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Abstract
Background: General anesthesia comprises 3 essential components—hypnosis, analgesia, and immobility. Among these,
maintaining an appropriate hypnotic state, or anesthetic depth, is crucial for patient safety. Excessively deep anesthesia
may lead to hemodynamic instability and postoperative cognitive dysfunction, whereas inadequate anesthesia increases the
risk of intraoperative awareness. Electroencephalography (EEG)-based monitoring has therefore become a cornerstone for
evaluating anesthetic depth. However, processed electroencephalography (pEEG) indices remain vulnerable to various sources
of interference, including electromyographic activity, interindividual variability, and anesthetic drug effects, which can yield
inaccurate numerical outputs.
Objective: With recent advances in machine learning, particularly unsupervised learning, data-driven methods that classify
signals according to inherent patterns offer new possibilities for anesthetic depth analysis. This study aimed to establish
a methodology for automatically identifying anesthesia depth using an unsupervised, machine learning–based clustering
approach applied to pEEG data.
Methods: Standard frontal EEG data from participants undergoing elective lumbar spine surgery were retrospectively
analyzed, yielding more than 16,000 data points. The signals were filtered with a fourth-order Butterworth bandpass filter
and transformed using the fast Fourier transform to estimate power spectral density. Normalized band power ratios for delta,
high-theta, alpha, and beta frequencies were extracted as input features. Fuzzy C-Means (FCM) clustering (c=3, m=2) was
applied to categorize anesthetic depth into slight, proper, and deep clusters.
Results: FCM clustering successfully identified 3 physiologically interpretable clusters consistent with EEG dynamics during
progressive anesthesia. As anesthesia deepened, frontal alpha oscillations became more prominent within a delta-dominant
background, while beta activity decreased with loss of consciousness. The fuzzy membership values quantified transitional
states and captured the continuum of anesthetic depth. Visualization confirmed strong correspondence among cluster transi-
tions, Patient State Index trends, and spectral density patterns.
Conclusions: This study demonstrates the feasibility of using unsupervised machine learning to enhance anesthetic depth
assessment. By applying FCM clustering to pEEG data, this approach improves the understanding of anesthesia depth and
integrates effectively with existing monitoring modalities. The proposed FCM-based method complements current EEG
indices and may assist anesthesia practitioners and even nonanesthesia professionals in assessing anesthetic depth to enhance
patient safety.
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Introduction
General anesthesia induces temporary loss of consciousness
characterized by unconsciousness, immobility, and autonomic
regulation of pain [1,2]. Maintaining an appropriate depth
of anesthesia is essential for patient safety. Insufficient
anesthesia may lead to intraoperative awareness, autonomic
hyperactivity, and significant psychological distress [3].
Conversely, excessive anesthesia has been associated with
neuroinflammation [4], neuronal injury, and postoperative
cognitive dysfunction or delirium [5,6]. Therefore, continuous
monitoring of anesthetic depth during surgery is of critical
importance. Electroencephalography (EEG)-based monitoring
serves as a valuable tool for this purpose. Real-time EEG
analysis provides insight into anesthetic states, as oscillatory
patterns vary with the anesthetic dose, type, and patient
characteristics [7,8]. The Perioperative Quality Initiative 6
Workgroup, led by Chan, details the available EEG moni-
tors [9]. Understanding perioperative neural activity enables
anesthesiologists to optimize anesthesia delivery and enhance
patient outcomes.

Artificial intelligence is revolutionizing anesthesiology,
with techniques such as anesthesia depth monitoring [10].
Unsupervised machine learning operates without predefined
hypotheses and identifies patterns and structures within
datasets to classify patients, medications, and groups [11].
Unlike supervised machine learning, which correlates the
input data with known outcomes, unsupervised machine
learning categorizes instances based on inherent patterns. In
EEG analyses, unsupervised machine learning methods such
as fuzzy clustering have been used to analyze sleep stages
[12], detect epileptic spikes [13], and identify significant
elements in multichannel recordings [14].

