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Abstract
Background: Rib fractures are present in 10%‐15% of thoracic trauma cases but are often missed on chest radiographs,
delaying diagnosis and treatment. Artificial intelligence (AI) may improve detection and triage in emergency settings.
Objective: This study aims to evaluate diagnostic accuracy, processing speed, and technical feasibility of an artificial
intelligence–assisted rib fracture detection system using prospectively collected data within a real-world, high-volume
emergency department workflow.
Methods: We conducted an observational feasibility study with prospective data collection of a faster region-based convolu-
tional neural network–based AI model deployed in the emergency department to analyze 23,251 real-world chest radiographs
(22,946 anteroposterior; 305 oblique) from April 1 to July 2, 2023. This study was approved by the Institutional Review Board
of MacKay Memorial Hospital (IRB No. 20MMHIS483e). AI operated passively, without influencing clinical decision-mak-
ing. The reference standard was the final report issued by board-certified radiologists. A subset of discordant cases underwent
post hoc computed tomography review for exploratory analysis.
Results: AI achieved 74.5% sensitivity (95% CI 0.708-0.780), 93.3% specificity (95% CI 0.930-0.937), 24.2% positive
predictive value, and 99.2% negative predictive value. Median inference time was 10.6 seconds versus 3.3 hours for radiologist
reports (paired Wilcoxon signed-rank test W=112 987.5, P<.001). The analysis revealed peak imaging demand between
08:00 and 16:00 and Thursday-Saturday evenings. A 14-day graphics processing unit outage underscored the importance of
infrastructure resilience.
Conclusions: The AI system demonstrated strong technical feasibility for real-time rib fracture detection in a high-volume
emergency department setting, with rapid inference and stable performance during prospective deployment. Although the
system showed high negative predictive value, the observed false-positive and false-negative rates indicate that it should be
considered a supportive screening tool rather than a stand-alone diagnostic solution or a replacement for clinical judgment.
These findings support further clinician-in-the-loop studies to evaluate clinical feasibility, workflow integration, and impact on
diagnostic decision-making. However, interpretation is limited by reliance on radiology reports as the reference standard and
the system’s passive, non-interventional deployment.
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Introduction
Digital health technologies, particularly artificial intelligence
(AI), are increasingly used to address diagnostic delays
in high-acuity clinical settings. In emergency departments,
timely identification of injuries is essential, yet radiographic
interpretation remains constrained by heavy workloads and
the inherent complexity of imaging—especially for subtle
findings such as rib fractures.

Rib fractures are a frequent consequence of thoracic
trauma, occurring in 10%‐15% of trauma patients and often
indicating more serious underlying injuries [1-3]. When
missed, they may lead to inadequate pain management,
delayed respiratory support, pneumonia, or even preventa-
ble intensive care unit admissions. Beyond clinical harm,
undetected fractures also carry medicolegal implications and
increase health care costs.

Despite their significance, rib fractures are notoriously
difficult to detect on chest radiographs (CXRs)—the first-line
imaging modality in most emergency departments—due to
overlapping anatomical structures and subtle fracture lines.
Reported sensitivities for radiologist detection can be as low
as 15%, with up to half of fractures potentially missed in
high-volume settings [4,5]. Although computed tomography
(CT) and ultrasound can improve accuracy, they are resource-
intensive and not always feasible for frontline triage [6-8].
These limitations highlight an urgent need for AI-driven tools
that can assist clinicians by rapidly identifying suspected rib
fractures in routine CXRs, enabling more effective prioritiza-
tion and timely intervention.

Recent advances in AI, particularly deep learning, have
demonstrated strong potential in automating image anal-
ysis tasks across medical domains, including dermatol-
ogy, ophthalmology, and pulmonary imaging [9-11]. Deep
learning models, especially convolutional neural networks,
can automatically extract complex image features and
have shown superior performance compared to traditional
machine learning methods in various image classification
tasks [11-13]. Transfer learning further enables the adapta-
tion of pretrained convolutional neural networks—originally
developed for natural images—for medical image classifica-
tion tasks, including bone fracture detection [14,15].

Although prior studies have applied deep learning to
rib fracture detection with promising results, most were
retrospective, limited in scale, and did not assess feasibility
in operational emergency department workflows [7,16,17].

These proof-of-concept efforts did not address the practical
barriers to integrating AI into emergency radiology work-
flows, such as inference latency, system interoperability, or
artifact handling.

To address this gap, we conducted an observational
feasibility study with prospective data collection, evaluat-
ing an AI model for rib-fracture detection on CXRs. The
system was passively deployed in parallel with routine
emergency department imaging workflows using real-world
data, without influencing clinical decisions. This design
allowed the assessment of diagnostic performance, processing
speed, and operational characteristics within standard clinical
workflows.

