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Abstract

Background: Parkinson disease (PD) presents diagnostic challenges due to its heterogeneous motor and nonmotor manifestations.
Traditional machine learning (ML) approaches have been evaluated on structured clinical variables. However, the diagnostic
utility of large language models (LLMs) using natural language representations of structured clinical data remains underexplored.

Objective: This study aimed to evaluate the diagnostic classification performance of multiple LLMs using natural language
prompts derived from structured clinical data and to compare their performance with traditional ML baselines.

Methods: We reformatted structured clinical variables from the Parkinson’s Progression Markers Initiative (PPMI) dataset into
natural language prompts and used them as inputs for several LLMs. Variables with high multicollinearity were removed, and
the top 10 features were selected using Shapley additive explanations (SHAP)–based feature ranking. LLM performance was
examined across few-shot prompting, dual-output prompting that additionally generated post hoc explanatory text as an exploratory
component, and supervised fine-tuning. Logistic regression (LR) and support vector machine (SVM) classifiers served as ML
baselines. Model performance was evaluated using F1-scores on both the test set and a temporally independent validation set
(temporal validation set) of limited size, and repeated output generation was carried out to assess stability.

Results: On the test set of 122 participants, LR and SVM trained on the 10 SHAP-selected clinical variables each achieved a
macro-averaged F1-score of 0.960 (accuracy 0.975). LLMs receiving natural language prompts derived from the same variables
reached comparable performance, with the best few-shot configurations achieving macro-averaged F1-scores of 0.987 (accuracy
0.992). In the temporal validation set of 31 participants, LR maintained a macro-averaged F1-score of 0.903, whereas SVM
showed substantial performance degradation. In contrast, multiple LLMs sustained high diagnostic performance, reaching
macro-averaged F1-scores up to 0.968 and high recall for PD. Repeated output generation across LLM conditions produced
generally stable predictions, with rare variability observed across runs. Under dual-output prompting, diagnostic performance
showed a reduction relative to few-shot prompting while remaining generally stable. Supervised fine-tuning of lightweight models
improved stability and enabled GPT-4o-mini to achieve a macro-averaged F1-score of 0.987 on the test set, with uniformly correct
predictions observed in the small temporal validation set, which should be interpreted cautiously given the limited sample size
and exploratory nature of the evaluation.

Conclusions: This study provides an exploratory benchmark of how modern LLMs process structured clinical variables in
natural language form. While several models achieved diagnostic performance comparable to LR across both the test and temporal
validation datasets, their outputs were sensitive to prompting formats, model choice, and class distributions. Occasional variability
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across repeated output generations reflected the stochastic nature of LLMs, and lightweight models required supervised fine-tuning
for stable generalization. These findings highlight the capabilities and limitations of current LLMs in handling tabular clinical
information and underscore the need for cautious application and further investigation.

(JMIR Med Inform 2026;14:e77561) doi: 10.2196/77561
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Introduction

Parkinson disease (PD) is the second most common
neurodegenerative disorder and presents substantial diagnostic
challenges due to the heterogeneity of its motor and nonmotor
symptoms [1-3]. Despite sustained research efforts, early
diagnostic accuracy remains limited, and the variability of
clinical presentations continues to complicate reliable
classification [4,5]. Large-scale initiatives such as the
Parkinson’s Progression Markers Initiative (PPMI) [6] have
facilitated systematic evaluation of clinical, imaging, and
biomarker variables, providing a foundation for quantitative
approaches to PD diagnosis.

Machine learning (ML) models, including logistic regression
(LR) [7], support vector machines (SVM) [8], and tree-based
classifiers, have demonstrated strong performance when applied
to structured clinical variables [9-11]. However, these models
operate on fixed feature representations and do not naturally
support flexible natural language inputs or generative reasoning,
limiting their applicability when structured clinical data must
be reformatted into descriptive text.

Recent large language models (LLMs) exhibit strong capabilities
in processing natural language information and have shown
promise in clinical applications involving unstructured text such
as clinical notes and reports [12,13]. LLM-generated rationales
typically represent post hoc explanatory text rather than true
interpretability [14], and prior studies have reported challenges
such as prompt sensitivity, stochastic variability, and

susceptibility to distributional shifts when LLMs are applied to
medical tasks [15]. However, their ability to perform diagnostic
classification when structured clinical variables are reformatted
into natural language prompts remains insufficiently explored,
and recent work evaluating the performance of LLMs on
structured or tabular data has reported limited and inconsistent
results [16]. These characteristics highlight the need for careful
and systematic evaluation when applying LLMs to structured
clinical information.

In this context, the goal of this study was to conduct an
exploratory benchmark of modern LLMs for PD classification
using natural language prompts derived from structured clinical
variables in the PPMI dataset. We compared multiple LLM
families with traditional ML baselines and evaluated their
behavior across few-shot prompting, dual-output prompting,
and supervised fine-tuning. The study aimed to characterize
both the capabilities and the limitations of LLMs in handling
tabular clinical information, rather than demonstrating
superiority over conventional ML approaches.

Methods

Overview
Figure 1 illustrates the overall methodological workflow of the
study, detailing the progression from dataset selection and
feature preprocessing to prompt construction, model training,
and evaluation. It provides a concise visual summary of the
experimental pipeline described in the Methods section.
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Figure 1. Study design overview illustrating the overall experimental pipeline, including dataset selection, prompting strategies, fine-tuning, and
evaluation procedures. HC: healthy controls; LLM: large language model; MD: markdown; MD+ST: markdown with special token; ML: machine
learning; PD: Parkinson disease; PPMI: Parkinson’s Progression Markers Initiative; PT: plain text; SHAP: Shapley additive explanations; ST: special
token; VIF: variance inflation factor.

Dataset and Preprocessing
This study used a curated dataset provided by the PPMI,
downloaded on July 29, 2024 (data release: July 3, 2024). The
initial dataset consisted of 4 participant cohorts: individuals
with PD, healthy controls (HC), participants with scans without
evidence of dopaminergic deficit, and prodromal participants.
For this study, only PD and HC participants were included.

Duplicate observations were removed by retaining the most
comprehensive examination timepoint for each participant.
Variables with more than 20% of missingness were excluded.
Missing values in the remaining viables were imputed using
mean imputation for numerical variables and mode imputation
for categorical variables [17]. Participants included in the
held-out test set and in the temporally independent validation
set (temporal validation set) did not contain missing values and
therefore required no imputation. Missing-value imputation was
performed only for the training portion of the development
dataset, which consisted of the train and validation subsets.
Imputation statistics (mean and mode) were computed

exclusively from the training split and subsequently applied to
validation split. This procedure ensured that no information
from the test or temporal validation sets influenced the
preprocessing of the training data. After preprocessing, the final
development dataset consisted of 1360 participants (PD, n=1063;
HC, n=297).