Anesthesia management fundamentally involves 3 key
components: hypnosis, analgesia, and muscle relaxation.
During induction and maintenance, a reproducible spectral
shift occurs in the EEG, wherein frontal alpha oscillations
become prominent within a delta-dominant background,
delta power progressively increases with deepening anesthe-
sia, and beta activity decreases as consciousness is lost [8,
15-17]. Power spectral metrics—including relative alpha,
beta, and delta power, power ratios, and spectral entropy—
have been shown to reliably distinguish between conscious
and anesthetized states [18-20]. Inhalational agents such as
sevoflurane and desflurane consistently produce dose-depend-
ent increases in frontal alpha and delta power [17,21-23],
providing a physiologic basis for categorizing anesthesia into
light, proper, and deep stages. However, current perioperative
EEG-based indices, such as the Bispectral Index (BIS) [24,
25] and Patient State Index (PSi) [26,27], primarily reflect
the hypnotic component but can be influenced by various
factors, potentially leading to misleading processed numerical

outputs. Therefore, this study aimed to enhance anesthetic
depth assessment by focusing on the hypnosis dimension and
applying unsupervised machine learning methods, specifically
Fuzzy C-Means (FCM) clustering, to processed electroence-
phalography (pEEG) data.

The primary objective of this study was to establish
a methodology for automatically identifying anesthesia
depth through a visualized presentation, leveraging machine
learning–based clustering techniques. By applying unsuper-
vised learning to pEEG data, this approach aims to enhance
the classification and understanding of anesthesia depth and
facilitate patient-specific anesthesia management.

Methods
Recruitment
Data were collected at the Veterans General Hospital,
Taipei, with the approval of the Institutional Review Board
(number 2021-09-008BC). More than 16,000 data points
were collected from 10 participants (Participants 1‐10) who
underwent elective lumbar spinal surgery in the prone
position. The ages of the participants ranged from 44 to
78 years, with the American Society of Anesthesiologists’
physical status classifications ranging from class I to class III.
Participants with conditions such as pregnancy, neurological
disorders, ongoing infections, a history of central nervous
system medication use, respiratory failure, heart failure, or
renal failure were excluded.

Masimo SedLine [28] brain function monitoring was
performed with the participant in the supine position.
Induction included fentanyl at 1‐3 mcg/kg as an adjunct for
intubation, followed by propofol at 1‐3 mg/kg as an induction
bolus. Rocuronium was administered at an intubation dose of
0.6‐1 mg/kg for muscle relaxation. The participant was then
intubated.

During maintenance, the inhalational agent sevoflurane
was administered, with dosage adjustments titrated based
on the PSi levels and pEEG density spectral array (DSA)
patterns. The participant was then placed in a prone posi-
tion for lumbar spinal surgery. After the completion of the
surgery, the participant was returned to the supine posi-
tion, and the inhalation agent was gradually titrated off.
Rocuronium administration was reversed using sugammadex.
Subsequently, the participants were extubated and transferred
to the postanesthetic care unit for further monitoring and
recovery.
Data Collection and Processing
Figure 1 outlines the preprocessing steps for the EEG data in
our study.
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Figure 1. Signal processing flow diagram. Flow diagram illustrating preprocessing and feature-extraction steps applied to processed electroence-
phalography data obtained from participants who underwent elective lumbar spine surgery at Taipei Veterans General Hospital. Raw frontal
electroencephalography signals were filtered with a fourth-order Butterworth bandpass filter, and power spectral density was estimated using the
Welch method with a 30-second window and 2-second overlap. Normalized delta, high-theta, alpha, and beta band power ratios were extracted as
input features for unsupervised clustering using the Fuzzy C-Means (FCM) algorithm (c=3, m=2). EEG: electroencephalography.