Methods
Study Design
The observational feasibility study protocol was reviewed
and approved by the Institutional Review Board of MacKay
Memorial Hospital (IRB No. 20MMHIS483e) prior to the
initiation of data collection. MacKay Memorial Hospital is a
tertiary referral and level 1 trauma center in northern Taiwan.
The AI system functioned passively in real time without
influencing clinical decisions or patient management. As
the system functioned in a noninterventional, observational
manner, prospective trial registration was not required.

From April 1 to July 2, 2023, all chest and rib radiographs
acquired in the emergency department were automatically
processed by the AI system in near-real-time. Both standard
CXRs and rib-only views acquired during the study period
were automatically analyzed, as both modalities are routinely
used for suspected thoracic trauma. During the study period,
a temporary 14-day graphics processing unit (GPU) hard-
ware outage occurred, during which radiographs were not
processed in real time; these examinations were excluded
from turnaround time analysis but retained for diagnostic
accuracy, as formal radiology reports were available. No
additional exclusion criteria were applied beyond the 14-day
system outage; all eligible emergency radiographs during
the study period were included in the analysis. The sys-
tem operated passively alongside routine clinical workflows,
without influencing clinical decisions. AI-identified suspected
rib fractures were highlighted using bounding boxes on a
backend interface, which was accessible only for research
evaluation and remained hidden from the clinical care team
(Figure 1).
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Figure 1. Study workflow of a prospective observational feasibility study evaluating an artificial intelligence–assisted rib fracture detection system
using chest radiographs in patients admitted to the emergency department at a high-volume tertiary medical center (April 1-July 2, 2023). GPU:
graphics processing unit.

Ethical Considerations
This study was approved by the Institutional Review Board
of MacKay Memorial Hospital (IRB No. 20MMHIS483e) and
conducted in accordance with the Declaration of Helsinki.
Informed consent was waived because the study involved
secondary analysis of routinely acquired, deidentified clinical
imaging data, and the AI system operated passively without
influencing patient management.

All data were deidentified prior to analysis and pro-
cessed on secure institutional servers with access limited
to authorized research personnel. No compensation was
provided to participants. All images included in the manu-
script were fully anonymized, and no identifiable patient
information is disclosed.

Consistent with the approved observational study design,
all AI outputs—including discordant cases—were withheld
from treating clinicians and did not influence patient
management.
AI Model Development
CXRs were retrospectively collected from the hospital picture
archiving and communication system (PACS) for model
training. All images were deidentified and preprocessed
using histogram equalization and image inversion to improve
fracture conspicuity. Fracture locations were annotated using
bounding boxes by a board-certified emergency physician
with 18 years of clinical experience via the DeepQ AI
platform [18].

A deep learning model was developed using PyTorch
(v1.13) with GPU acceleration. The architecture was based
on faster region-based convolutional neural network (R-
CNN) [19], incorporating a ResNet-50 backbone for feature
extraction, a region proposal network for candidate region
generation, and a classification head for fracture detection.

The dataset comprised 2079 CXRs (1065 fracture-positive
and 1014 normal) collected between 2010 and 2020. Images
were randomly divided into training (80%) and validation
(20%) sets at the image level, as each radiograph represented
an independent study. When multiple images were obtained
from the same patient encounter, each radiograph was treated
as an independent sample. Data augmentation—including
random rotation, flipping, brightness, and contrast adjust-
ment—was applied to improve generalization. To address the
inherent class imbalance given the low fracture prevalence,
class-weighted loss and oversampling of fracture-positive
images were employed.
Model Validation
Model performance was assessed on a hold-out test set of
262 CXRs containing 724 expert-annotated rib fractures.
Evaluation metrics were reported at both the case and object
levels.

At the case level, the unit of analysis was the radiographic
study. A study was considered positive if at least 1 rib
fracture was detected, regardless of the number of fractures
present. The model correctly identified fractures in 230 of 257
fracture-positive studies, achieving a sensitivity of 89.5%.
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With only 8 false-positive cases, precision reached 96.6%,
yielding an overall F1-score of 0.93.

At the object level, performance reflected per-lesion
detection accuracy. The model correctly localized 680 of

724 annotated rib fractures (recall=94.0%) and generated
55 false-positive boxes. The mean average precision at an
intersection-over-union threshold of ≥0.5 was 0.65, indicating
robust lesion-level localization (Table 1).

