
Original Paper

Nomograms Based on X-Ray Radiomics for Predicting Pain
Progression in Knee Osteoarthritis Using Data From the
Foundation for the National Institutes of Health: Development and
Validation Study

Yingwei Sun1*, MD; Jing Liu2*, MSc; Chunbo Deng3*, MD; Chengbao Peng2, MSc; Shinong Pan4, MD; Xueyong

Liu5, MD
1Department of Radiology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
2Platform Engineering Research Center, Neusoft Research Institute of Healthcare Technology, Shenyang, China
3Department of Sports and Trauma, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
4Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
5Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, China
*these authors contributed equally

Corresponding Author:
Xueyong Liu, MD
Department of Rehabilitation
Shengjing Hospital of China Medical University
No.16 Puhe Road, Shenbei New District
Shenyang, 110134
China
Phone: 86 2418940112266
Email: liusjh@sj-hospital.org

Abstract

Background: Knee osteoarthritis (KOA) is one of the most prevalent chronic musculoskeletal disorders among the older adult
population. Screening populations at risk of rapid progression of osteoarthritis and implementing appropriate early intervention
strategies is advantageous for the treatment and prognosis of affected patients.

Objective: This study aimed to construct and validate a nomogram model based on x-ray radiomics to effectively identify
individuals experiencing progression of KOA pain.

Methods: The Foundation for the National Institutes of Health Biomarkers Consortium included a total of 600 participants who
were classified as pain progressors (n=297, 49.5%) and non–pain progressors (n=303, 50.5%) according to an increase in the
Western Ontario and McMaster Universities Osteoarthritis Index pain score of ≥9 points (on a scale from 0 to 100) during the
follow-up period of 24 to 48 months. X-rays that lacked defined spacing in the DICOM image were excluded. Fully automatic
selection of subchondral bone regions on the inner and outer edges of the tibia and femur as regions of interest and extraction of
radiomics features for different combinations of regions of interest were conducted. Least absolute shrinkage and selection operator
regression was used to select features and generate a radiomics score using Shapley additive explanations for interpretability.
The radiomics score, along with clinical indicators, was incorporated into nomograms using a multivariable logistic regression
model. The subgroup analysis focused solely on the progression of pain and cases with no progression at all. The receiver operating
characteristic curve, along with calibration and decision curves, was used to assess the discriminative performance.

Results: A total of 450 participants were included in the study. Shapley additive explanations analysis identified
Wavelet-HH_gldm_HighGrayLevelEmphasis as the primary radiomics feature. Nomogram 1 and nomogram 2 for predicting
KOA pain progression achieved area under the curve values of 0.766 and 0.753, respectively, with mean absolute errors of 0.012
and 0.008, respectively, in the calibration curves. Decision curve analysis showed a positive net benefit across a range of threshold
probabilities. In subgroup analyses, nomogram 3 and nomogram 4 yielded areas under the curve of 0.795 and 0.740, respectively.

Conclusions: The nomograms based on x-ray radiomics demonstrated excellent predictive capability and accuracy in forecasting
the progression of KOA pain.
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Introduction

Osteoarthritis (OA) is one of the most common joint disorders
affecting the older adult population. With the aging of the
population, its incidence has been increasing year by year,
imposing a significant burden on both individuals and society
[1]. Knee OA (KOA) has the highest incidence among all types
of OA. The etiology of KOA is multifactorial, and its
pathogenesis remains unclear. KOA can be categorized into
various clinical phenotypes and molecular subtypes, including
metabolic, inflammatory, mechanical, and genetic [2]. The
current treatment guidelines are not suitable for the early
diagnosis of KOA and do not distinguish patients who may
experience rapid progression [3]. Identifying patients at high
risk of rapid progression of KOA will assist in patient education
and in the prioritization and allocation of health care resources
[4].