Signal Processing and Feature Extraction
EEG tracings from the 4 Masimo SedLine channels were
averaged into 1-dimensional signals and synchronized for
consistency. Each participant’s EEG data were recorded
at a sampling frequency of 178 Hz, with a data collec-
tion period ranging from 3 to 5 hours, depending on the
duration of anesthesia. A fourth-order Butterworth band-
pass filter (0.5‐30 Hz) was applied to minimize the rip-
ple and achieve a maximally flat response. Power spectral
density was estimated using the Welch method implemen-
ted in Python (SciPy library), using a 30-second window
with a 2-second sliding overlap to ensure both temporal
continuity and frequency resolution. Additional preprocess-
ing specifications are available in Multimedia Appendix 1.
The Welch method and the fast Fourier transform were
used to estimate the power spectral density, facilitating the
extraction of alpha (8‐12 Hz), beta (13‐30 Hz), delta (0.5‐
4 Hz), and high-theta (6‐8 Hz) band powers. Normaliza-
tion was performed by calculating the ratio of each band’s
power to the sum of the power of these 4 specific bands
(delta+high-theta+alpha+beta), ensuring that the sum of the
feature vector elements equals 1. The 4‐6 Hz and 12‐13
Hz bands were excluded based on their limited variation
across states. Removing these transitional zones established
a “spectral buffer” to reduce noise, allowing the algorithm
to prioritize the more discriminative delta and alpha and
high-theta features. Manual artifact rejection was conducted
by board-certified anesthesiologists and engineers to identify
and exclude segments exhibiting abnormal, noisy epochs
indicative of artifacts.
FCM Clustering Algorithm
FCM clustering categorizes data points into clusters with
membership values between 0 and 1, accommodating the
uncertainty in the cluster assignment. It was performed with
3 clusters (c=3), a fuzziness parameter (m) of 2, random
initialization of cluster centers, and a convergence thresh-
old of 0.005. The model iteratively updates the centroids
and membership values until convergence, guided by a
fuzziness parameter (m) that regulates cluster ambiguity. A
global FCM model was established to generate fixed global
cluster centroids. These fixed centroids were then applied
to all participants to calculate membership values. Further

implementation details are provided in Multimedia Appendix
1. This method extracts delta, alpha, high-theta, and beta band
power ratios from pEEG signals to partition the data into 3
statistically distinct clusters. These clusters were subsequently
labeled as “slight,” “proper,” and “deep” based on their
physiological spectral characteristics. The capability of FCM
to manage data ambiguity makes it suitable for nuanced depth
assessments under general anesthesia.

Ethical Considerations
This study was conducted in accordance with the eth-
ical principles outlined in the Declaration of Helsinki
and was approved by the Institutional Review Board
of Taipei Veterans General Hospital, Taiwan (number:
2021-09-008BC). Written informed consent was obtained
from all participants prior to enrollment. The data used in this
study were deidentified before analysis to ensure partici-
pant confidentiality and privacy. No identifiable personal
information or images were included in the manuscript or
supplementary materials. Participants did not receive any
financial compensation for their participation in the study.

Results
Overview
In this study, an unsupervised learning method, FCM, was
used to analyze the pEEG data from participants with
complete datasets. Table 1 summarizes the demographic
information and baseline characteristics of the participants.
The analysis focused on a feature set comprising the delta-
band power ratio and the sum of the alpha and high-theta
band power ratios. The results revealed 3 distinct clusters.
Based on the centroids’ spectral features, we assigned post
hoc clinical labels to these clusters representing different
anesthesia depths: slight (green), proper (blue), and deep
(red). This clustering approach was validated using visual
representation to confirm the effectiveness of the feature set
in differentiating anesthesia depths. Subsequently, the same
method was applied to individual participant data, categoriz-
ing each participant’s pEEG into 1 of the 3 clusters, thus
providing a detailed estimation of the anesthesia depth for
each individual.
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Table 1. Demographic information and baseline characteristics. Demographic and intraoperative characteristics of 10 participants included in
this retrospective observational study of processed electroencephalography–based anesthetic-depth assessment. All participants underwent elective
lumbar spine surgery at Taipei Veterans General Hospital, Taiwan. Variables include age, sex, height, weight, BMI, American Society of Anesthesi-
ologists classification, comorbidities, intraoperative blood loss, operation time, and postoperative hospital stay.

Participant
Age
(years) Sex

Height
(cm)

Body weight
(kg)

BMI
(kg/m2)

ASAa
classification Comorbidities

Blood loss
(mL)

Operation
time (minutes)

Postoperative
stay (days)

1 63 Fb 152.2 63.7 27.5 I None 300 250 7
2 78 F 150.5 53.5 23.6 II Hepatitis 200 280 6
3 65 Mc 168 89.8 31.8 II None 300 360 4
4 75 M 170 70 24.2 II Hypertension,

dementia
660 405 7

5 67 M 160 64 25.0 II Hypertension 200 285 6
6 45 M 171 69.9 23.9 I None d— 170 2
7 61 M 160.3 77.7 30.2 II Hypertension,

diabetes
mellitus

1300 195 6

8 68 F 157.7 71.1 28.6 II Hypertension,
diabetes
mellitus

450 210 5

9 44 M 173.6 67.6 22.4 I None 50 375 29
10 71 M 167 83 29.8 III Hypertension,

coronary artery
disease

530 320 6

aASA: American Society of Anesthesiologists.
bF: female.
cM: male.
dNot available.

