period for patient B.

To examine the time-varying model’s prediction for a
single time-interval instance for a patient, we randomly
selected 2 patients: patient C, who had experienced 1 or
more interruptions and subsequently returned to care; patient
D, who had no history of treatment interruption. Figure 6
shows the breakdown and SHAP attribution plots for a single
time interval for patient C. After considering all variable
contributions, the final predicted risk of subsequent treatment

Salami et al

interruption for this patient was 2.43, which is 1.614 points
above the average prediction. The key covariate contributing
to this risk prediction is the patient’s previous interruption
duration (duration of 30-179 days). In contrast, being on
a 6-month MMD interval and having not missed or defaul-
ted on any appointments were associated with a lower risk
of subsequent interruptions. The SHAP plot reflects similar
variable contributions (Figure 8B). The predicted risk of
treatment interruption for patient D was 0.181, which is
0.635 lower than the average model prediction (Figure 9A).
Key covariates contributing to this reduced risk include no
prior treatment interruptions (interruption duration of zero),
being on a 3- to 5-month MMD interval, having a viral
load between 200 and 999 cp/mL, the COVID-19 pandemic
period, no defaulted appointments, good adherence, and
starting ART between the ages of 35 and 44 years. SHAP
plots (Figure 9B) further highlighted covariates associated
with a lower risk for this patient.

Figure 8. Time-varying model, breakdown, and SHAP attribution plots for patient C. (A) Breakdown plot decomposing the model prediction into
cumulative covariate contributions. Intercept—model’s overall average prediction value; green bars, with (+) sign indicate increased risk of treatment
interruption; red bars, with (-) sign indicate decreased risk of interruption; and blue bar, “prediction” is the individual predicted risk of interruption
for the patient. (B) SHAP plot summarizing the direction and magnitude of individual covariate effects on the predicted risk of treatment interruption.
ART: antiretroviral therapy; MMD: multimonth dispensing; PwP: prevention with positives package; SHAP: Shapley Additive Explanations.
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Figure 9. Time-varying model, breakdown, and SHAP attribution plots for patient D. (A) Breakdown plot decomposing the model prediction into
cumulative covariate contributions. Intercept—model’s overall average prediction value; green bars, with (+) sign indicate increased risk of treatment
interruption; red bars, with (—) sign indicate decreased risk of interruption; and blue bar, “prediction” is the individual predicted risk of interruption
for the patient. (B) SHAP plot summarizing the direction and magnitude of individual covariate effects on the predicted risk of treatment interruption.
ART: antiretroviral therapy; MMD: multimonth dispensing; NNRTI: nonnucleoside analog reverse transcriptase inhibitor; NRTIs: nucleoside analog

reverse transcriptase inhibitors; SHAP: Shapley Additive Explanations.
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Using CP profile plots, we further examined how the model’s
predictions for these patients would shift if key covariates—
such as the duration of the previous interruption, viral load,
DSD model, MMD, missed appointments, and defaulted
appointments —were altered. This allowed us to explore how
changes in time-varying covariates impact the risk of multiple
treatment interruptions. The blue dot and dotted line in the
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CP plot (Figures 10 and 11) represent the values of the
covariates and the corresponding prediction for the patient.
Each green bar in the plot shows the predicted change in
value and direction for a specific covariate, with bars pointing
to the right of the dotted line indicating an increased risk
of interruption and bars pointing to the left indicating a
decreased risk.
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Figure 10. Ceteris paribus profile plots for patient C. Panels show the marginal effect of changes of each variable on the predicted risk of treatment
interruption. (A) Defaulted appointments, (B) differentiated care model, (C) interruption duration, (D) missed appointments, (E) multimonth
dispensing duration, and (F) viral load. Blue dot is the value of the covariate; blue dotted line corresponding prediction for the patient; green
bars—predicted change in value and direction for a specific covariate; and bars right of the dotted line indicate increased risk, while those to the left
indicate decreased risk. ART: antiretroviral therapy; HCW: health care worker; MMD: multimonth dispensing.
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Figure 11. Ceteris paribus profile plots for patient D. Panels show the marginal effect of changes of each variable on the predicted risk of treatment
interruption. (A) Defaulted appointments, (B) differentiated care model, (C) interruption duration, (D) missed appointments, (E) multimonth
dispensing duration, and (F) viral load. Blue dot is the value of the covariate; blue dotted line corresponding prediction for the patient; green
bars—predicted change in value and direction for a specific covariate; and bars right of the dotted line indicate increased risk, while those to the left
indicate decreased risk. ART: antiretroviral therapy; HCW: health care worker; MMD: multimonth dispensing.
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The CP plot (Figure 10) for patient C indicates that their risk risk remains unchanged if they were to transition across
of future treatment interruptions would increase significantly different DSD models. The future risk of treatment interrup-
if they were to miss or default on an appointment or be tion would increase for patient D if they miss or default on an
placed on a shorter MMD interval. However, the predicted appointment, had an increase in their viral load, were placed
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on a lI-month MMD interval, or experienced a treatment
interruption, irrespective of how long it took to return to
care (Figure 11). Transitioning from their current standard
care DSD model to fast track or community ART distribution
health care worker—led models would slightly reduce the risk
of interruption.