The subchondral bone is essential for knee joint structure. Its
degeneration disrupts the homeostasis of the intra-articular
environment, potentially triggering cartilage degeneration and
injury. Furthermore, it is associated with the incidence and
progression of OA [5,6]. X-ray imaging continues to be the
most prevalent, convenient, and cost-effective modality for
evaluating KOA. However, it can only provide a rough estimate
of disease severity without quantitative analysis or predicting
disease progression [7]. With the application of artificial
intelligence in KOA, x-rays can now predict the progression of
KOA [3]. Leung et al [8] developed a deep learning predictive
model to assess the risk of progression in KOA using knee x-ray
images. The findings of their study indicated that this deep
learning model surpassed traditional binary outcome models,
which are based on standard scoring systems, in predicting the
likelihood of total knee arthroplasty among patients with OA
[8]. Although deep learning technology is regarded as the most
sophisticated image classification technique currently available,
its inherent lack of interpretability poses challenges for users
in comprehending the model’s decision-making outcomes [9].

Radiomics is a novel approach that harnesses advanced image
analysis tools and the rapid development of medical imaging
data. By integrating artificial intelligence, it enables
high-throughput extraction of information from standard medical
images and applies the extracted data to clinical decision support
systems to enhance the accuracy of diagnosis, prognosis, and
prediction [10]. Radiomics has been gradually applied in the
field of KOA. Current research primarily focuses on using
radiomics to diagnose KOA and predict its radiological
progression [11-14]. However, studies on radiomics for
predicting the pain progression of KOA are still relatively
scarce. A recent study that used magnetic resonance imaging
(MRI) radiomics to predict pain progression in KOA
demonstrated that the constructed radiomics model achieved
an area under the receiver operating characteristic curve (AUC)
of 0.79 to 0.86 for KOA pain progression prediction [15].

Nevertheless, the study incorporated 200 radiomics parameters
and included omics data from 12- and 24-month follow-ups,
resulting in high model complexity and limited practical
applicability.

Therefore, this study aimed to develop a nomogram model
integrating x-ray subchondral radiomics features and clinical
characteristics to predict pain progression in KOA. The Shapley
additive explanations (SHAP) method was incorporated to offer
a comprehensive explanation and intuitive visualization of the
model’s predictive mechanisms. This approach allows for the
identification of high-risk individuals with rapid pain
progression among patients with KOA using cost-effective
detection methods, thereby providing clinicians with
evidence-based guidance for early intervention strategies.

Methods

Participants
This study involved participants from the Foundation for the
National Institutes of Health (FNIH) Osteoarthritis Biomarkers
Project. The design of this research is detailed in previously
published literature [16,17]. In brief, the FNIH Osteoarthritis
Biomarkers Project includes 600 participants with KOA of
Kellgren-Lawrence grades 1 to 3. According to the results of
the follow-up, the 600 participants at baseline were categorized
into four distinct subgroups: (1) participants exhibiting both
radiological and pain progression (n=194, 32.3%), (2)
participants with only radiological progression (n=103, 17.2%),
(3) participants experiencing only pain progression (n=103,
17.2%), and (4) participants who exhibited neither radiological
nor pain progression (n=200, 33.3%). Radiological progression
was defined as a loss of minimum joint space width of ≥0.7 mm
in the medial femorotibial compartment between baseline and
follow-up at 24, 36, or 48 months. Pain progression was
characterized by a sustained increase in the Western Ontario
and McMaster Universities Osteoarthritis Index (WOMAC)
pain subscale (≥9 on a scale from 0 to 100) based on the
minimum clinically important difference during the same time
frame. In the Digital Imaging and Communications in Medicine
(DICOM) standard, pixel spacing is a critical factor for
converting image pixels into physical dimensions. Spacing
ensures the reliability and reproducibility of medical images in
diagnosis, research, and treatment planning [18]. However,
some datasets lack or contain erroneous spacing information.
They use default values (1.0, 1.0), which result in calculated
knee dimensions significantly exceeding normal human
anatomical ranges. Such data can be defined as “DICOM data
with invalid spacing information.” In the standardization process
for the Osteoarthritis Initiative (OAI) knee x-ray images, cases
with unspecified pixel spacing were excluded. As the pixel
spacing of 0.2 mm was predominant in the dataset, all retained
images were calibrated to this value to ensure consistent spatial
scaling [19]. The specific process of normalization is described
in Multimedia Appendix 1 [20-22]. Groups 1 and 3, which
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showed pain progression, were combined as the case group,
whereas groups 2 and 4, with no pain progression, served as
the control group for analysis. Additionally, we conducted