FCM Clustering Analysis of pEEG
Features
FCM clustering was applied to all participants, using alpha,
beta, delta, and high-theta band power as the selected features
for clustering. Figure 2 illustrates the FCM clustering results
for all participants, with the delta band power ratio plotted
on the x-axis and the sum of the alpha and high-theta band
power ratios on the y-axis. Each data point represents a single
time point of a participant’s pEEG signal and is clustered
into 3 distinct groups: slight anesthesia depth (green), proper
anesthesia depth (blue), and deep anesthesia depth (red). The
contribution of the beta band power ratio can be inferred as
the sum of the delta, alpha, high-theta, and beta band power
ratios equals 1, although not explicitly displayed. This visual
depiction offers insights into the distribution of a participant’s
single time points within each anesthesia depth cluster.

After establishing the efficacy of the selected features and
parameters through a collective analysis of the participants,

our investigation shifted focus to the individual application
of this methodology. The fixed global cluster centroids
were then applied to the data of Participants 1‐10 to cal-
culate membership values and simplified estimation results.
Following the methodology outlined, where all time indices
share a common time scale, the pEEG data were combined
with PSi data retrieved from the Masimo SedLine brain
function monitoring system, and the time-frequency images
were compared within the same figure, with each participant
outputting a distinct figure. Within these figures, Participants
4 and 6 are described in the article. By incorporating this
comprehensive approach, our study verified the applicabil-
ity of the selected features and enhanced confidence in the
adaptability of our methodology to diverse clinical scenarios
and datasets, strengthening the reliability of our conclusions
and paving the way for further exploration and validation
within the anesthesia depth assessment domain.
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Figure 2. Fuzzy C-Means clustering results for all participants. Two-dimensional clustering distribution of processed electroencephalography
features from participants undergoing elective lumbar spine surgery. The x-axis represents the delta-power ratio and the y-axis the combined
alpha and high-theta power ratios. Fuzzy C-Means clustering (c=3, m=2) identified 3 physiologically interpretable clusters corresponding to
anesthesia-depth levels: slight (green), proper (blue), and deep (red). Each point denotes a 30-second windowed segment of electroencephalography
data, demonstrating the continuum of anesthetic states observed across the study population.

Participant 4 and Participant 6: FCM
Clustering Analysis
Participant 4 underwent the same data retrieval and process-
ing procedures as the other participants, with raw EEG data
obtained from the Masimo SedLine brain function monitor-
ing system. These data were subjected to filtering, fast
Fourier transformation, normalization, and subsequent FCM
clustering. The culmination of these processes is depicted
in Figure 3, which comprises multiple panels, sharing a
synchronized timescale on the x-axis.

Figure 3A shows the PSi of Participant 4 obtained from
the Masimo SedLine brain function monitoring system. The
x-axis represents the time scale, whereas the y-axis displays
the PSi values, reflecting the PSi over time.

Figure 3B shows the results of FCM clustering for
Participant 4. The y-axis illustrates the estimated member-
ship values and denotes the degree of belongingness of
each cluster. This belongingness quantifies the “fuzziness”
of the FCM clustering, indicating the confidence level of
each assignment of the data point to a particular cluster. It
effectively quantifies the “color shading” shown in Figure
2, where darker shades represent higher confidence levels
in cluster assignments. For example, a membership value of
1 signifies full belongingness to the cluster, and a value of
0.8 indicates 80% confidence in the assignment. This “soft”
labeling approach allows for a more nuanced understanding
of the clustering results, providing insights into the uncer-
tainty associated with each classification of the data point.

Figure 3C represents a modified rendition of Figure
3B, specifically tailored to illustrate the anesthesia depth

classification for Participant 4. Along the y-axis, this plot
delineates the categorization into slight, proper, or deep
anesthesia groups at individual time points. Figure 3B
provides a detailed depiction of the continuous membership
values, reflecting the degree of belonging to each clus-
ter: slight, proper, and deep. However, this comprehensive
display introduces the challenge of intuitively discerning the
predominant cluster at a single point. While this approach
offers a more complete dataset, it complicates the task of
determining the cluster affiliations for each data point. Hence,
the modified version in Figure 3C simplifies this interpreta-
tion by highlighting the cluster with the “higher value.” This
adaptation facilitates a more straightforward assessment of
the anesthesia depth classification by presenting a clearer
distinction. This clarity enhances the utility of visualization
in aiding clinician decision-making during patient monitoring
and management.