Discussion

Principal Findings

We compared the traditional CPH model with 6 different ML
models to predict the risk of treatment interruption in 621,115
patients receiving ART in 256 facilities across all 47 counties
in Kenya. The analysis was conducted in 2 parts: time-invar-
iant models for predicting time-to-first treatment interrup-
tions and time-varying models for predicting time-to-multiple
treatment interruptions. Model evaluation was performed
using an 80:20 train-test split, and Harrell’s C-index was
applied to compare the performance of the models on both the
train and test sets. Prediction from the best-performing model
was then interpreted at both global and individual levels.

The RP model outperformed all other models in both the
time-invariant and time-varying analyses. It achieved C-index
values of 0.8115 for the train set and 0.8105 for the test
set in the time-invariant model, and 0.8918 for the train set
and 0.8901 for the test set in the time-varying model. These
results align with findings from previous studies that have
compared CPH models with ML models, demonstrating the
effectiveness of RP models in survival analysis. Previous
studies have reported C-index values ranging from 0.63 to
0.96, primarily from ML models such as GBM, random
survival forest, and survival support vector machines in
predicting survival for patients with cancer [16-19]. Other
studies that focused on predicting treatment interruptions
in patients on ART had typically reported metrics such as
sensitivity, specificity, and area under the curve, with values
ranging between 61.9% and 76.0% [20-24]. Few of these
studies have incorporated time-varying covariates [16,25].
Even when compared with prior studies that evaluated ML
models against CPH [17], our RP approach achieved higher
discrimination, with C-index values of 0.8105 and 0.8901
compared with reported XGBoost performance of approxi-
mately 0.73. Notably, our study stands out as one of the
few to apply RP within a time-varying survival framework,
effectively constructing a survival tree that accommodates
time-varying covariates.

The RP method offers flexibility in detecting complex
interactions without assuming proportional hazards. They
automatically select covariates and split points, allowing
more adaptive modeling of survival times [26]. This method
is advantageous for identifying nonlinear relationships and
interactions, making it particularly useful in our case where
covariate effects changed over time. The RP model also
had the advantage of simple hyperparameter tuning and
faster computational times compared with the other ML
models we evaluated. We attempted to train a random
survival forest model but were unsuccessful due to the

https://medinform jmir.org/2026/1/e78964

Salami et al

large computational resources and extensive time required to
handle our large dataset. Likewise, the widely used random-
ForestSRC R package does not currently support time-vary-
ing covariates directly. While random forests are known for
their high predictive performance, their significant computa-
tional requirements make them less practical for real-world
applications [16].

To ensure that our results were fully comparable with
the traditional CPH, we implemented a cohesive framework
for explaining the ML predictions with meaningful insights.
Using a model-agnostic [15] explainer framework, we gained
detailed insights into how specific variables influenced
individual-level predictions and overall global outcomes,
similar to the interpretations provided by hazard ratios in
the CPH model. The explainer framework offers additional
advantages by capturing complex, nonlinear relationships that
traditional CPH may overlook.

On a global level, the permutation-based variable
importance from the RP model was similar to the ranking
of the absolute values of the coefficients of the CPH model
for both time-invariant and time-varying models. In addi-
tion, the effects of the selected covariates we considered
in the partial dependence plots were consistent with the
direction of hazard ratios in the CPH model. This combina-
tion of techniques offers diverse insights into our model
predictive performance. They reveal the most significant
effects and risks associated with treatment interruption across
various covariates without the assumptions of linearity, hence
capturing potential nonlinear effects that traditional CPH
models might overlook. Overall, these methods provide more
comprehensive global explanations, particularly for complex
variable interactions.