subgroup analyses on group 3 (with only pain progression) and
group 4 (without both pain and radiological progression). The
study flow diagram is shown in Figure 1.

Figure 1. Flowchart of the study. The x-ray images of the knee joint were normalized, and the regions of interest were automatically identified and
selected. Subsequently, imaging omics parameters were extracted, followed by a screening process for feature parameters. Imaging omics labels were
then constructed to evaluate clinical features, ultimately leading to the generation of a nomogram and an assessment of its performance.

Segmentation and Region of Interest Annotation
BoneFinder (The University of Manchester) is a fully automated
software tool designed to outline and segment skeletal structures
from 2D radiographs by placing a series of points along bone
contours or at key anatomical landmarks. In brief, BoneFinder
uses a random forest voting mechanism to precisely determine
the optimal placement of model feature points, enabling robust
and accurate shape model matching. The system can accurately
identify and segment bones not previously present in new
images. This method demonstrates exceptional robustness and
precision across various skeletal applications, with its generated
point data being widely applicable to morphometric analyses,
including the construction of statistical morphological models
and automatic derivation of standard geometric measurement
parameters [23], resulting in 74 markers per image (Figure 2).
The fully automatic BoneFinder knee module achieves a mean
point-to-curve error of less than 1.0 mm for 99% of 500 images
(ie, in 99% of images, the error is less than 1.0 mm) without
considering knee size [24].

Four vertical lines are constructed at the marked points 64, 58,
54, and 48 on the knee joint x-ray image, as identified by
BoneFinder. These lines are sequentially designated as line 1,

line 2, line 3, and line 4. The distance between line 1 and line
2 is denoted as R1, whereas the distance between line 3 and line
4 is referred to as R2. With point 64 designated as the vertex
and a side length of R1/4, a square encompassing the medial
tibia was defined as the region of interest (ROI). With marker
point 64 designated as the vertex and a quarter of R1 as the side
length, a square encompassing the medial tibia was defined as
the ROI. First, using marker point 48 as the vertex and a quarter
of R2 as the side length, a square area on the lateral tibia was
selected to define ROI. Second, the selection process for the
femur ROI differs from that of the tibia ROI. ROI 3 is defined
with the line intersecting marker 24 as its lower boundary, while
the line intersecting marker point 26 serves as the side boundary
of this ROI. ROI 4 of the lateral femur uses the line indicated
at point 14 as the lower boundary of the ROI and the column
line marked at point 12 as its vertical boundary. Then, squares
with side lengths of a quarter of R1 and a quarter of R2 are
constructed. To assess the repeatability of ROI delineation, a
total of 40 cases were randomly selected from the collected
dataset. Two senior musculoskeletal radiologists (YWS and
SNP) conducted manual segmentation of ROIs. Dice similarity
coefficients were used to assess manual and automated
segmentation agreement. Image annotation was performed using
Neusoft Darts [25].
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Figure 2. Schematic diagram of the automated region of interest segmentation process.