A temporal validation set was constructed using the most recent
curated PPMI dataset released on December 11, 2024. To ensure
temporal separation, all data contained in the July 3, 2024,
release were excluded, and only data from participants newly
recruited after this release were included. This temporally
separated dataset was used to assess the generalizability of
model performance to data collected at a later timepoint. In
clinical research, obtaining an external dataset with identical
conditions is often challenging, and temporally separated
datasets serve as a practical and widely accepted alternative for
external validation [18,19].

Demographic characteristics of both the development and
temporal validation datasets, including age, sex, education, and
race, are summarized in Table 1.
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Table 1. Demographic information of participants by dataset group.

Temporal validation setaDevelopment setCharacteristic

HC (n=16)PD (n=15)HCc (n=297)PDb (n=1063)

63.9 (11.3; 30.4-79.4)62.7 (10.9; 31.3-73.0)62.4 (10.6; 30.4-83.7)63.3 (9.7; 30.7-85.3)Age (years), mean (SD; range)

Sex, n (%)

3 (18.8)8 (53.3)195 (65.7)686 (64.5)Male

13 (81.3)7 (46.7)102 (34.3)377 (35.5)Female

16.7 (2.0; 12-20)16.8 (2.0; 11-20)16.0 (2.7; 8-20)16.0 (2.8; 6-20)Education (years), mean (SD; range)

Race, n (%)

16 (100)13 (86.7)272 (91.6)973 (91.5)White

0 (0)0 (0)10 (3.4)30 (2.8)Black

0 (0)1 (6.7)2 (0.7)21 (2)Asian

0 (0)1 (6.7)13 (4.4)39 (3.7)Other

aTemporal validation set includes participants newly enrolled after the July 3, 2024, data release (excluded from the development set) and serves as a
temporally separated dataset for external validation.
bPD: Parkinson disease.
cHC: healthy controls.

The development dataset was randomly divided into training,
validation, and test subsets following an approximately 7:2:1
ratio. Only complete cases were included in the test set to ensure
reliable evaluation. Feature selection and fine-tuning were

performed exclusively using the training set. The test set was
used solely for final model evaluation and was not involved in
any feature selection or model fitting procedures. Class
distributions for each subset are summarized in Table 2.

Table 2. Dataset splits and class distribution for diagnostic modeling.

HCb, n (%)PDa, n (%)Total, nDatasets and subsets

Development set

219 (22.1)771 (77.9)990Training set

55 (22.2)193 (77.8)248Validation set

23 (18.9)99 (81.1)122Test set

16 (51.6)15 (48.4)31Temporal validation set

aPD: Parkinson disease.
bHC: healthy controls.

Feature Selection

Multicollinearity Evaluation
To address multicollinearity, we generated a correlation matrix
and computed the variance inflation factor for all candidate
variables [20]. Variables with variance inflation factor values
exceeding 10, a commonly accepted threshold for severe
multicollinearity, were removed to prevent unstable coefficients
and improve model reliability [21,22]. A total of 70 variables
remained after this screening step and were used for Shapley
additive explanations (SHAP)–based feature selection.

SHAP-Based Feature Importance
Feature importance was evaluated using a weighted average of
SHAP values obtained from 4 tree-based models, including
random forest [23], XGBoost [24], LightGBM [25], and
CatBoost [26]. These models were selected because they are
widely used for their tabular data and are known to mitigate

issues related to multicollinearity while accommodating
mixtures of numerical and categorical features effectively [27].

For each model, SHAP values were computed for all remaining
variables, normalized, and then combined using a weighted
averaging approach based on the diagnostic performance of
each model. The performance metrics and assigned weights are
summarized in Multimedia Appendix 1.

The weighted average SHAP value for each feature was
calculated as [28]:
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where:

• ϕij represents the SHAP value of feature j computed by
model i

• wi represents the performance-based weight assigned to
model i

• the denominator ensures that weights are normalized
so they sum to 1.

The top 10 variables were selected based on these weighted
average SHAP values, as shown in Multimedia Appendix 2.
The final features set consisted of clinically meaningful motor,
olfactory, and imaging features. Specifically, the selected
variables were updrs3_score, con_putamen, updrs_totscore,
updrs2_score, lowput_expected, upsit_pctl,
DATSCAN_PUTAMEN_L, con_striatum, mean_putamen, and
DATSCAN_PUTAMEN_R. These features were used
consistently across all subsequent ML and LLM experiments.

Prompt Construction
To evaluate the performance of LLMs, we developed 4
prompting formats that express input variables in plain text
(PT), markdown (MD), special token (ST) annotations, and a
combined markdown with special token (MD+ST) structure
[29]. The PT format presents the input features as natural
language sentences, whereas the MD format uses a structured
table to delineate characteristics and enhance feature recognition,
and the combined MD+ST format integrates both structured
layout and explicit ST annotation.

Each prompting format was applied under 0-shot conditions to
3-shot conditions. All few-shot settings incorporated balanced
PD and HC examples, with 1 pair for 1-shot, 2 pairs for 2-shot,
and 3 pairs for 3-shot prompting. For dual-output prompting,
the diagnostic label was followed by 3 sentences of post hoc
explanatory text, which served as an exploratory output and did
not represent true model interpretability [30].

For dual-output prompting, each LLM was instructed to generate
a diagnostic label (PD or HC) followed by 3 sentences of post
hoc explanatory text with a maximum length of 180 tokens to
ensure comparability across models. Examples of all prompting
formats, few-shot configurations, and sample outputs are
provided in Multimedia Appendix 3.

Modeling Approaches
This study compared traditional ML classifiers with multiple
LLMs in order to evaluate diagnostic performance under
consistent experimental conditions. As deterministic baselines,
we trained LR with L2 regularization and a SVM with a radial
basis function (RBF) kernel, using the top 10 SHAP-selected
features. Both models were implemented using standard
scikit-learn procedures without extensive hyperparameter tuning,
since the goal was to establish transparent and reproducible
baselines rather than to maximize predictive performance. The
complete hyperparameter configurations for the ML classifiers
are summarized in Multimedia Appendix 4. These models were
evaluated following the procedures described in the “Training
and Evaluation Settings” section.

