
Original Paper

Development of Venous Thromboembolism Risk Prediction
Models Based on Whole Blood Gene Expression Profiling
Using 20 Machine Learning Algorithms: Comprehensive
Analysis Study

Yedong Huang1*, MD, PhD; Xiaoyun Chen2*, MD, PhD; Guannan Bai3, MD; Yajun Zhao4, MD; Dapeng Kuang5,
MD; Lin Zhang6,7, Prof Dr; Wei Lu8, Prof Dr
1Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
2The School of Clinical Medicine, Fujian Medical University; Department of Respiratory and Critical Care Medicine, Fujian Provincial Geriatric
Hospital, Fuzhou, China
3Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
4Department of Health Management Centre, Zhongshan Hospital, Fudan University, Shanghai, China
5Department of Emergency and Critical Care, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
6Department of Epidemiology and Preventive Medicine, The School of Public Health and Preventive Medicine, Monash University, Victoria,
Australia
7Suzhou Industrial Park Monash Research Institute of Science and Technology, Monash University, Suzhou, China
8Department of Cardiovascular Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Wenzhou,
China
*these authors contributed equally

Corresponding Author:
Wei Lu, Prof Dr
Department of Cardiovascular Surgery
The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital
Quzhou City, No.100 of Minjiang Road
Wenzhou 325000
China
Phone: 86 13426423807
Fax: 86 13426423807
Email: luwei@wmu.edu.cn

Abstract
Background: There is a lack of venous thromboembolism (VTE) risk prediction models based on gene expression informa-
tion.
Objective: This study aimed to construct a VTE prediction model based on whole blood gene expression profiling, by
performing a comprehensive analysis of 20 machine learning (ML) algorithms.
Methods: Two transcriptome datasets containing patients with VTE and healthy controls were obtained by searching the
Gene Expression Omnibus database and used as the training and validation sets, respectively. Feature selection for model
construction was performed on the training set using the least absolute shrinkage and selection operator and random forest,
followed by the selection of the intersection of the chosen features. Subsequently, recursive feature elimination was applied
to further refine the selected features. The selected features underwent model construction using 20 ML algorithms. The
performance of the models was evaluated using various methods such as receiver operating characteristic and confusion
matrix. The validation set was used for external model validation.
Results: The final results demonstrated that all algorithm models, except for k-nearest neighbor, exhibited good performance
in VTE prediction. External validation data indicated that 9 algorithm models had an area under the curve greater than 0.75.
The confusion matrix analysis revealed that the algorithm models maintained high specificity in the external validation cohort.
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Conclusions: This study used 20 ML algorithms to construct VTE prediction models based on whole blood gene expression
information, with 9 of these models demonstrating good diagnostic performance in external validation cohorts. The above
models, when used in conjunction with D-dimer, may provide more valuable references for VTE diagnosis.
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Introduction
Venous thromboembolism (VTE) is a prevalent thrombotic
disorder in clinical practice, consisting primarily of deep
venous thrombosis and pulmonary embolism. VTE remains
a major global health burden, affecting approximately 10
million people annually and ranking among the most common
vascular diseases worldwide [1]. The pathogenesis of VTE is
considered to be multifaceted and intricate, encompassing a
multitude of factors, including but not limited to congenital
genetic factors, malignancies, pregnancy in women, surgical
trauma, and the use of oral contraceptives [2,3]. Despite
the existence of relatively comprehensive prevention and
assessment systems, the high mortality rate associated with
VTE remains a significant concern among clinical practition-
ers. According to a study by Heit et al [4], the short-term
(30-d) survival rate for deep vein thrombosis is approximately
94.5%, whereas the short-term survival rate for pulmonary
embolism is only 66.8%.

In clinical practice, the diagnostic modalities most
frequently used for VTE include D-dimer measurement,
ultrasonography, and venography [5]. Among these methods,
venography is considered the gold standard for diagnosing
VTE. However, due to its invasive nature and the poten-
tial risk of contrast-induced renal impairment and allergic
reactions, its clinical application is limited [6]. The limitations
of ultrasonography include its subjectivity and difficulty in
detecting deep venous thrombosis [7]. D-dimer testing is
known to lack specificity, as elevated D-dimer levels may be
caused by conditions such as infection, autoimmune diseases,
pregnancy, and childbirth, leading to a higher likelihood of
false positive results [8]. Therefore, it is crucial to construct a
VTE risk prediction model with high performance.

With the advancement of science and technology, artificial
intelligence (AI) has become a widely studied and highly

regarded field in recent years, particularly in the medical
domain. As one of the methods for achieving AI, machine
learning (ML) algorithms have tremendous potential in
medical research [9-11]. The aim of this study was to
construct a VTE risk prediction model based on whole blood
gene expression information, using a comprehensive analysis
of 20 ML algorithms and external validation, with the goal of
providing a reference for clinical decision-making and VTE
prevention. These models are not only designed to differ-
entiate between existing VTE cases and controls, but also
intended to detect high-risk patients in early or asymptomatic
stages, thereby serving as predictive tools that may assist in
clinical decision-making before definitive diagnostic imaging
is performed.

Methods
Data and Source
The gene expression data of patients with VTE and healthy
controls were retrieved and downloaded from the Gene
Expression Omnibus (GEO) database and used as the training
and validation groups, respectively, in this study. The
GSE19151 dataset was used as the training set, while the
GSE48000 dataset served as the validation set. Both datasets
were generated using the Affymetrix Human Genome U133
Plus 2.0 microarray platform (GPL570). Table 1 shows
the basic information of the 2 datasets, GSE19151 and
GSE48000. The GSE19151 dataset comprises gene expres-
sion data from 70 patients with VTE and 63 healthy controls
[12]; the GSE48000 dataset contains gene expression data
from 107 patients with VTE and 25 healthy controls [13].
Data analysis was performed using the Scikit-learn (sklearn)
module in Python (version 3.6; Python Software Foundation).