Radiomics Feature Extraction
The extraction of radiomics features was based on Neusoft
Discovery [25]. The features that were extracted can be
categorized into 3 distinct groups. First-order features were
derived from the gray values of images, reflecting the
distribution and heterogeneity of intensity within the ROI,
typically including maximum, minimum, mean, median, range,
variance, kurtosis, skewness, and entropy. The second-order
features refer to the extracted texture characteristics, which
include texture feature values derived from the gray-level
co-occurrence matrix, gray-level run-length matrix, gray-level
connected region size matrix, neighborhood difference matrix,
and gray-level correlation matrix. The texture features can
quantify the distribution of textures within the ROI that are
difficult to perceive visually. Third, features were extracted
after log transformation, first-level wavelet decomposition, and
gradient transformation were applied to the ROI. All features
were normalized using the following formula: Z=(x–μ)/σ.

Radiomics Feature Selection and Radiomics Signature
Construction
The Spearman correlation was used to remove the redundant
features. The feature subset was optimized using the least
absolute shrinkage and selection operator (LASSO) method in
logistic regression. A 10-fold cross-validation approach was
used to identify the optimal model that minimizes the mean
squared error, and the correlation coefficients of the features
selected by the best LASSO model were calculated. According
to the coefficients derived from LASSO regression, a weighted
calculation was performed to obtain the radiomics score
(rad-score). Radiomics parameters from 4 ROIs (ROIs 1-4)

were extracted individually, and rad-score 1 was developed
following LASSO screening of the nonzero parameters. The
radiomics parameters were applied to ROI 1 and ROI 3, leading
to the development of rad-score 2. In subgroup analysis,
rad-score 3, obtained from extracted and screened nonzero
parameters from ROIs 1 to 4, and rad-score 4, obtained from
extracted and screened nonzero parameters from ROI 1 and
ROI 3, predicted pain progression only and no progression at
all, respectively. SHAP analysis was used to mitigate the
“black-box” effect of machine learning, enabling feature
prioritization and interpretability of individual radiomics features
on the rad-score. Feature maps were used to visualize the results
of the rad-score.

Development and Evaluation of Nomograms
The analysis used stepwise backward multivariable logistic
regression to identify clinical risk factors at baseline and
construct nomograms. The Akaike information criterion
likelihood ratio test was used as the stopping rule for the
backward stepwise logistic regression analysis. Clinical
information from patients at baseline included age, sex, history
of injury, BMI, the minimum joint space width of the medial
tibial-femoral compartment, Kellgren-Lawrence grade,
WOMAC pain score and WOMAC disability score, medicine
for pain in the previous 12 months, and race. The nomograms
were developed based on the prediction probability value of the
optimal radiomics models and clinical independent risk factors.
The discriminative ability of the nomogram was evaluated using
the AUC and accuracy. Calibration of the nomogram was
performed through calibration curves, with optimal calibration
indicated by alignment with the diagonal line. Internal validation
was conducted using a bootstrap method involving 1000
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resampling iterations, and the mean absolute error was used to
assess model calibration. Additionally, decision curve analysis
(DCA) quantified net benefits at various threshold probabilities
to evaluate the clinical effectiveness of the nomograms.

Statistical Analysis
The comparison of categorical variables was conducted using
the Pearson chi-square test. Continuous variables were expressed
as mean and SD and analyzed using either the 2-tailed t test or
Mann-Whitney U test. The normality of continuous data was
assessed using the Kolmogorov-Smirnov test; measurements
that followed a normal distribution were subjected to the t test,
whereas those that did not conform to a normal distribution
underwent the Mann-Whitney U test. The DeLong test was used
for comparing 2 models. P values were calculated using a
2-tailed z test, with P<.05 considered statistically significant.
All statistical analyses were performed using the EmpowerStats
software (X&Y Solutions, Inc) and the R software (version
4.2.2; R Foundation for Statistical Computing).