For LLM-based classification, we selected model families that
collectively capture diversity in architecture, accessibility, and
usage constraints. The included families were LLaMA, GPT,
Gemini, and Claude. Each family provided one or more model
variants with different parameter sizes or intended applications.
The LLaMA models consisted of LLaMA 3.1 8B Instruct and
LLaMA 3.3 70B Instruct, both of which were run locally using
open-access model weights. The GPT models consisted of
GPT-4o-mini and GPT-4o, accessed through the OpenAI
application programming interface (API). The Gemini models
included Gemini 1.5 Flash and Gemini 1.5 Pro, accessed through
the Google Gemini API. For the Claude family, the Claude 3.5
Sonnet model was used. Although lightweight variants such as
Claude Instant were available, the Sonnet model was selected
due to budget considerations and its expected performance.

All LLMs were accessed through their officially supported APIs
or locally hosted implementations using Python-based
programmatic interfaces. The same prompting formats, shot
settings, and evaluation procedures were applied across all
models, except where input-format restrictions required specific
handling. Additional implementation details, including software
environments and API configurations, are provided in
Multimedia Appendix 5.

Training and Evaluation Settings

Overview
The evaluation schedule and prompting phases for each model
are summarized in Multimedia Appendix 6, and the hardware
and software environments used in all experiments are described
in Multimedia Appendix 7. To address the class imbalance
between PD and HC, model performance was primarily assessed
using the F1-score, with precision and recall reported as
supporting metrics. Accuracy was treated as a secondary
measure, given that F1-score provides a more balanced
assessment under imbalanced classification tasks [31].

For all binary classification tasks, PD was assigned as the
positive class (label=1) and HC as the negative class (label=0)
across all ML and LLM experiments. Numerical features were
standardized using z score scaling, where each variable was
transformed by subtracting the mean and dividing by the SD
computed from the training split. This ensured a consistent
feature scale for both LR and SVM while preventing data
leakage. Standardization using z score was applied exclusively
to the ML baselines. For LLM-based experiments, models were
provided with the original clinical values embedded in natural
language prompts, rather than normalized numerical vectors.
For ML models, performance uncertainty was quantified using
95% bootstrap CIs based on 1000 resampling iterations [32].

For LLMs, diagnostic classification was evaluated under 0-shot
settings to 3-shot settings using 4 prompting formats including
PT, MD, ST, and MD+ST. All few-shot experiments
incorporated balanced PD and HC examples at each shot level.
Across all LLM conditions, each participant was evaluated
through 30 repeated model executions under identical prompting
conditions to account for the inherent nondeterminism of LLM
outputs [33]. Any change in diagnostic labels across these
executions was recorded as a label inconsistency event. For
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dual-output prompting experiments, semantic consistency of
the generated post hoc explanatory texts was also evaluated.

For each LLM and prompting configuration, macro-averaged
performance metrics (F1-score, precision, recall, and accuracy)
were computed for each of the 30 model executions.
Nonparametric 95% CIs for LLM performance were estimated
only for the temporal validation set using a hierarchical bootstrap
procedure. In each iteration, participants were sampled with
replacement and, for each selected participant, one prediction
was randomly drawn from the 30 repeated trials. The 2.5th and
97.5th percentiles of the resulting performance distributions
were reported in the temporal validation tables.

All combinations of prompting format and shot number were
evaluated for each LLM on the development test set. The
prompting configuration reported as the best for each model
corresponds to the combination that achieved the highest
macro-averaged F1-score on this test set. During temporal
validation, each LLM was evaluated using only under its
best-performing configuration. This ensured that temporal
validation assessed the generalizability of each model’s optimal
setting rather than retesting all prompt-shot combinations on
temporally independent data.

ML Baseline Training Protocols
Two conventional ML classifiers were trained as deterministic
baselines for comparison with LLM-based diagnostic
approaches. The models were LR with L2 regularization and a
SVM with an RBF kernel, both of which were trained using the
same feature subset identified in the SHAP-based feature
selection step. Class weights were applied to address the
imbalance between PD and HC samples in the development set.

Both models were implemented using standard scikit-learn
procedures without extensive hyperparameters optimization, as
the primary goal was to establish transparent and reproducible
baselines rather than to maximize predictive performance. LR
was trained using the liblinear solver with balanced class
weights, while SVM used an RBF kernel with probability
estimation enabled. Performance for both models was evaluated
for direct comparability with all LLM-based experiments.

Few-Shot Prompting Evaluation of LLMs
The LLMs were evaluated using the 4 prompting formats
described earlier, applied across 0-, 1-, 2-, and 3-shot settings.
Examples of PD and HC were balanced in all few-shot
conditions to ensure consistent contextual exposure. All 4
prompting formats were applied to the LLaMA models. In
contrast, only the PT and MD formats were applied to the GPT,
Gemini, and Claude models because these API-based models
do not support ST annotations in their input structure.
Importantly, the inclusion of STs substantially influenced both
diagnostic performance and output stability. Accordingly,
ST-based prompting (including MD+ST) was applied
exclusively to the LLaMA models as a model-specific input
design choice, and the resulting differences in prompt structuring
capability were explicitly considered as a limitation in
cross-model comparisons.

Dual-Output Prompting of LLMs for Diagnosis and Post
Hoc Explanatory Text
This experiment examined whether requiring LLMs to generate
post hoc explanatory text could influence their diagnostic
classification performance. Recent studies have shown that
step-by-step prompting can improve LLM accuracy in complex
decision tasks [34], yet fully stepwise reasoning is often
impractical in clinical contexts due to token limitations. Rather
than instructing the models to articulate their reasoning step by
step, the models were prompted to produce concise post hoc
explanatory text. This approach enabled assessment of whether
a reduced explanatory demand could affect the diagnostic output.

Each model generated a binary diagnosis of PD or HC followed
by exactly 3 sentences of post hoc explanatory text. To ensure
consistency across models and to manage token usage, the length
of these explanatory outputs was fixed. This dual-output
prompting was applied to 4 models, including GPT-4o, Claude
3.5 Sonnet, Gemini 1.5 Pro, and LLaMA 3.3 70B. Among these,
the LLaMA model was prompted using the ST format, whereas
the other models were prompted using the PT format because
these models do not support ST inputs.

Although the generated explanations were not reviewed by
clinical experts, their semantic consistency was evaluated to
assess the stability of the post hoc explanatory text under
repeated prompting. High semantic consistency reflects only
the reproducibility of the generated text across repeated runs
and does not imply that the explanations are clinically accurate
or factually grounded. For each participant, their explanatory
outputs per model were collected, and pairwise cosine similarity
between sentence embeddings was computed using the
all-mpnet-base-v2 model from the Sentence-Transformers
library [35,36]. This semantic consistency analysis was
performed only on the development set, while the temporal
validation set was used exclusively for the primary diagnostic
evaluation.