Table 1. Dataset composition and performance of the artificial intelligence (AI) model using retrospective emergency department chest radiographs,
including case-level detection and object-level localization (intersection-over-union [IoU]≥0.50).
Category and metric Value
Dataset
  Total images 262
  Ground-truth boxes 724
Case-level detection (%)
  Sensitivity (recall) 89.6
  Precision 96.6
  F1-score 0.93
Object-level localization
  Recall 94.0%
  mAPa (IoU≥0.5) 0.65

amAP: mean average precision.

Curve-based analyses further characterized the model’s
detection behavior (Figure 2). The precision-recall curve
(Figure 2A) maintained precision ≥0.90 until recall fell below
0.55 (precision-recall area under the curve=0.65), demonstrat-
ing high reliability across a broad sensitivity range. The

free-response receiver operating characteristic (FROC) curve
(Figure 2B) showed true-positive rates of 0.77 at 1 false
positive per image and 0.88 at three, representing practical
trade-offs between sensitivity and alert frequency in potential
clinical deployment.

Figure 2. The performance of the artificial intelligence (AI)–assisted rib fracture detection model was evaluated in the retrospective model
development and validation dataset using emergency department chest radiographs. (A) Precision-recall curve demonstrating case-level detection
performance at an intersection-over-union (IoU) threshold of ≥0.50 (area under the curve=0.65). (B) Free-response receiver operating characteristic
(FROC) curve showing lesion-level sensitivity as a function of false positives per image, with localization performance assessed at the same IoU
threshold (mean average precision=0.65; recall=94%).

Prospective Evaluation of AI Model in
Emergency Department Workflow
The trained model was prospectively evaluated in parallel
with clinical workflow, performing automated inference on
incoming emergency radiographs. During the automated
inference process, all incoming radiographs were standar-
dized and resized to a fixed resolution of 512×512 pixels.
The prospective evaluation cohort (April-July 2023) was
temporally and operationally independent from the retrospec-
tive training and validation dataset (2010-2020), and no
patient overlap existed between the 2 cohorts. During the
prospective evaluation phase, all chest and rib radiographs
from emergency department encounters were automatically

processed by the AI system without disrupting clinical
workflows. The bounding box outputs were logged for
research analysis but were not disclosed to radiologists or
used for patient management.
Performance Assessment Using NLP-
Derived Labels
To evaluate AI performance in the real-world setting,
output was compared to formal radiology reports issued by
board-certified radiologists. A rule-based natural language
processing (NLP) pipeline was developed to extract struc-
tured rib fracture labels (positive, negative, or ambiguous)
from free-text reports. The algorithm combined keyword
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detection (eg, “rib fracture,” “fx”) and negation handling (eg,
“no evidence of,” “no definite fracture”).

To validate NLP accuracy, a random sample of 200
radiology reports was manually reviewed by 2 emergency
physicians blinded to both NLP and AI results. The NLP

classification achieved 96.5% agreement (193/200) with
manual review, with a Cohen κ of 0.91, indicating excel-
lent concordance. Most discrepancies were due to ambiguous
language or complex negation structures (Table 2).

Table 2. Confusion matrix comparing natural language processing (NLP)–extracted radiology report labels with manual expert review in a randomly
selected subset of 200 emergency department chest radiographs, used to assess labeling accuracy in the retrospective dataset.
Manual review Fracture present Fracture absent Ambiguous Total (NLP prediction)
NLP: fracture present 95 2 1 98
NLP: fracture absent 3 90 2 95
NLP: ambiguous 1 2 4 7
Total (manual review) 99 94 7 200

Formal radiology reports served as the primary reference
standard for AI evaluation. This approach may have
underestimated AI sensitivity because CT confirmation was
not performed systematically. In select discordant cases—
where the AI flagged fractures not documented in the
reports—subsequent CT scans confirmed some of these
findings. These discrepancies were retrospectively reviewed
to investigate potential underreporting by radiologists. While
informative, these exploratory adjudications were not used
as a universal reference standard due to inconsistent CT
availability. Nonetheless, radiology reports remained the
definitive benchmark for all performance metrics. Addition-
ally, the selected misclassified cases were examined to
identify recurring patterns of diagnostic oversight among
frontline physicians.
Targeted Adjudication of Discordant
Cases
To further explore potential underreporting within the
report-based reference standard, we performed a focused
review of discordant cases in which the AI system flagged
suspected rib fractures not documented in the corresponding
formal radiology reports. Because not all discordant cases had
confirmatory CT imaging, an illustrative subset of 11 cases
was selected based on the availability of same-encounter
chest CT and clinical relevance for qualitative adjudication.
Each case was reviewed to determine whether the AI-pre-
dicted fractures corresponded to true fractures confirmed
on CT. These adjudications were exploratory and intended
to contextualize the potential clinical value of AI detection
beyond the report-based benchmarking.
Data Analysis
Case-level performance was assessed at the radiographic
study (accession) level by comparing AI outputs to
NLP-derived labels from radiology reports. A study was