Ethical Considerations
This study was conducted in accordance with the Declaration
of Helsinki (as revised in 2013). The Institutional Review Board
of the University of California, San Francisco (approval
10-00532), and the 4 clinical centers of the OAI project
recognized the study as HIPAA (Health Insurance Portability

and Accountability Act) compliant. All participants provided
written informed consent. Patient-identifiable information
(including names and hospital ID numbers) was carefully
removed from the x-ray images and reports before analysis.
Due to the retrospective design of this study, participants
received no compensation.

Results

Baseline Clinical Characteristics
Due to the lack of spacing in DICOM images, a total of 450
participants were ultimately included in the study, with 227
(50.4%) and 223 (49.6%) in the control and case groups,
respectively. The baseline characteristics of participants in both
the case and control groups were frequency matched for factors
including age, BMI, WOMAC functional scores,
Kellgren-Lawrence grade, pain medication history, and race.
Notably, a statistically significant difference was observed in
WOMAC pain scores (P=.04) and medication history (P=.02)
between the 2 groups (Table 1). In subgroup analysis, 18%
(n=81) of the individuals demonstrated only pain progression
during the follow-up period, whereas 32.9% (n=148) of the
individuals exhibited neither pain progression nor radiographic
deterioration. The baseline characteristics of participants across
both groups were well matched, with no statistically significant
differences observed (Table S1 in Multimedia Appendix 2).

Table 1. Baseline characteristics of the study population.

P valueCase group (n=227)Control group (n=223)Characteristic

Demographics

.3861.48 (8.79)62.14 (8.91)Age (years), mean (SD)

.80136 (59.9)131 (58.7)Female sex, n (%)

.44Race, n (%)

2 (0.9)3 (1.3)Asian

32 (14.1)21 (9.4)Black or African American

191 (84.1)196 (87.9)White

2 (0.9)3 (1.3)Other non-White race

Clinical measures

.7530.50 (4.71)30.36 (4.85)BMI (kg/m2), mean (SD)

.041.87 (2.47)2.70 (3.40)WOMACa pain score (0-20), mean (SD)

.158.13 (9.18)8.15 (10.98)WOMAC function score (0-68), mean (SD)

.6583 (36.6)77 (34.5)History of knee injury, n (%)

.0273 (32.2)49 (22.0)Use of pain medication, n (%)

Radiographic measures

.70Kellgren-Lawrence grade, n (%)

29 (12.8)29 (13.0)1

106 (46.7)112 (50.2)2

92 (40.5)82 (36.8)3

.873.80 (1.32)3.77 (1.10)Minimum medial joint space width (mm), mean (SD)

aWOMAC: Western Ontario and McMaster Universities Osteoarthritis Index.
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Segmentation and Feature Extraction
The automated segmentation dataset was used for radiomics
feature extraction as the Dice similarity coefficients between
automatic and manual segmentation were excellent (0.800;
Table S2 in Multimedia Appendix 2). We used 10-fold
cross-validation to identify the optimal tuning parameter (alpha).
In total, 16 nonzero coefficient features were derived from the
optimal tuning parameters in rad-score 1. Rad-score 2 comprised
12 nonzero coefficient features. In subgroup analysis, rad-score
3 included 11 nonzero feature parameters, whereas rad-score 4
consisted of 3 nonzero features (Tables S3-S6 in Multimedia
Appendix 2 and Figures S1-S4 in Multimedia Appendix 2). The
correlation among features was analyzed using Spearman
correlation analysis, and heat maps are presented in Figures S1
to S4 in Multimedia Appendix 2.