LLM Supervised Fine-Tuning
Supervised fine-tuning was conducted to evaluate whether
labeled training data could improve the diagnostic performance
and output stability of lightweight LLMs. Unlike prompt-based
learning, which is constrained by the number of examples that
can be included within a single prompt, supervised fine-tuning
allows the model to learn diagnostic patterns directly from the
full training dataset.

Among the models tested in this study, GPT-4o-mini and
Gemini 1.5 Flash were selected as compact and computationally
efficient alternatives to assess how smaller LLMs perform
relative to larger models. Both models were fine-tuned using
the same dataset that was used in the prompting experiments,
and all evaluations were performed under 0-shot conditions on
the identical test set. The generation temperature was fixed at
0.1 to ensure consistent and deterministic behavior. Further
details regarding fine-tuning platforms, sampling strategies, and
training parameters are provided in Multimedia Appendix 8.

The GPT-4o-mini model was fine-tuned through the OpenAI
API. Training jobs were submitted from a local workstation
after converting the dataset into JSONL format. A total of 1052
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samples were used for training and 186 samples for validation.
The fine-tuning process followed OpenAI’s job-based workflow,
in which each training job is versioned and automatically made
accessible through the OpenAI API upon completion.

The Gemini 1.5 Flash model was fine-tuned using the Google
AI Studio platform. Because the platform restricts training to a
maximum of 500 samples, stratified sampling was applied to
preserve the original class ratio, resulting in 383 PD samples
and 117 HC samples. The model was trained for 1 epoch with
a batch size of 1 and a learning rate of 1, after which the
fine-tuned model was deployed via the Gemini API using the
assigned model identifier.

All fine-tuned models were trained and evaluated using the PT
prompt format to maintain consistency between training and
testing conditions.

Ethical Considerations
This study used publicly available, deidentified data provided
by PPMI. According to institutional policies and the PPMI Data
Use Agreement, additional institutional review board approval
was not required for secondary analyses of this publicly

accessible dataset. The original PPMI study was conducted
under institutional review board approval at all participating
institutions, and all participants provided written informed
consent permitting data sharing and secondary analyses. All
analyses in this study were conducted on anonymized records
with no personally identifiable information, and no participant
compensation was applicable.

Results

ML Baseline Performance
To establish a deterministic baseline for comparison with
LLM-based diagnostic approaches, we evaluated 2 conventional
ML classifiers trained on the top 10 SHAP-selected features.
LR and a SVM with an RBF kernel were implemented using
standard scikit-learn procedures.

As summarized in Table 3, both models achieved identical
performance on the test subset of the development set, yielding
a macro-averaged F1-score of 0.960 and an accuracy of 0.975.
Precision and recall were balanced across PD and HC, and the
95% CIs ranged from approximately 0.94 to 1.00, reflecting the
modest sample size of the test subset (n=122).

Table 3. Performance of machine learning models on the test subset of the development set (n=122; CIs were estimated via 1000 bootstrap iterations).

AccuracyRecall (macro avg/PD/HC)Precision (macro avgb/PDc/HCd)F1-scorea (95% CI)Model

0.9750.968/0.980/0.9570.953/0.990/0.9170.960 (0.943-1.000)LR_L2e

0.9750.968/0.980/0.9570.953/0.990/0.9170.960 (0.944-1.000)SVM_RBFf

aF1-scores represent macro avg values across PD and HC classes.
bmacro avg: macro-averaged.
cPD: Parkinson disease.
dHC: healthy controls.
eLR_L2: logistic regression (L2 regularization).
fSVM_RBF: support vector machine (RBF kernel).

Table 4 presents the results from the temporal validation set
(n=31). LR demonstrated moderately high generalizability,
achieving a macro-averaged F1-score of 0.903 and an accuracy
of 0.903. In contrast, SVM showed a substantial decline in

generalizability, producing a macro-averaged F1-score of 0.484
with markedly reduced recall for PD. The wide CIs observed
for both models reflect the limited size of the temporal validation
set and the inherent uncertainty associated with evaluating
performance on small external samples.

Table 4. Performance of machine learning models on the temporal validation set (n=31; CIs were estimated via 1000 bootstrap iterations).

AccuracyRecall (macro avg/PD/HC)Precision (macro avgb/PDc/HCd)F1-scorea (95% CI)Model

0.9030.906/1.0/0.8130.917/0.833/1.00.903 (0.791-1.000)LR_L2e

0.4840.5/0/1.00.241/0.483/00.484 (0.157-0.506)SVM_RBFf

aF1-scores represent macro avg values across PD and HC classes.
bmacro avg: macro-averaged.
cPD: Parkinson disease.
dHC: healthy controls.
eLR_L2: logistic regression (L2 regularization).
fSVM_RBF: support vector machine (RBF kernel).

Given the small size of the temporal validation set (n=31),
results obtained on this dataset should be interpreted with

caution, as performance estimates may be sensitive to individual
misclassifications.
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Figure 2 illustrates the prediction patterns for the 2 classifiers
across both datasets. On the development test subset (Figure
2A), both models produced identical predictions, misclassifying
1 HC participant as PD and misclassifying 2 PD participants as
HC. In the temporal validation set, LR misclassified only 3 HC

cases as PD (Figure 2B), whereas SVM misclassified nearly all
HC cases (Figure 2C). Although the two models performed
similarly on the development test subset, their stability diverged
substantially when evaluated on data collected at a later
timepoint.

Figure 2. Confusion matrix for machine learning classifiers. (A) Test subset of the development set. (B) Logistic regression of temporal validation set.
(C) Support vector machine of temporal validation set. HC: healthy controls; PD: Parkinson disease.

Few-Shot Prompting Performance of LLMs
A total of 4 prompting formats, including PT, MD, ST, and
MD+ST, were evaluated under 0-shot conditions to 3-shot
conditions to assess the diagnostic performance of LLMs.
ST-based prompts were applied exclusively to the LLaMA
models because the inclusion of STs substantially affected both
classification accuracy and output stability. Non-LLaMA models
such as GPT, Gemini, and Claude did not support ST formatting
and were therefore evaluated using PT and MD formats.

Table 5 presents the best-performing results for each model on
the test dataset (n=122). The best-performing configuration for
each model corresponds to the prompt type and shot number
that achieved the highest macro-averaged F1-score on the
development test set.