considered positive if at least 1 image within the same
examination was flagged as having a rib fracture by the
AI system; otherwise, the study was classified as nega-
tive. Key metrics included sensitivity, specificity, accuracy,
positive predictive value, negative predictive value (NPV),
and F1-score. Ninety-five percent CIs were calculated using
nonparametric bootstrap resampling (1000 iterations). The
results were summarized in confusion matrices and diagnostic
performance plots.
Statistical Analysis
All statistical analyses were performed using Python 3.11
(pandas v2.2, scikit-learn v1.4) and R 4.3.2. Continuous
variables were reported as mean (SD) or median with
IQR. Categorical variables were summarized as counts and
percentages. A 2-tailed P<.001 was considered statistically
significant.

This study was reported in accordance with the Check-
list for Artificial Intelligence in Medical Imaging (CLAIM)
guideline, with the completed checklist provided as Checklist
1.

Results
Study Cohort
From April 1 to July 2, 2023, all chest and dedicated rib
radiographs acquired in the emergency department were
automatically processed by the AI system in a parallel
workflow, yielding 23,251 imaging studies from 20,908
unique patient visits. Population demographics are summar-
ized in Table 3. The mean age was 55.9 years (SD 22.3; range
0‐106), with 10,770 (51.5%) male and 10,138 (48.5%) female
patients. A radiologist review identified 589 rib-fracture cases
(prevalence 2.8%).

Table 3. Demographic and clinical characteristics of patients in the emergency department included in a prospective observational study of artificial
intelligence (AI)–assisted rib fracture detection (April 1-July 2, 2023).
Characteristic Value
Total cases 20,908
Age (y), mean (SD; range) 55.9 (22.3; 0‐106)
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Characteristic Value
Sex, n (%)
  Male 10,770 (51.5)
  Female 10,138 (48.5)
Radiologist-confirmed rib fractures, n (%) 589 (2.8)

AI Model Performance
AI model outputs were compared on a per-case basis against
structured rib-fracture labels derived from board-certified
radiology reports. At the selected operating point—corre-
sponding to approximately one false-positive per image on
the FROC curve—the system achieved a sensitivity of 0.745

(95% CI 0.708‐0.780) and specificity of 0.933 (95% CI
0.930‐0.937). Positive predictive value was 0.242 (95% CI
0.223‐0.262), and negative predictive value was 0.992 (95%
CI 0.991‐0.994). The overall F1-score was 0.365 (95% CI
0.340‐0.390) with an accuracy of 0.928 (Table 4).

Table 4. Case-based diagnostic performance of an artificial intelligence–assisted rib fracture detection system in a prospective observational
emergency department studya.
Metric Estimate (95% CI)
Sensitivity 0.745 (0.708‐0.780)
Specificity 0.933 (0.930‐0.937)
PPVb 0.242 (0.223‐0.262)
NPVc 0.992 (0.991‐0.994)
F1-score 0.365 (0.340‐0.390)
Accuracy 0.928 (N/Ad)

aPerformance metrics are reported with 95% CIs using final radiologist reports as the reference standard.
bPPV: positive predictive value.
cNPV: negative predictive value.
dN/A: not available.

As shown in Figure 3, the AI system correctly identified
431 (74.5%) fracture-positive cases while producing 1357
(6.1%) false positives and 148 (0.7%) false negatives across
23,251 studies. This distribution demonstrates the model’s
high true-negative count (n=18,972, 93.3%) and its strong

negative predictive value during deployment in the emer-
gency department. No temporal drift or learning curve
effects were observed, as the deployed model remained fixed
throughout the study period.

Figure 3. Case-level confusion matrix of the artificial intelligence (AI)–assisted rib fracture detection system during prospective emergency
department deployment, using final radiologist reports as the reference standard. Darker blue indicates a higher number of cases (count), as shown in
the color bar.
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Imaging Workload Patterns
Analysis of imaging demand revealed predictable diurnal
and weekly patterns, with peak volumes between 08:00 and

16:00 daily and secondary surges on Thursday to Saturday
evenings. Demand was the lowest between 00:00 and 07:00
across all days of the week (Figure 4).

Figure 4. Heatmap illustrating the temporal distribution of chest radiograph imaging workload by hour of day and weekday during prospective
emergency department deployment. Color intensity represents the number of chest radiographs acquired per hour, highlighting peak imaging periods
across weekdays and weekends.