Development and Evaluation of Radiomics Signatures
Table 2 shows the diagnostic proficiency of 4 radiomics
signatures. The AUC value for rad-score 1 was 0.728 (95% CI

0.681-0.774), the AUC value for rad-score 2 was 0.716 (95%
CI 0.635-0.736), the AUC value for rad-score 3 was 0.775 (95%
CI 0.714-0.837), and the AUC value for rad-score 4 was 0.679
(95% CI 0.604-0.755; Table 2). The SHAP plot in Figure 3
visually illustrates how radiomics features influenced model
predictions in terms of magnitude and direction. Features are
sorted vertically by global importance. Each point represents
the SHAP value of each feature for a specific patient plotted
horizontally and stacked vertically to show density distribution.
The color of the point reflects the feature value, from low (blue)
to high (red; Figures 3A and C). The bar chart illustrates the
impact of various imaging features on the rad-score.
Wavelet-HH_gldm_HighGrayLevelEmphasis showed significant
effects on both rad-score 1 and rad-score 2 (Figures 3B and D).
The SHAP values of each feature in rad-score 3 and rad-score
4 are shown in Figure S5 in Multimedia Appendix 2. Figure 4
shows representative participants with x-ray subchondral bone
feature maps from 4 ROIs. The case group participant
demonstrated higher ROI heterogeneity than the control group
participant, with a higher score (0.58 vs 0.44).

Table 2. Diagnostic efficacy of the 4 radiomics scores.

SpecificitySensitivityAccuracyAUCa (95% CI)Radiomics score

0.5700.7970.6840.728 (0.681-0.774)1

0.6770.6830.6680.716 (0.635-0.736)2

0.7160.7530.7420.775 (0.714-0.837)3

0.7570.5800.6940.679 (0.604-0.755)4

aAUC: area under the receiver operating characteristic curve.

Figure 3. Shapley additive explanations (SHAP) summary plots of the radiomics score. The plot illustrates the feature relevance and attributions of
the model’s predictive performance: (A) rad-score 1 and (B) rad-score 2. The bar chart illustrates the impact of various imaging features on the rad-score:
(C) rad-score 1 and (D) rad-score 2.
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Figure 4. Visualization of radiomics signatures. The case group participant demonstrated higher region of interest heterogeneity than the control group
participant, with a higher score.

Construction and Testing of Nomograms
Through multiple regression analysis, the WOMAC disability
score, pain medication history, and WOMAC pain score were
found to be risk factors for KOA pain progression. We
constructed visual nomograms by integrating the score with
selected clinical risk factors. The AUC of nomogram 1 was
0.766 (95% CI 0.722-0.809), and the AUC of nomogram 2 was
0.753 (95% CI 0.708-0.797). The comparison of AUC between
the 2 models showed no statistically significant difference
(DeLong test; P>.05; Figure 3). The calibration curve

demonstrated that all cohorts were accurately aligned with the
actual observations. The internal validation was conducted using
the bootstrap method, with a resampling count set to 1000. The
mean absolute errors of the calibration curves for the 2 models
were found to be 0.012 and 0.008, indicating that the model
demonstrated a high level of calibration accuracy (Figure 5 and
Table 3). The DCA demonstrated that, if the threshold
probability in the clinical decision was in the range of 10% to
70%, both nomogram 1 and nomogram 2 could yield more net
benefits compared with either the treat-all-patients strategy or
the treat-none strategy.

Figure 5. Development and validation of the nomogram to predict pain progression in knee osteoarthritis (A: nomogram 1; B: nomogram 2), the receiver
operating characteristic curves of nomogram 1 and nomogram 2(C), the calibration curves of nomogram 1 and nomogram 2 (D and E, respectively),
and decision curves for nomogram 1 and nomogram 2 (F). PMED: Use of pain medication.
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Table 3. Diagnostic efficacy of the 4 nomogram models.

MAEbSpecificitySensitivityAccuracyAUCa (95% CI)Model

0.0120.7260.6920.7090.766 (0.722-0.809)Nomogram 1

0.0080.7400.6480.6930.753 (0.708-0.797)Nomogram 2

0.0110.7970.6910.7600.795 (0.734-0.865)Nomogram 3

0.0130.6950.7400.6860.740 (0.673-0.808)Nomogram 4

aAUC: area under the receiver operating characteristic curve.
bMAE: mean absolute error.