LLaMA 3.3 70B and Gemini 1.5 Pro achieved the highest
macro-averaged F1-score of 0.987 with an accuracy of 0.992

and stable predictions across 30 repeated trials. LLaMA 3.1 8B
reached the same F1-score using the MD+ST prompt at the
3-shot setting but showed one instance of prediction
inconsistency. Claude 3.5 Sonnet demonstrated strong
performance with an F1-score of 0.972 and an accuracy of 0.984
under 1-shot MD setting, maintaining complete consistency
across repeated runs. GPT-4o and GPT-4o-mini achieved
slightly lower but stable performance, with macro-averaged
F1-scores of 0.961 and 0.910, respectively. Gemini 1.5 Flash
produced the lowest F1-score (0.894) despite consistent
predictions, reflecting reduced sensitivity for HC cases. Detailed
per-participant consistency analyses across 30 trials are provided
in Multimedia Appendix 9.

Figure 3 displays the confusion matrices for the best-performing
configuration of each model. Most classification errors occurred
in HC samples, indicating high sensitivity for PD across the
LLMs.
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Table 5. Best performance of large language models on the test dataset (n=122).

Inconsistent

casesf
Inconsistencye,
n

AccuracyRecall (macro
avg/PD/HC)

Precision (macro

avgb/PDc/HCd)
F1-scoreaShotPromptModel

PD #73
(13:17)

10.9920.978/1/0.9570.995/0.990/10.9873MD+STgLLaMA 3.1
8B

—i00.9920.978/1/0.9570.995/0.990/10.9872SThLLaMA 3.3
70B

HC #103
(19:11)

10.9510.869/1/0.7390.972/0.943/10.9102MDjGPT-4o-mi-
ni

HC #26
(28:2); HC
#68 (17:13)

20.9750.969/0.980/0.9570.954/0.990/0.9170.9610PTkGPT-4o

—00.9380.848/1/0.6960.967/0.934/10.8942PT, MDGemini 1.5
Flash

—00.9920.978/1/0.9570.995/0.990/10.9872PT, MDGemini 1.5
Pro

—00.9840.957/1/0.9130.990/0.980/10.9721MDClaude 3.5
Sonnet

aF1-scores represent macro avg values across PD and HC classes.
bmacro avg: macro-averaged.
cPD: Parkinson disease.
dHC: healthy controls.
eNumber of participants (out of 122) whose predictions were inconsistent at least once across 30 repeated trials.
fExample of inconsistent participants showing the final label (eg, PD #73) and the number of predicted labels across 30 runs (eg, 13:17 indicates 13 HC
and 17 PD predictions).
gMD+ST: markdown with special token.
hST: special token.
iNot applicable.
jMD: markdown.
kPT: plain text.

Figure 3. Confusion matrices of large language models under the best-performing configurations on the test dataset (n=122). HC: healthy controls;
PD: Parkinson disease.

Table 6 and Figure 4 summarize the best-performing
configuration of each LLM on the temporal validation set
(n=31). LLaMA 3.3 70B achieved the highest macro-averaged

F1-score of 0.968 using the ST format at the 2-shot setting, with
recall of 1.00 and consistent predictions across all participants.
LLaMA 3.1 8B, Gemini 1.5 Pro, and Claude 3.5 Sonnet showed
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comparable performance, each achieving a macro-averaged
F1-score of 0.936 with stable predictions. GPT-4o and Gemini
1.5 Flash achieved moderately high performance
(F1-score=0.903), with consistent predictions across all
participants. In contrast, GPT-4o-mini achieved the lowest
F1-score (0.836), driven primarily by reduced recall for HC
cases. Across all models, recall for PD remained consistently
high (recall≥0.938), demonstrating strong sensitivity even when

evaluated on data collected at a later timepoint. Figure 4 shows
the confusion matrices for each model under the prompt and
shot condition listed in Table 6.

These findings indicate that LLMs generally maintained high
diagnostic accuracy and prediction stability under temporally
separated data, supporting their potential generalizability beyond
the development dataset.

Table 6. Best performance of large language models on the temporal validation set (n=31).

Inconsistent

casesf
Inconsistencye,
n

AccuracyRecall (macro
avg/PD/HC)

Precision (macro

avgb/PDc/HCd)
F1-scorea

(95% CI)

ShotPromptModel

HC #13
(9:21); HC
#23 (7:23)

20.9350.938/1/0.8750.941/0.882/10.936
(0.854-
1.000)

3MD+STgLLaMA 3.1
8B

—i00.9680.969/1/0.9380.969/0.938/10.968
(0.899-
1.000)

2SThLLaMA 3.3
70B

HC #10
(4:26); HC
#28 (8:22)

20.8390.844/1/0.6880.875/0.750/10.836
(0.708-
0.966)

2MDjGPT-4o-mi-
ni

PD #1 (1:29);
HC #10 (28:2)

20.9030.906/1/0.8130.917/0.833/10.903
(0.773-
1.000)

0PTkGPT-4o

—00.9030.906/1/0.8130.917/0.833/10.903
(0.773-
1.000)

2PTGemini 1.5
Flash

—00.9350.938/1/0.8750.941/0.882/10.936
(0.832-
1.000)

2PTGemini 1.5
Pro

—310.9350.938/1/0.8750.941/0.882/10.936
(0.832-
1.000)

1MDClaude 3.5
Sonnet

aF1-scores represent macro avg values across PD and HC classes.
bmacro avg: macro-averaged.
cPD: Parkinson disease.
dHC: healthy controls.
eNumber of participants (out of 31) whose predictions were inconsistent at least once across 30 repeated trials.
fExample of inconsistent participants showing the final label (eg, HC #13) and the number of predicted labels across 30 runs (eg, 9:21 indicates 9 HC
and 21 PD predictions).
gMD+ST: markdown with special token.
hST: special token.
iNot applicable.
jMD: markdown.
kPT: plain text.
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Figure 4. Confusion matrices of large language models under their best-performing configurations on the temporal validation set (n=31). HC: healthy
controls; PD: Parkinson disease.

Diagnostic Performance Under Dual-Output
Prompting
Dual-output prompting was used to evaluate whether requiring
LLMs to generate post hoc explanatory text influenced their
diagnostic reliability. This experimental setting included 4
representative models, namely LLaMA 3.3 70B, GPT-4o,
Gemini 1.5 Pro, and Claude 3.5 Sonnet. Unlike diagnostic-only
prompting, this setup instructed each model to output a binary
diagnostic label followed by 3 sentences of post hoc explanatory
text. Because the LLaMA models are highly sensitive to input
formatting, dual-output prompts for LLaMA 3.3 70B were
constructed using the ST format. GPT-4o, Gemini 1.5 Pro, and
Claude 3.5 Sonnet do not support ST inputs, and therefore PT
prompts were used for these models to maintain compatibility.