Inference Turnaround Time
A total of 19,641 paired cases were included to compare AI
inference and radiologist report turnaround times. As shown
in Table 5, the AI system achieved a median processing time
of 10.6 seconds per image (IQR 9.0‐14.0; range 3‐35 s),
compared with a median of 3.3 hours (IQR 1.31‐4.80; range
0.08‐72 h) for radiologist reports. This represents a more than

1000-fold reduction in turnaround time. Figure 5 illustrates
this disparity using boxplots on a logarithmic scale. A paired
Wilcoxon signed-rank test confirmed that AI inference was
significantly faster than radiologist reporting (W=112,987.5;
P<.001). This median reporting time reflects the full clinical
workflow, including overnight and backlog delays typical of
high-volume emergency radiology settings.

Table 5. Turnaround times for artificial intelligence (AI) inference versus radiologist reporting during prospective emergency department deployment
(n=19,641)a.
Metric AI inference time (s) Radiologist report time (s)
Mean 10.9 10,877
Standard deviation 3.0 4008
Median (50%) 10.6 11,880
IQR (25%‐75%) 9.0‐14.0 4728‐17,280
Min 3.0 300
Max 35.0 259,200

aTimes are summarized using descriptive statistics, including median and interquartile range.
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Figure 5. Comparison of turnaround times between artificial intelligence (AI) inference and radiologist reporting during prospective emergency
department deployment (April 1-July 2, 2023). Boxplots on a logarithmic scale illustrate differences in processing time distributions between
real-time AI inference and routine clinical reporting.

This processing speed highlights the potential of AI-assisted
triage systems to complement radiology workflows by rapidly
identifying cases for prioritized review, especially in high-
volume emergency settings.
System Reliability
During the prospective evaluation of the AI system operating
in a parallel clinical workflow, the AI platform experienced 1
service interruption—from 27 April to 10 May 2023—caused
by GPU overload that halted all inference operations. A total
of 3610 studies acquired during this 14-day outage were
excluded from the turnaround time analysis but retained in the
diagnostic accuracy evaluation (their formal radiology reports
remained available). Following hardware replacement, full
functionality was restored on 11 May, and no further outages
occurred over the remainder of the study period.

Illustrative Review of Discordant Cases
To further evaluate the AI system’s potential diagnostic value
beyond report-based benchmarking, a targeted adjudication
was conducted on 11 representative discordant cases in which
the AI system flagged suspected rib fractures not described
in the corresponding radiology reports (Table 6). Among
these, 7 cases (cases 1‐7) were subsequently confirmed as
true fractures on CT (“AI-CT concordant”), indicating that
several AI-labeled false positives in the report-based analysis
represented true fractures missed in the reference standard.
The remaining 4 cases (cases 8‐11) were confirmed nega-
tive on CT, primarily attributable to nonfracture anatomical
structures or imaging artifacts. Including these CT-confirmed
fractures as true positives would modestly increase the
model’s effective sensitivity and positive predictive value,
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highlighting the underestimation inherent in report-based
benchmarking.

Table 6. Targeted post hoc computed tomography (CT) adjudication of representative discordant cases in which artificial intelligence (AI) flagged
suspected rib fractures not described in the corresponding radiology reports during prospective emergency department deployment.

Case AI output Radiologist report
Emergency
physician Outcome Note (AI significance)

1 Flagged right rib fracture No fracture Noted with POCUSa CT-confirmed Triage value, prompting clinicians to
perform USb

2 Flagged right rib fracture No fracture Missed CT-confirmed AI-CT concordance
3 Flagged left fifth rib fracture No fracture Missed CT-confirmed AI-CT concordance
4 Flagged rib fracture post chest

tube
No fracture Missed CT-confirmed Chest tube artifact did not impair

detection
5 Flagged lower-rib fracture No fracture Missed CT-confirmed AI-CT concordance
6 Flagged fracture near

hardware
No fracture Missed CT-confirmed Detected fracture adjacent to surgical

hardware
7 Flagged fracture under

scapular shadow
No fracture Missed CT-confirmed AI-CT concordance

8 Flagged fracture at scapula
border

No fracture No fracture False positive Scapular margin misidentified

9 Flagged rib fracture at bra
clasp

No fracture No fracture False positive Bra hardware artifact

10 Flagged fracture at chest tube
marker

No fracture No fracture False positive Chest tube marker misinterpreted

11 Flagged fracture (image
noise)

No fracture No fracture False positive Image noise

aPOCUS: point-of-care ultrasound.
bUS: ultrasound.