Subgroup Analyses
The AUC of nomogram 3 was 0.795 (95% CI 0.734-0.865),
and the AUC of nomogram 4 was 0.740 (95% CI 0.673-0.808).
The comparison of the AUC between the 2 models showed a
statistically significant difference (DeLong test; P<.05). The
calibration curve demonstrated a robust concordance between
the probabilities predicted and the actual observed outcomes.

The DCAs demonstrated that, if the threshold probability in the
clinical decision was within the range of 10% to 65%, the curve
corresponding to nomogram 3 was above nomogram 4, and the
AUC that it formed with the “treat none” and “treat all” lines
was relatively larger. The net benefit of nomogram 3 was
superior to that of nomogram 4, making it the better model
(Table 3 and Figure 6).

Figure 6. Development and validation of the nomogram to predict pain progression in knee osteoarthritis (A: nomogram 3; B: nomogram 4), the receiver
operating characteristic curves of nomogram 3 and nomogram 4 (C), the calibration curves of nomogram 3 and nomogram 4 (D and E, respectively),
and decision curves for nomogram 3 and nomogram 4 (F). PMED: Use of pain medication.

Discussion

Principal Findings
Our study developed a nomogram integrating x-ray radiomics
features and clinical variables to predict pain progression in
KOA. The resulting baseline-based, cost-effective nomogram
demonstrated commendable accuracy and reproducibility in
forecasting KOA pain progression, offering significant potential
for guiding early intervention strategies in at-risk populations.

The application of advanced artificial intelligence to widely
available and cost-effective x-ray imaging represents a feasible
and promising approach for predicting KOA pain progression.
Radiomics models can automatically classify KOA [26], and
texture analysis of the subchondral bone, particularly in the
tibia, has shown predictive value for radiographic KOA
incidence [27,28]. Given the complex etiology of KOA and the
frequent discrepancy between clinical symptoms and
radiological severity, we focused on subchondral bone
remodeling—a process linked to pain pathogenesis through
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molecules such as netrin-1 and PEG2, which promote sensory
nerve innervation [29,30]. This rationale supported our use of
subchondral bone radiomics for predicting symptomatic
progression. Radiomics enables high-throughput extraction of
quantitative features from medical images, providing data for
clinical decision support systems [10]. The selection of key
ROIs is critical as different image areas contain varying levels
of information relevant to disease progression [31]. While the
medial subchondral bone often shows a stronger correlation
with OA [32] and the medial tibial margin is recognized as
highly informative due to its role in absorbing uneven
mechanical loads [33], the optimal ROI selection remains
debated. Some deep learning studies for KOA pain progression
have also concentrated on the medial joint space and osteophytes
[8], whereas other radiomics research suggests that including
the entire tibial subchondral bone may yield better outcomes
than focusing solely on specific compartments [17].

In this study, we systematically evaluated the impact of ROI
selection on model accuracy by constructing radiomics
signatures both from 4 ROIs encompassing the entire knee joint
and from the 2 medial ROIs alone. Our findings revealed that
incorporating lateral ROIs did not improve the overall model
AUC compared to using medial ROIs only. However, subgroup
analysis indicated that models combining medial and lateral
ROIs achieved significantly higher AUC values in specific
contexts. The primary cause of this discrepancy may stem from
disease heterogeneity. Notably, in the main analysis, both the
pain progression group and the nonprogression group included
participants with radiological progression. Pathological changes
in the lateral subchondral bone may accelerate the radiological
progression of the knee joint [34-36]. Therefore, the role of
radiomics features in lateral ROIs during pain progression was
likely diluted or masked by features from radiologically
progressive participants in the control group.