As summarized in Table 7, all models achieved high diagnostic
performance under dual-output prompting, although overall
F1-scores were slightly lower than those obtained under few-shot
prompting. LLaMA 3.3 70B and Claude 3.5 Sonnet each
achieved a macro-averaged F1-score of 0.972 and correctly
identified all PD cases. GPT-4o and Gemini 1.5 Pro showed
similar results and achieved F1-scores of 0.958 with an accuracy
of 0.975. Most prediction errors occurred in HC cases, whereas
all PD samples were correctly classified. Instances of
inconsistency across 30 repeated trials were rare, typically
affecting no more than 2 participants for each model. The full
repeated-trial results are presented in Multimedia Appendix 10.

Figure 5 displays the confusion matrices corresponding to each
model’s best-performing dual-output configuration.
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Table 7. Best performance of large language models on the test dataset under dual-output prompting (n=122).

Inconsistent

casesf
Inconsistencye,
n

AccuracyRecall (macro
avg/PD/HC)

Precision (macro

avgb/PDc/HCd)
F1-scoreaShotPromptModel

HC #23
(29:1); HC
#68 (28:2)

1220.9840.957/1/0.9130.990/0.980/10.9723STgLLaMA 3.3
70B

HC #26
(26:4); HC
#77 (6:24)

1220.9750.935/1/0.8700.985/0.970/10.9581PThGPT-4o

HC #97 (28:2)1220.9750.935/1/0.8700.985/0.970/10.9583PTGemini 1.5
Pro

PD #23 (1:29)1220.9840.957/1/0.9130.990/0.980/10.9720PTClaude 3.5
Sonnet

aF1-scores represent macro avg values across PD and HC classes.
bmacro avg: macro-averaged.
cPD: Parkinson disease.
dHC: healthy controls.
eNumber of participants (out of 122) whose predictions were inconsistent at least once across 30 repeated trials.
fExample of inconsistent participants showing the final label (eg, HC #23) and the number of predicted labels across 30 runs (eg, 29:1 indicates 29 HC
and 1 PD predictions).
gST: special token.
hPT: plain text.

Figure 5. Confusion matrices of large language models under best-performing dual-output prompting conditions on the test subset of the development
set (n=122). HC: healthy controls; PD: Parkinson disease.

Generalizability was further assessed using the temporal
validation set (n=31). As shown in Table 8, all models
maintained strong diagnostic sensitivity, and recall for PD
remained equal to 1 across all participants. GPT-4o achieved
the highest macro-averaged F1-score of 0.968 with an accuracy
of 0.968. LLaMA 3.3 70B followed with a macro-averaged
F1-score of 0.935. Gemini 1.5 Pro and Claude 3.5 Sonnet

showed modest decreases in performance with F1-scores of
0.903 and 0.869, respectively, primarily due to HC
misclassifications.

Figure 6 presents the confusion matrices for the temporal
validation set under the best-performing configuration for each
model.
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Table 8. Best performance of large language models under dual-output prompting on the temporal validation set (n=31).

Inconsistent

casesf
InconsistencyeAccuracyRecall (macro

avg/PD/HC)
Precision (macro

avgb/PDc/HCd)
F1-scorea

(95% CI)

ShotPromptModel

HC #11
(23:7); HC
#21 (8:22)

20.9350.938/1/0.8750.941/0.882/10.935
(0.832-
1.000)

3STgLLaMA 3.3
70B

HC #21 (29:1)10.9680.969/1/0.9380.969/0.938/10.968
(0.896-
1.000)

1PThGPT-4o

—i00.9030.906/1/0.8130.917/0.833/10.903
(0.774-
1.000)

3PTGemini 1.5
Pro

HC #10 (1:29)10.8710.875/1/0.7500.895/0.789/10.869
(0.735-
0.968)

0PTClaude 3.5
Sonnet

aF1-scores represent macro avg values across PD and HC classes.
bmacro avg: macro-averaged.
cPD: Parkinson disease.
dHC: healthy controls.
eNumber of participants (out of 31) whose predictions were inconsistent at least once across 30 runs.
fExample of inconsistent participants showing the final label (eg, HC #11) and the number of predicted labels across 30 runs (eg, 23:7 indicates 23 HC
and 7 PD predictions).
gST: special token.
hPT: plain text.
iNot applicable.

Figure 6. Confusion matrices of large language models under best-performing dual-output prompting conditions on the temporal validation set (n=31).
HC: healthy controls; PD: Parkinson disease.

Following the diagnostic classification results presented in Table
7, the semantic consistency of the post hoc explanatory texts
was evaluated to assess the stability of generated explanations
under dual-output prompting. Pairwise cosine similarity was
computed among 30 post hoc explanatory texts generated for
each participant, and the resulting mean and SD were averaged
across all 122 test participants. As shown in Table 9, all models

maintained high semantic consistency, with mean cosine
similarity values exceeding 0.95. LLaMA 3.3 70B achieved the
highest value under 0-shot prompting (0.997 ± 0.005), and the
variation across models and shot settings was small (≤ 0.03).
This evaluation was limited to the development set, and
additional exploratory metrics for the temporal validation set
are provided in Multimedia Appendix 11.
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Table 9. Semantic consistency of reasoning outputs on the test dataset (n=122). Semantic consistency was assessed based on pairwise cosine similarity
among 30 post hoc explanatory texts generated per participant.

Cosine similarity, mean (SD)Model

LLaMA 3.3 70B

0.997 (0.005)0-shot

0.995 (0.009)1-shot

0.966 (0.016)2-shot

0.980 (0.011)3-shot

GPT-4o

0.973 (0.016)0-shot

0.980 (0.011)1-shot

0.981 (0.011)2-shot

0.975 (0.016)3-shot

Gemini 1.5 Pro

0.969 (0.019)0-shot

0.968 (0.025)1-shot

0.956 (0.029)2-shot

0.951 (0.026)3-shot

Claude 3.5 Sonnet

0.985 (0.017)0-shot

0.986 (0.016)1-shot

0.987 (0.016)2-shot

0.979 (0.015)3-shot

Fine-Tuned Prompting Performance of LLMs
Supervised fine-tuning substantially improved the diagnostic
performance of lightweight LLMs and resulted in more

consistent classification across the evaluated datasets. Table 10
summarizes the results of GPT-4o-mini and Gemini 1.5 Flash
on the development test set (n=122).