Further exploration using breakdown attribution and
SHAP plots reveals how individual variables influence
each patient’s predicted risk within specific time intervals.
On a global level, the time-invariant model was primarily
influenced by MMD. Considering this at the patient level,
the breakdown and SHAP plots provide detailed insights
into how MMD increases or decreases risk, explaining why
patient A was at a higher risk than patient B based on
MMD. In addition, these plots highlight the most influential
covariates for predicting the risk of a first treatment inter-
ruption for each patient, emphasizing individual variability
in risk factors. For the time-varying model, we furthered
the instance-level exploration using CP profiles. These plots
provided insights into how a patient’s predicted risk would
change if certain variables were adjusted. For example, with
patient C—who has no history of treatment interruption—
we explored the predicted risk of an interruption if the
patient were to miss or default on an appointment, transi-
tion to a less intensive DSD model, or receive a different
drug-dispensing interval. In contrast, for patient D—a patient
with a history of interruptions—the focus was on understand-
ing how the predicted risk of another interruption might
change if they transitioned to a less intensive care model,
adjusted their dispensing interval, or missed an appointment.
The changes highlighted for each patient provide actiona-
ble insights to guide transitions between DSD models and
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targeted interventions to prevent treatment interruptions.
Following ART initiation, CP profiles can identify patients
whose interruption risk under standard care would decrease
with earlier DSD enrollment or longer dispensing inter-
vals. For patients returning to care after an interruption,
CP profiles quantify how changes in follow-up intensity
or MMD duration influence recurrent interruption risk,
supporting tailored rather than routine care. These scenario-
based insights align with recent World Health Organization
and global guidance [27,28] emphasizing person-centered,
targeted care packages for patients reengaging in treatment.

Bringing the various components together, our model
could be integrated into an EMR system to predict a patient’s
risk of treatment interruption in real time. This integration
would allow the model to continuously process each patient’s
historical data, current visit date, and next scheduled visit
date, creating a new data point for each interaction. With
each visit, the EMR system would automatically update risk
predictions, enabling health care providers to proactively
identify high-risk patients before interruptions occur. The
Kenya EMR currently includes an ML module that generates
interruption risk scores based on a limited set of patient-cen-
tric covariates. By leveraging our model’s broader range of
covariates, the current system can be optimized for improved
prediction accuracy and comprehensive risk assessment.

Limitations

Our study had some limitations. First is the issue of miss-
ing data, as highlighted in our previous work [6]. This
was addressed by creating an “unknown” category for
affected variables, given that the data were not missing
at random. Variables with more than 60% missingness,
such as baseline and follow-up CD4 counts, were exclu-
ded, which may have introduced bias. Sensitivity analyses
comparing complete-case models with alternative “unknown”
category specifications were conducted in prior work [6]
and showed consistent results. Multiple imputation was not
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considered, given data were not missing at random. Sec-
ond, while the explainer we used is model-agnostic, it
lacks built-in support for survival-specific metrics such as
Brier score and area under the curve. Survex explainer is
specifically designed for survival models, but it currently
does not support the LTRCtrees package or time-varying
survival models. A potential work-around could be treating
the model as a classification task, focusing on whether there
was an interruption or not within a specified fixed time,
although this approach will sacrifice the temporal dimension
of survival analysis or future studies can consider imple-
menting other Survex-supported algorithms with the ability
to fit time-varying covariates. Finally, generating break-
down and SHAP attribution profiles for individual predic-
tions was computationally intensive, particularly for SHAP,
which may limit real-time EMR use. However, subsampling
across observations or feature permutations can substantially
reduce computational cost while preserving accurate SHAP
approximations.

Conclusions

Our study compared the predictive performance of the
traditional Cox model with 6 different ML models for
predicting the risk of treatment interruptions in patients
on ART. Overall, our results demonstrate that ML models
outperform the traditional Cox model, with RP, in particular,
effectively capturing nonlinear effects and complex interac-
tions without relying on proportional hazards assumptions,
making it well suited for time-varying survival analyses. Our
model-agnostic explanation aligns well with the Cox model
results while also offering additional, patient-specific insights
for targeted interventions. The combination of enhanced
predictive performance and interpretability demonstrates how
ML models can effectively support patient-centered care
strategies to reduce the likelihood of treatment interruptions
in ART.
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