In one representative case (Case 3), the AI system cor-
rectly identified a subtle nondisplaced fracture of the
left fifth rib that was not documented in the radiology
report but later verified on 3D CT reconstruction (Figure

6). In contrast, Figure 7 illustrates the main sources of
false positives, including scapular margin misinterpretation,
chest-tube hardware artifacts, and motion-induced noise.

Figure 6. Representative true-positive rib fracture detected by artificial intelligence (AI) and confirmed by computed tomography (CT) during
prospective emergency department deployment. (A) Chest radiograph showing an AI-flagged fracture of the left fifth rib that was not described in the
initial radiology report. (B) Corresponding CT image confirming the fracture at the same anatomical location.
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Figure 7. Representative false-positive detections generated by an artificial intelligence (AI)–assisted rib fracture detection system during prospective
emergency department deployment. The examples illustrate common sources of false-positive signals on chest radiographs. (A) Scapular margin
overlap misinterpreted as a rib fracture. (B) Chest tube marker misidentified as a rib discontinuity. (C) Bra hardware producing a linear opacity
mimicking a fracture. (D) Image noise and low-contrast regions leading to spurious detection.

This targeted CT adjudication underscores the potential
of AI-assisted screening to augment clinical vigilance
by identifying subtle or overlooked fractures, while also
emphasizing the need to improve artifact robustness and
optimize false-positive suppression for practical clinical
integration.
Common Pitfalls in Frontline Rib Fracture
Detection
Our review of discordant cases identified 3 principal drivers
of missed rib fractures by emergency physicians: first,
non-thoracic presenting complaints (eg, catheter malfunction
or abdominal pain) led interpreters to focus on unrelated
findings and overlook subtle rib breaks; second, the absence
of classic chest pain—patients describing only mild dis-
comfort or a vague “pop”—lowered clinical vigilance for
nondisplaced fractures; and third, competing urgent injuries
(facial, limb, or soft-tissue trauma) diverted attention from the
chest, resulting in underappreciated fractures.

Discussion
Principal Findings
In this observational feasibility study using real-world
emergency department imaging data, we demonstrated that
a faster R-CNN–based AI system can operate in parallel
with routine clinical workflows to provide near-instantane-
ous rib fracture triage without influencing patient care.
During a 3-month evaluation period, the model automat-
ically processed 23,251 CXRs with a median inference
time of 10.6 seconds per image, achieving a turnaround
time reduction exceeding 3 orders of magnitude compared
with formal radiologist reporting, while maintaining 74.5%
sensitivity and 93.3% specificity. These findings position AI
as a potential automated screening aid capable of rapidly
identifying low-risk examinations and generating signals that
could inform future prioritization strategies. The observed
discrepancy between the 10.6-second AI inference time and
the 3.3-hour radiologist turnaround time reflects a critical
clinical bottleneck in busy emergency departments. Although
these metrics represent different stages—technical processing
versus final clinical documentation—the delay in official
reporting highlights the diagnostic gap AI aims to address.

In this context, near-instantaneous AI alerts may support case
prioritization before formal reporting, although no clinician-
facing alerts were implemented in this study.

However, the current findings primarily demonstrate
technical feasibility rather than full clinical feasibility, as
the AI system operated passively without direct clinician
interaction. Future clinician-in-the-loop evaluations will be
necessary to assess workflow integration, usability, and
impact on diagnostic behavior or patient outcomes.

Although the system’s positive predictive value was
relatively low (24.2%), this trade-off aligns with its design
as a triage support tool rather than a stand-alone diagnostic
system. In high-volume emergency departments, the ability
to rapidly identify examinations with a low likelihood of
fracture is crucial. The model’s high NPV of 99.2% allows
clinicians to focus on a smaller, higher-risk subset of cases,
thereby improving efficiency and reducing cognitive load.
Given the observed sensitivity of 74.5%, false-negative cases
remain possible, and the system should not be used as a
stand-alone rule-out mechanism or as a substitute for clinical
judgment.
Comparison to Prior Work
Similar findings have been reported by Yao et al [20], who
demonstrated that deep learning systems with high NPV on
chest CT can reduce radiologists’ workload by effectively
identifying nonfracture cases. A recent systematic review by
van den Broek et al [21] further emphasized the triage value
of AI in fracture detection, underscoring its potential across
multiple imaging modalities.