Table 10. Fine-tuning performance of lightweight large language models on the development test set (n=122).

Inconsistent

casesf
InconsistencyeAccuracyRecall (macro

avg/PD/HC)
Precision (macro

avgb/PDc/HCd)
F1-scoreaPromptModel

—h00.9920.978 / 1 / 0.9570.995 / 0.990 / 10.987PTgGPT-4o-mini

HC #23 (9:21)10.9840.957 / 1 / 0.9130.990 / 0.980 / 10.973PTGemini 1.5 Flash

aF1-scores represent macro avg values across PD and HC classes.
bmacro avg: macro-averaged.
cPD: Parkinson disease.
dHC: healthy controls.
eNumber of participants (out of 122) whose predictions were inconsistent at least once across 30 repeated trials.
fExample of inconsistent participants showing the final label (eg, HC #23) and the number of predicted labels across 30 runs (eg, 9:21 indicates 9 HC
and 21 PD predictions).
gPT: plain text.
hNot applicable.

The fine-tuned GPT-4o-mini achieved the highest
macro-averaged F1-score of 0.987, with recall of 1.00 and stable
predictions across 30 repeated trials. Gemini 1.5 Flash followed
closely with an F1-score of 0.973, maintaining an accuracy of
0.984 and showing only 1 inconsistent prediction (participant
HC #23). Both models were trained and evaluated using PT

prompts. The corresponding confusion matrices are shown in
Figure 7. Figure 7 displays the confusion matrices of the
fine-tuned LLMs on the development test set, showing that
nearly all misclassifications occurred among HC participants,
whereas both models correctly identified all PD cases in the
sample.
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Figure 7. Confusion matrices of lightweight large language models after fine-tuning on the development test set (n=122). HC: healthy controls; PD:
Parkinson disease.

To further assess model generalizability, both fine-tuned LLMs
were evaluated on the temporal validation set (n=31). As
summarized in Table 11, GPT-4o-mini achieved F1-score,
precision, recall, and accuracy of 1.000 on the temporal
validation set, correctly classifying all participants in this
sample. In contrast, Gemini 1.5 Flash demonstrated slightly

lower but still strong performance with an F1-score of 0.903
and an accuracy of 0.903. All PD participants were correctly
identified, and the few errors were limited to HC participants.
Figure 8 presents the confusion matrices under the same
fine-tuned PT prompting configuration. These findings confirm
that fine-tuning notably improved classification stability while
preserving sensitivity to PD in temporally independent data.

Table 11. Fine-tuning performance of lightweight large language models on the temporal validation set (n=31).

Inconsistent casesfInconsistencyeAccuracyRecall (macro
avg/PD/HC)

Precision (macro

avgb/PDc/HCd)
F1-scorea

(95% CI)

PromptModel

—h011/1/11/1/11 (1.000-1.000)PTgGPT-4o-mini

HC #21 (25:5)10.9030.906/1/0.8130.917/0.833/10.903 (0.770-1.000)PTGemini 1.5 Flash

aF1-scores represent macro avg values across PD and HC classes.
bmacro avg: macro-averaged.
cPD: Parkinson disease.
dHC: healthy controls.
eNumber of participants (out of 31) whose predictions were inconsistent at least once across 30 runs.
fExample of inconsistent participants showing the final label (eg, HC #21) and the number of predicted labels across 30 runs (eg, 25:5 indicates 25 HC
and 5 PD predictions).
gPT: plain text.
hNot applicable.

Figure 8. Confusion matrices of lightweight large language models after fine-tuning on the temporal validation set (n=31). HC: healthy controls; PD:
Parkinson disease.

These results confirm that with sufficient training data and
consistent prompting formats, even small-scale LLMs can

achieve classification accuracy comparable to larger models
while maintaining stable performance.
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Figure 9 provides an integrated comparison of the
best-performing models across all experimental settings,
including traditional ML baselines, few-shot prompting with
LLM (LLM_F), dual-output prompting with LLM (LLM-D),

and fine-tuned prompting with LLM (LLM_FT). Across the
development dataset, multiple LLM configurations achieved
macro-averaged F1-scores comparable to LR, and fine-tuned
lightweight models reached the highest overall performance.

Figure 9. Comparison of the best macro-averaged F1-scores from the top-performing models in machine learning (ML) and large language model
experiments across few-shot, dual-output, and fine-tuned prompting on the development and temporal validation sets.

On the temporal validation dataset, LR maintained moderate
generalizability, whereas SVM showed substantial degradation
when applied to temporally separated data. In contrast, several
LLM configurations preserved high recall for PD and sustained
overall performance, particularly under fine-tuned and few-shot
prompting conditions. These results demonstrate that while ML
baselines provide deterministic reference points, LLMs exhibit
greater flexibility across prompting strategies and maintain
stable sensitivity to PD in both datasets.

Discussion

Overview
This study examined how modern LLMs process structured
clinical variables when these variables are reformatted into
natural language prompts for the diagnostic classification of
PD. Using SHAP-selected features derived from the PPMI
dataset, we compared multiple LLM families and prompting
strategies with conventional ML baselines. Three main findings
emerged. First, several LLMs achieved diagnostic performance
comparable to LR while maintaining high sensitivity for PD
across both the development test set and the temporal validation
set. Second, the diagnostic behavior of LLMs varied depending
on prompt format, model family, and shot configuration,
whereas the ML baselines produced deterministic and highly
stable predictions. Third, supervised fine-tuning markedly
improved both accuracy and output stability in lightweight
LLMs, allowing a compact model such as GPT-4o-mini to

correctly classify all participants in the temporal validation set.
In addition, because the ML baselines in this study were
minimally tuned, part of any performance gap between ML
models and LLMs may reflect limited optimization of the ML
baselines rather than true methodological differences.
Accordingly, the present comparisons should be interpreted as
exploratory rather than definitive.

The performance of the LLaMA family was strongly influenced
by input formatting. In particular, the inclusion or removal of
STs resulted in notable differences in accuracy and sensitivity,
although their classification results varied more widely across
different shot settings [29]. Dual-output prompting, which
required models to generate diagnostic labels along with post
hoc explanatory text, resulted in slightly lower F1-scores
compared with diagnostic-only prompting but did not
substantially destabilize predictions. The generated text
exhibited high semantic consistency across repeated trials. These
explanations should be regarded as post hoc natural language
outputs rather than indicators of true model interpretability,
since they are produced after the model’s primary diagnostic
prediction step [14].