Figure 3D presents a time-frequency image derived from
the raw EEG signal without processing, providing insights
into the frequency components of the EEG signal over time.
Overall, Figure 3 provides a comprehensive analysis of the
EEG signals and anesthesia depth classification for Partici-
pant 4, contributing to the understanding of brain function
monitoring and anesthesia management.

Participant 6 then underwent identical signal processing
and analysis procedures, resulting in Figure 4. This compre-
hensive Figures 4A-D underwent the same rigorous process
as shown in Figures 3A-D.
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Figure 3. Fuzzy C-Means clustering analysis of Participant 4. Representative analysis of Participant 4 (male, 75 years, American Society of
Anesthesiologists class II) who underwent lumbar spine surgery at Taipei Veterans General Hospital. (A) shows the Patient State Index trend
over time; (B) displays Fuzzy C-Means membership values representing the degree of belongingness to each cluster; (C) illustrates the simplified
classification into slight, proper, and deep anesthesia levels; (D) presents the corresponding electroencephalography time-frequency spectrogram.
These plots depict temporal transitions in anesthetic depth.

Figure 4. Fuzzy C-Means clustering analysis of Participant 6. Representative analysis of Participant 6 (male, 45 years, American Society of
Anesthesiologists class I) who underwent elective lumbar spine surgery at Taipei Veterans General Hospital. (A) shows the Patient State Index trend
over time. (B) displays Fuzzy C-Means membership values representing the degree of belongingness to each cluster. (C) illustrates the simplified
classification into slight, proper, and deep anesthesia levels. (D) presents the corresponding electroencephalography time-frequency spectrogram.
These plots depict temporal transitions in anesthetic depth. PSi: Patient State Index.
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Discussion
Principal Findings
This study explored the feasibility of improving anesthetic
depth assessment by applying unsupervised machine learning
to pEEG data. EEG patterns vary with the depth of anesthe-
sia [10]. PEEG-derived indices, such as the BIS and PSi,
are susceptible to various influences, presenting limitations
in their interpretation [24]. Purdon et al [8] characterized
the EEG signatures of intravenous and inhaled anesthetics,
providing additional insights into the depth of anesthesia.
In Figure 2, the delta ratio quantifies cortical suppression,
as delta oscillations reflect deep anesthesia and thalamocorti-
cal inhibition. The theta and alpha ratios were selected for
their modulation by anesthetics in the frontal cortex. Alpha
oscillations indicate stable unconsciousness under propofol
and sevoflurane, correlating with GABAergic inhibition,
while theta oscillations become prominent at higher anes-
thetic concentrations, particularly with sevoflurane, signaling
transitions between moderate and deep anesthesia. Figures 3
and 4 depict Participants 4 and 6, respectively, demonstrat-
ing the combination of PSi values, anesthesia depth clus-
tering values, simplified clustering results, and processed
time-frequency images. These visual presentations illustrate
patient-specific anesthesia depth, facilitating the automatic
identification of anesthesia depth.

Postoperative delirium and neurocognitive complications
after spinal surgery remain significant concerns [29], and
perioperative EEG monitoring may contribute to their
management [30]. In this study, one participant (Participant
4) had a history of cognitive dysfunction due to demen-
tia. All participants underwent lumbar spinal surgery in the
prone position with sevoflurane as the maintenance agent.
The operation time ranged from 170 to 405 minutes. Most
participants were discharged within 1 week, and no other
cognitive impairments were documented.
Limitations
This study was constrained by a small sample size. While the
extensive dataset of over 16,000 EEG epochs ensures high
within-subject data density and supports the internal stability
of the model for the analyzed participants, we acknowl-
edge that the limited number of independent participants
restricts the external generalizability of the findings. Previous
studies have indicated that a sampling frequency of 100 Hz
is sufficient for EEG-based analysis [31]. While a larger
sample size could further refine the FCM clustering results
presented in Figure 1, the primary determinants of clustering
effectiveness in single-subject EEG analysis are the duration
and density of the data. With 3 to 5 hours of continuous
EEG recordings per participant, our study provided suffi-
cient granularity for meaningful intrasubject clustering, as
demonstrated in Figures 3 and 4. Our primary objective was
to explore the feasibility and establish the methodological
framework for applying unsupervised machine learning to
processed EEG data.