When compared to prior studies, our model demonstrated
competitive predictive performance. For instance, Kraus et al
[16] applied 3 texture parameters to predict KOA pain
progression, achieving AUCs ranging from 0.603 to 0.649. Our
rad-score yielded AUCs between 0.679 and 0.775, representing
a substantial improvement. This aligns with the understanding
that multivariable models integrating multiple risk factors
generally provide more reliable estimates than those based on
single parameters [37]. The superior performance of our
baseline-based model is particularly notable compared to
previously reported predictive capabilities relying solely on
baseline biomarkers [38]. A recent study using MRI-based
radiomics to predict KOA pain progression reported high
predictive accuracy, with AUC values ranging from 0.79 to 0.86
[15]. This performance is commendable. However, it is
important to note that their model incorporated a substantially
larger set of 200 radiomics parameters and, crucially, relied on
omics data extracted from 12- and 24-month follow-up MRI
scans. While this approach yields high accuracy, the model’s
complexity and its dependence on longitudinal imaging data
significantly limit its practicality and scalability in routine
clinical settings. In contrast, our study deliberately pursued a
more streamlined and clinically translatable strategy. By using
only baseline x-ray images and constructing a parsimonious

model using key radiomics features and clinical variables, our
baseline-based model eliminates the need for costly follow-up
MRI scans and complex feature sets, making it more feasible
for immediate clinical application and potential widespread
adoption.

Research using deep learning methods to predict KOA pain
progression remains scarce. A study using OAI data
demonstrated that deep learning models achieved an AUC of
0.77 for predicting KOA pain progression, significantly higher
than the 0.692 of traditional models [39]. By integrating
demographic, clinical, and imaging risk factors with a deep
learning model incorporating baseline knee x-rays, the highest
diagnostic efficacy (AUC=0.807) was achieved in predicting
pain progression. However, the original study failed to provide
specific feature information. In contrast, our study visually
presented each feature parameter’s impact on the rad-score using
S h a p l e y  s u m m a r i e s .
Wavelet-HH_gldm_HighGrayLevelEmphasis, a gray-level
correlation matrix feature derived from high-frequency (HH)
subbands of wavelet-transformed images, reflects the
concentration of high–gray value regions and emphasizes texture
variations in these areas. By quantifying texture changes in knee
images, this feature effectively captures tissue degeneration
differences caused by pain progression, indirectly reflecting
pathological changes and potentially enabling prediction of
knee pain progression.

The nomogram was selected for its ability to simplify complex
statistical models into user-friendly graphical interfaces that
generate individualized risk estimates [40]. While nomograms
have been applied in OA contexts such as predicting outcomes
after total knee replacement [41,42], their application
specifically for predicting KOA pain progression represents a
novel contribution. Our nomogram uniquely integrates radiomics
signatures with key clinical variables: baseline WOMAC pain
scores, WOMAC disability scores, and analgesic use.
Interestingly, the baseline WOMAC pain score served as a
negative predictor in our model, potentially reflecting the
development of tolerance to chronic pain in patients with KOA
[43]. The inclusion of WOMAC disability scores and analgesic
use is supported by their established roles as risk factors in KOA
phenotypic and prognostic models [44,45].

Limitations
This study has several limitations. First, the relatively small
sample size may affect statistical power and generalizability.
Second, the use of data from previous nested case-control studies
could introduce selection bias. Third, our analysis relied solely
on internal validation because it was difficult to find an
equivalent external cohort. Although the data were sourced from
the well-established FNIH Osteoarthritis Biomarkers Project,
external validation using independent datasets, such as those
from the PROGRESS OA study (phase 2 of the FNIH
Biomarkers consortium), was not feasible as these data have
not been publicly released [46]. To our knowledge, no other
studies have explored the specific pain progression patterns
defined by the FNIH [15], and other studies using FNIH data
have similarly been unable to perform external validation.
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Conclusions
A nomogram based on baseline x-ray radiomics signatures can
effectively predict the progression of pain in KOA. This has

significant implications for supporting health care professionals
in tailoring treatment plans for individuals experiencing rapid
pain progression, as well as in reducing health care costs, and
these findings need further validation in future trials.
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