To evaluate whether inconsistent predictions reflected clinically
ambiguous participants rather than model-level variability, we
conducted a qualitative review of cases that exhibited the highest
numbers of label inconsistencies. A total of 2 HC participants
and 2 PD participants were selected for detailed examination.
All 10 SHAP-selected variables, including Unified Parkinson
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Disease Rating Scale (UPDRS) motor scores, University of
Pennsylvania Smell Identification Test (UPSIT) percentiles,
and dopamine transporter single-photon emission computed
tomography putaminal uptake metrics, were compared with the
overall distributions of the PD and HC groups. None of the
reviewed cases demonstrated borderline or contradictory clinical
profiles. The HC cases showed preserved dopaminergic uptake
and normal motor assessments, with only mild olfactory
reductions typical of healthy older adults. The PD cases
exhibited reduced dopaminergic activity, clear asymmetry, and
motor impairment consistent with established PD patterns. These
observations suggest that label inconsistencies are unlikely to
arise from underlying clinical ambiguity. Instead, they appear
to reflect model stochasticity and prompt-dependent variability
[33].

Supervised fine-tuning clarified the role of training data in
stabilizing LLM predictions. When provided with labeled
examples, both GPT-4o-mini and Gemini 1.5 Flash
demonstrated substantial improvements in diagnostic accuracy
and showed consistently high sensitivity to PD on the temporal
validation set. GPT-4o-mini classified all 31 participants
correctly after fine-tuning. This result suggests that compact
models can approximate or exceed the performance of larger
models when trained on appropriately structured datasets. It
also indicates that fine-tuning can reduce susceptibility to
prompt-level variability and may support more reliable behavior
in clinical decision-support environments. However, this
comparison should be interpreted with caution. Although
architectural differences may also contribute to the observed
performance gap, GPT-4o-mini was fine-tuned on more than
twice as many labeled samples as Gemini 1.5 Flash (1052 vs
500) due to platform constraints. Part of GPT-4o-mini’s superior
performance may therefore reflect the larger amount of training
data rather than inherent model advantages, which limits how
directly the two models can be compared.

Overall, this study illustrates both the potential and the
limitations of modern LLMs for processing structured clinical
variables that are presented in natural language form. While
several models achieved strong diagnostic performance and
generalized well to temporally separated data, their outputs
remained sensitive to prompt structures, model architectures,
and few-shot configurations. Occasional inconsistencies across
repeated runs further highlight the stochastic nature of LLM
output generation [33]. These characteristics reinforce the
importance of careful interpretation and the need for rigorous
evaluation frameworks before LLMs can be integrated safely
into real-world diagnostic workflows.

Limitations
Several limitations should be considered when interpreting these
findings. First, although temporal validation provided an
important assessment of model generalizability, the temporal
validation set was relatively small (n=31), which resulted in
wide CIs for the reported performance metrics. In addition,
models were trained on datasets that included imputed values,
whereas evaluation was conducted on datasets restricted to
complete cases without missing data, including both the
development test set and the temporal validation set. This

mismatch may introduce a distributional shift and result in
performance estimates that reflect a best-case evaluation
scenario rather than real-world clinical conditions where missing
data are common.

Second, the 10 features used for model input were selected using
SHAP values from tree-based models. Feature sets obtained
using alternative selection strategies may differ, so the current
feature subset may not fully represent model-agnostic feature
selection. Furthermore, the explanatory text generated by LLMs
under the dual-output prompting framework was not reviewed
by clinical experts. Accordingly, the semantic consistency metric
reflects internal textual stability rather than clinically accurate
or factually grounded post hoc explanatory text, and the clinical
validity of the generated explanations remains unverified.

Finally, several methodological constraints limit direct
model-to-model comparisons. Prompt format and shot
configuration were selected based on performance observed on
the development test dataset, rather than using a separate
validation set for configuration selection. This design choice
reflects the study’s aim to broadly compare model behaviors
rather than to establish definitive optimal configurations. In
addition, platform-specific constraints limited the extent of
fine-tuning that could be performed across LLMs. While
GPT-4o-mini was fine-tuned using 1052 training samples with
an additional held-out validation set of 186 samples, the Gemini
1.5 Flash fine-tuning interface restricts supervised training to
a maximum of 500 samples, and the machine learning baselines
were trained on 990 samples. As a result, the observed
performance differences across models may reflect differences
in training data availability rather than inherent architectural
superiority and should be interpreted as exploratory.

Prompt structuring flexibility also differed across platforms, as
the ST format was applied only to the LLaMA models due to
platform-specific input constraints, further limiting the degree
to which direct model-to-model comparisons can be made in
this study.

Future Work
Future research should expand these results in several directions.
Larger temporal or external datasets, including real-world
clinical settings, are needed to strengthen generalizability
assessments. Additional work is warranted to examine
optimization strategies for prompt design, temperature settings,
and calibration methods that may reduce stochastic variability.
Expert-based evaluation of generated post hoc explanatory text
may clarify how these outputs can be used to support clinical
decision-making. Further exploration of supervised fine-tuning
for additional lightweight LLMs could help identify
resource-efficient models suitable for deployment in constrained
clinical environments. Finally, integrating imaging,
sensor-derived digital biomarkers, and longitudinal clinical
trajectories may clarify how LLMs can combine multimodal
biomedical data for diagnostic tasks.

Conclusions
This study provides an exploratory benchmark of how LLMs
process structured clinical variables when presented in natural
language form. Multiple LLMs achieved diagnostic performance
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comparable to conventional ML baselines and maintained high
sensitivity for PD under temporal validation. However, their
predictions were influenced by prompt format, shot
configuration, and model architecture, and occasional
inconsistencies reflected inherent stochasticity rather than
clinical ambiguity. Supervised fine-tuning substantially
improved reliability in lightweight models, demonstrating that

compact architectures can achieve stable and high-performing
classification when trained on sufficient labeled examples. These
findings highlight both the opportunities and the challenges
associated with applying LLMs to structured clinical data and
emphasize the need for rigorous evaluation before clinical
implementation.
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API: application programming interface
HC: healthy controls
LLM: large language model
LLM_D: dual-output prompting with LLM
LLM_F: few-shot prompting with LLM
LLM_FT: fine-tuned prompting with LLM
LR: logistic regression
MD: markdown
MD+ST: markdown with special token
ML: machine learning
PD: Parkinson disease
PPMI: Parkinson’s Progression Markers Initiative
PT: plain text
RBF: radial basis function
SHAP: Shapley additive explanations
ST: special token
SVM: support vector machine
UPDRS: Unified Parkinson Disease Rating Scale
UPSIT: University of Pennsylvania Smell Identification Test
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