García et al [32] explored EEG activity and delineated
an analgesia-related axis alongside hypnosis during general
anesthesia, revealing distinct changes in EEG patterns. We
acknowledge the limitation of a single-dimensional index
in capturing the full spectrum of neural activity during
anesthesia. However, our primary goal is to demonstrate
the feasibility of unsupervised clustering within a clinical
framework, focusing on the hypnosis axis—one of anesthe-
sia’s 3 key components. This study used frontal EEG signals,
as used in processed systems such as BIS and SedLine.
Frontal EEG monitoring inherently limits spatial coverage
but remains the clinical standard due to its accessibility
and reliability. The frontal cortex exhibits predictable EEG
dynamics—α-spindle emergence and δ-wave dominance—
with increasing anesthetic depth, correlating with loss of
consciousness and hypnotic adequacy [33-35].

While this study does not include external validation
or direct quantitative comparisons, this reflects the broader
challenge in anesthetic depth classification, which lacks
a universal standard. Although no intraoperative recall
was observed, determining the optimal depth of anesthesia
remains complex. Conventional monitors, such as BIS and
SedLine, along with DSA visualization, aid clinical judgment
but do not serve as definitive references. The study introduces
a complementary tool to enhance anesthetic depth assessment.
This is reflected in Figures 3 and 4, where multiple monitor-
ing modalities are integrated to provide additional insights.

Finally, the frame-by-frame analysis maximizes tempo-
ral sensitivity but may result in rapid state transitions, or
“flickering,” as observed in Figure 3C. For clinical applica-
tion, future iterations would likely require temporal smooth-
ing algorithms to stabilize the output and minimize alarm
fatigue. Despite strong visual correspondence with PSi trends,
standardized quantitative metrics were not calculated due
to methodological constraints. Specifically, the significant
time delay inherent in the PSi algorithm [36] limits direct
linear correlation with the frame-by-frame FCM method, and
imposing rigid thresholds for concordance rates contradicts
the continuous, fuzzy nature of anesthetic depth.
Comparison With Prior Work
Unsupervised learning involves algorithms that identify
patterns or structures within a dataset, facilitating the
discovery of novel classification methods [10]. Systematic
reviews have highlighted the effectiveness of unsupervised
clustering methods in various medical applications. Clus-
tering analysis has revealed pivotal features underlying
the progression from early stage to advanced Alzheimer
disease [37]. Unsupervised learning models applied in cardiac
resynchronization therapy can accurately discern patient
clusters and are valuable for phenotyping and predicting
treatment responses [38]. In amyotrophic lateral sclerosis
research, the k-means score, a hierarchical clustering method,
has emerged as the most widely used method for stratification
and progression prediction [39]. We predefined 3 practical
categories—slight, proper, and deep anesthesia—to emulate
the structured reasoning process that governs intraoperative
anesthetic management. Clinicians continuously evaluate
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anesthetic depth and determine whether to increase, maintain,
or decrease anesthetic delivery. Each titration is typically
incremental and followed by a brief observation period
to allow pharmacokinetic redistribution and physiological
stabilization before reevaluation. Although the equilibration
interval varies among individuals, such judgments integrate
both the instantaneous anesthetic state and its temporal
evolution [36]. FCM clustering offers distinct advantages
for modeling this continuum. It enables classification into
clinically interpretable states while concurrently generating
fuzzy membership values that quantify the degree to which
a given epoch inclines toward a “lighter” or “deeper”
level of anesthesia. This property captures the continuous
and overlapping nature of anesthetic depth and mirrors
the gradual, feedback-driven adjustments that characterize
intraoperative anesthesia management.

In our continuous monitoring data, transitions between
anesthetic states occurred gradually, consistent with the
physiological continuum of anesthesia depth. Abrupt shifts
from “light” directly to “deep” anesthesia were uncom-
mon and, when observed, were generally attributable
to identifiable physiological perturbations—such as bolus
drug administration, intense noxious stimulation, or sud-
den hemodynamic changes—rather than modeling artifacts.
Processed EEG indices may also be transiently affected
by electromyographic [40], electrocardiographic [41], or
mechanical vibration artifacts, particularly during spine
surgery. These interferences are usually recognizable in the
raw EEG tracing and can be excluded from analysis.