Our AI system also demonstrated robust performance
across circadian and weekly imaging surges, with peak
volumes observed between 08:00 and 16:00 and dur-
ing Thursday to Saturday evenings. However, a 14-day
GPU hardware outage during the study period highligh-
ted a real-world challenge of maintaining the AI system’s
reliability in clinical environments. This incident underscores
the need for infrastructure redundancy, real-time monitoring,
and failover protocols—key considerations for sustainable AI
deployment. These practical aspects of AI deployment remain
underreported in most published studies [22].
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Compared with prior approaches such as the PACS-AI
platform [23], our system offered full automation, operat-
ing continuously in real time and without the need for
manual image selection. This better reflects the demands
of frontline emergency radiology. Herpe et al [24] dem-
onstrated improved diagnostic accuracy with PACS-integra-
ted AI for limb fractures; however, their study did not
evaluate scalability or autonomous triage capability under
high-throughput conditions. In contrast, our study incorpora-
ted prospective data collection within a real-world emer-
gency department workflow, allowing the assessment of AI
performance, reliability, and operational feasibility under
authentic clinical conditions.

Focused adjudication of discordant cases revealed that
the AI system correctly identified rib fractures that were
missed by both radiologists and emergency physicians in 7
cases, all subsequently confirmed on follow-up CT (“AI-
CT concordant”). These findings highlight the potential of
AI to strengthen diagnostic vigilance in complex clinical
scenarios. While prior studies—such as Zhou et al [25]—
have shown that AI can detect rib fractures overlooked
in initial CT interpretations, with confirmation on follow-
up imaging, these investigations have largely centered on
CT-based workflows. Although CT is highly sensitive, its
routine use is limited by concerns over radiation, cost, and
logistics. In contrast, our CXR-focused approach targets the
most widely used imaging modality in acute care, offering a
more scalable and practical solution for real-world emer-
gency triage. Notably, Brady et al [26] have emphasized
that diagnostic errors and discrepancies are not uncommon
in radiology, with daily error rates estimated at 3%‐5%,
reinforcing the importance of AI as a complementary tool to
enhance diagnostic accuracy.

Four false-positive cases revealed predictable pitfalls,
including the misinterpretation of scapular margins, chest-
tube hardware, and motion artifacts. Similar findings were
reported by Sun et al [27], who noted frequent false positives
in an AI model for rib fracture detection on CXR, often due
to anatomical overlap and imaging artifacts. These results
support the need for artifact-aware retraining and preprocess-
ing optimization to reduce false alerts and improve clinical
integration.

This targeted CT adjudication further highlights the
complementary role of AI in identifying subtle or overlooked
fractures and underscores the inherent limitation of using
report-based labels as the reference standard in real-world
studies.
Future Directions
In addition, integrating AI-generated alerts into emergency
radiology workflows will require careful calibration of alert
thresholds to minimize false positives and prevent alert
fatigue among clinicians. Human-centered design, interface
refinement, and iterative feedback from end users will be
critical to achieving effective and sustainable adoption.

While most prior prospective studies have emphasized
diagnostic performance or radiologist feedback, our findings

extend beyond these metrics to include diagnostic efficacy,
operational resilience, and system failure contingencies.
These real-world insights support the feasibility and clinical
value of embedding AI into routine emergency department
workflows. Recent work has highlighted the importance of
not only measuring accuracy but also assessing robustness
across patient and workflow variability [28]. Furthermore,
the need for deployment frameworks that address hardware
resilience, continuous quality monitoring, and interpretabil-
ity safeguards is increasingly recognized as essential for
sustainable AI adoption in high-acuity settings [29].

Recent reports and position statements have highlighted a
persistent gap between the promising diagnostic performance
of AI systems and their limited demonstrated clinical benefit.
Robust, prospective, and randomized clinical studies remain
urgently needed to justify large-scale implementation [30,31].
Even high-performing AI models (area under the curve≈0.85)
have failed to surpass standard clinical practice in improv-
ing patient outcomes [32,33]. These findings reinforce
ongoing concerns that most AI or machine learning devi-
ces, despite regulatory authorization, are primarily validated
using retrospective data and therefore remain susceptible
to selection bias, distributional shift, and overestimation of
generalizability [34,35].

Clinical decision-making in emergency care is inherently
multimodal: physicians integrate imaging findings with the
mechanism of injury, examination, and vital signs to guide
judgment. In contrast, this AI system analyzes images in
isolation and is designed not to replace but to support
clinicians as a rapid screening aid—enhancing vigilance
in high-volume, high-pressure environments where missed
fractures may occur. Incorporating multimodal clinical data in
future models could further improve diagnostic relevance and
workflow integration.