Near-equal memberships across clusters (≈33% each)
are uncommon and typically occur when a feature vec-
tor lies between centroids or during transient noise, reflect-
ing a transitional or indeterminate phase rather than a
distinct anesthetic state. Interpretation of anesthetic depth
is inherently pattern-based, as clinicians assess temporal
trends and spectral features in the DSA—for instance, alpha
dominance suggests adequate hypnosis, whereas delta and
theta predominance or burst suppression indicate a deeper
anesthetic level [42]. Therefore, a single epoch with near-
equal memberships would not influence clinical judgment,
which relies on the overall evolution of EEG patterns rather
than isolated points.

Prior research has focused on developing and enhancing
automated system controls, including closed-loop anesthe-
sia. Components such as measurement devices, control-
lers, and actuators are central to these advancements [43].
pEEG-derived indices, such as the BIS [43,44] and PSi
[45], frequently serve as key targets. This study introduced
unsupervised learning clustering as a potential new approach
for assessing anesthesia depth, offering additional avenues for
improving automated anesthesia control systems.

The novel clustering approach provides an alternative
method for assessing anesthesia depth, particularly focusing
on the “hypnosis” axis, as depicted in Figure 3B and C. These
figures illustrate the EEG density spectral array data from
Participant 4, suggesting segmentation into slight, proper,
and excessively deep anesthesia depths. Unlike traditional

PSi values, which provide singular metrics, the representation
of Figure 3B with fuzziness on the y-axis shows nuanced
membership toward anesthesia depth clusters. The graphical
depiction in Figure 3C highlights the peak values, indicat-
ing the period of deep anesthesia. This approach offers a
novel tool for assisting clinical judgment in anesthesia depth
assessment.

Among conventional unsupervised clustering paradigms,
FCM, Gaussian Mixture Models (GMMs), and density-
based algorithms such as Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) exhibit fundamen-
tally distinct analytical mechanisms. FCM minimizes a
distance-weighted objective function while permitting graded
memberships across clusters—an essential property for
anesthesia-related data in which EEG and physiological
variables vary continuously and overlap across anesthetic
states. In contrast, GMM represents data as a superposition of
Gaussian components and assumes that each cluster conforms
to an elliptical, symmetric distribution. However, anesthetic
EEG features often display non-Gaussian characteristics,
including skewness and heavy tails arising from nonlin-
ear pharmacodynamic effects and interindividual variability,
rendering GMM less robust and prone to boundary instabil-
ity. Density-based algorithms such as DBSCAN, although
effective in identifying discrete or spatially separated clusters,
depend on fixed density thresholds and therefore perform
poorly with continuous-depth data, where transitions between
anesthetic states are gradual and density gradients evolve
smoothly. Considering these properties, FCM provides
a mathematically rigorous and physiologically consistent
framework for delineating the smooth, overlapping transitions
that define anesthetic depth.

Building upon these theoretical considerations, we initially
explored k-means clustering but found it less flexible in
classifying anesthetic depth. When visualizing frequency
band proportions, k-means struggled to capture transition
zones effectively, reinforcing our decision to use FCM for a
more adaptable classification. The FCM algorithm stands out
in unsupervised machine learning because of its adaptability
and effectiveness in increasing data volumes. It iteratively
adjusts centroids and clusters, creating personalized represen-
tations tailored to individuals, analogous to bespoke garments
[46]. This adaptability ensures an accurate assessment of
anesthesia depth dynamics, which is crucial for personalized
healthcare.
Conclusions
In conclusion, this study established a machine learn-
ing–based methodology for anesthesia depth assessment,
demonstrating its feasibility and providing preliminary
insights into classification, visualization, and patient-specific
management. By applying FCM clustering to processed
EEG data, this novel approach enhances the understanding
of anesthesia depth patterns and integrates with existing
monitoring modalities, including PSi values and time-fre-
quency image visualization for a more comprehensive
assessment. Although preliminary, these findings lay the
foundation for future research and refinement.
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Multimedia Appendix 1
Detailed data preprocessing workflow and Fuzzy C-Means (FCM) parameter settings. Electromyography signals were
processed via the Welch method (30-s windows, 2-s overlap). Normalized delta, high-theta, alpha, and beta band-power ratios
were extracted as input features. The FCM algorithm (c = 3, m = 2) was applied with random initialization of cluster centers
to identify three anesthesia depth clusters. Measures of dispersion for the delta band within each cluster are summarized in
Table S1. Figures S1 and S2 show additional two-dimensional clustering distributions, demonstrating consistent three-cluster
separation across different frequency-band pairings.
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