Although this was an observational feasibility study, it
represents one of the largest evaluations of an AI-assis-
ted rib fracture detection system in real-world emergency
radiology. The findings demonstrate that such a system can
provide meaningful diagnostic support, maintain consistent
performance at scale, and potentially enhance patient safety.
Future implementation should therefore shift from technical
to clinical feasibility, focusing on clinician-in-the-loop impact
studies, PACS-integrated trials, and workflow efficiency
assessments. Although user perception was not formally
assessed, informal feedback from emergency physicians
indicated strong interest in AI-supported flagging—particu-
larly for subtle fractures and during periods of high patient
volume.

Future research should prioritize prospective, multicenter
studies to validate generalizability and quantify AI impact on
workflow, resource utilization, and patient outcomes. Model
improvements—including artifact-aware retraining, expanded
fracture coverage in challenging scenarios such as subtle or
anatomically obscured fractures, and continuous learning—
will be critical to enhance diagnostic precision. Finally,
building infrastructure resilience and integrating effective

JMIR MEDICAL INFORMATICS Huang et al

https://medinform.jmir.org/2026/1/e77965 JMIR Med Inform 2026 | vol. 14 | e77965 | p. 11
(page number not for citation purposes)

https://medinform.jmir.org/2026/1/e77965


alert management into radiologist workflows are essential for
sustainable clinical adoption.
Limitations
First, this single-center observational study may limit
generalizability to other institutions with different imaging
protocols, patient populations, or workflow environments.
Second, during retrospective model development, training and
validation were performed at the image level rather than the
patient level. This may have resulted in optimistic internal
validation estimates due to potential within-patient similarity,
which likely contributes to the observed performance gap
between retrospective validation and prospective real-world
deployment. Additionally, stratified performance analyses by
age group and sex were not performed due to the low
prevalence of rib fractures in certain subgroups, particularly
pediatric patients. Similarly, the small fraction of oblique
views (approximately 1.3%) prevented a dedicated analysis
by imaging view, as the limited sample size would yield
unstable estimates for these specific cohorts.

The prospective evaluation period also did not include
winter months. Seasonal variation in trauma mechanisms
or imaging artifacts may influence fracture detectability
in certain settings; therefore, caution is warranted when
generalizing these findings across different seasonal contexts.

Additionally, the use of a 512×512 resolution for model
inference represents a technical trade-off; while it facilitates
rapid processing, the associated downsampling may limit the
detection of very subtle cortical disruptions.

Third, using radiology reports as the reference stand-
ard—while pragmatic—may underestimate the AI system’s
true performance, as subtle or occult fractures can be
underreported in clinical practice. A focused CT review
of representative discordant cases further supported this
concern, revealing instances where AI-predicted fractures
were subsequently confirmed as true fractures on CT. This
approach likely yielded conservative performance estimates,
since NLP-derived labels may not capture subtle fractures
identified by AI or CT.

Regarding the study design, although post hoc adjudica-
tion is generally more appropriate for hypothesis generation

than for definitive performance reassessment, modifying the
reference standard after study completion may introduce
bias. Accordingly, in this study, performance evaluation was
anchored to the contemporaneous clinical reference standard
used in routine practice. More comprehensive adjudication
strategies—such as consensus radiologist review of AI-posi-
tive, report-negative cases—may provide additional insights
when implemented within a separately designed study.

Finally, because AI predictions were not disclosed to
clinicians, we did not assess downstream clinical outcomes,
including changes in diagnostic behavior, time to interven-
tion, or patient management. As for the data pipeline,
although we used NLP to extract rib fracture labels from
radiology reports, which may introduce misclassification in
ambiguous cases, the pipeline demonstrated high agreement
with manual review (κ=0.91). Given the observed 3.5%
discrepancy rate, any residual label noise propagating through
the large-scale dataset may introduce modest uncertainty into
performance estimates. However, the substantial sample size
(n=23,251) is expected to attenuate the impact of such noise,
supporting the stability of the resulting confidence intervals
for large-scale clinical benchmarking.
Conclusions
In this observational feasibility study, we evaluated a faster
R-CNN–based AI system deployed in parallel with clinical
workflows to automatically detect rib fractures on CXRs
using real-world emergency department data. Although AI
outputs were not visible to clinicians, the system processed
over 23,000 studies with high throughput, achieving 74.5%
sensitivity and 93.3% specificity and delivering results within
seconds—over 1000 times faster than formal radiologist
reports.

These findings demonstrate strong technical feasibility
of real-time AI-assisted rib fracture detection in emergency
radiology. While clinical decisions remained unaffected
during this observational phase, future studies should validate
clinical feasibility through clinician-in-the-loop evaluation,
PACS integration, and workflow optimization to address
potential alert fatigue and false-positive management.
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