Table 1. Details of the Gene Expression Omnibus (GEO)a datasets used in this study.
Dataset GEO ID Sample size (n) PubMed ID Number of genes Country
Training set GSE19151 133 21737128 13,515 USA
Validation set GSE48000 132 25684211 31,412 USA

aGEO: Gene Expression Omnibus.

Feature Selection
Least absolute shrinkage and selection operator (LASSO)
regression analysis method was developed by Robert
Tibshirani [14]. The principle of this method is to construct
a penalty function to achieve the goal of shrinking regression
coefficients and refining the model. While the principle of

feature selection using random forest (RF) is mainly based
on evaluating the contribution of each feature in the RF on
each tree. In this study, we used the mean decrease in Gini
impurity to measure feature importance in the RF model.
The above 2 methods were used to select modeling features
in the training set, and the intersection analysis was subse-
quently performed to reveal the features selected by both
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methods. This intersection strategy was designed to combine
the strengths of both linear (LASSO) and nonlinear (RF)
approaches and to reduce potential selection bias by focusing
on consistently selected features. Although this intersection
approach may sacrifice sensitivity, it enhances stability and
reduces overfitting risk in high-dimensional settings. All
feature selection procedures were performed exclusively on
the training dataset to prevent information leakage from the
validation data. The results were then visualized by a Venn
plot.
Recursive Feature Elimination for Model
Simplification
The main idea of the recursive feature elimination (RFE)
method is to repeatedly construct models and remove the
most significant features, ranking the features according to
the order in which they are eliminated. To achieve a more
streamlined model without compromising performance, the
features selected by the aforementioned method were further
screened and simplified using the RFE method in our study.
Construction of a VTE Risk Prediction
Model Using 20 ML Algorithms
After completing the feature selection process, this study
constructed the model using commonly used ML algorithms
in the field, which included the following: adaptive boosting,
artificial neural network, bagging, Bayesian ridge, decision
tree, elastic net, extra tree (extremely randomized trees),
gradient boosting, k-nearest neighbors (KNN) algorithm,
LASSO, linear LASSO, linear regression, logistic regres-
sion, naïve Bayes, RF, ridge regression, ridge cross-vali-
dation (ridge regression with cross-validation), stochastic
gradient descent, support vector machine, and voting (voting
classifier). The algorithm code is taken from the sklearn
website [15]. All models were constructed using 5-fold
cross-validation.
External Validation of the Model
In this study, GSE48000 was used as the external valida-
tion cohort to evaluate the generalization ability of the 20
ML models, ensuring the reproducibility of the model. The
performance of the external validation was evaluated by the
receiver operating characteristic (ROC) curve. All feature
selection and model training were exclusively performed
on the training dataset. The final trained models were
then directly applied to the validation dataset without any
retraining or adjustment, thereby ensuring a true external
validation.
Decision Curve Analysis
To evaluate the potential clinical use of the constructed
models, we performed decision curve analysis (DCA) across

both internal and external evaluation settings. The net benefit
for each model was calculated using the standard formula:

NetBenefit = TPN − FPN * PT1 − PT
where TP and FP denote the numbers of true and false
positives at a given threshold probability, and n is the
total number of samples. DCA was conducted over a range
of clinically relevant threshold probabilities from 0.05 to
0.5. The decision curves were generated using Python with
appropriate packages compatible with sklearn.
Ethical Considerations
This study involved secondary analysis of publicly available,
deidentified transcriptomic datasets obtained from the GEO
database. As per institutional and GEO data usage policies,
such analysis does not require ethical approval or informed
consent. For more information, please refer to the GEO data
policy [16].

Results
The Features Selected by LASSO
Regression and RF
To determine the optimal regularization strength in LASSO
regression, we used 5-fold cross-validation to identify the λ
value corresponding to the “one standard error rule” (λ₁se),
which balances model simplicity and predictive performance.
The regularization path was explored using the LASSO
cross-validation function in sklearn, which automatically tests
a logarithmic range of λ values. We selected 24 features
corresponding to λ=−3.38.

The process of feature selection using LASSO regression
is illustrated in Figure 1A and B and Figure 1C illustrates the
24 features selected by LASSO regression and their corre-
sponding coefficients. The screening results of the RF are
shown in Figure 1D, where the lollipop plot displays the 20
features selected by RF, with the length of the horizontal
axis representing the corresponding importance of each gene.
The Venn diagram in Figure 1E shows the intersection of the
features selected by LASSO regression and RF methods. The
8 features selected by the intersection analysis are as follows:
TRMT5, TGFB1, SRSF5, RAB5C, MYH9, LSP1, GBP1, and
DICER1.
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Figure 1. The process of selecting modeling features using least absolute shrinkage and selection operator (LASSO) and random forest methods.

Recursive Feature Elimination to Simplify
the Model
The above 8 features were further simplified using the RFE
algorithm, which reduces costs and improves the generaliza-
bility of the model while removing redundant features. Figure

2 displays the results of the RFE calculations using a line
graph. The results indicate that the accuracy of the model
in cross-validation no longer significantly changes when the
number of features is reduced to 7. The features further
refined by the RFE algorithm include 7 genes: SRSF5, MYH9,
LSP1, RAB5C, TGFB1, DICER1, and GBP1.
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Figure 2. The process of simplifying modeling features using recursive feature elimination.

Construction of VTE Risk Prediction
Models Using 20 ML Algorithms
Based on the 7 features selected, our study used 20 com-
monly used ML algorithms to construct the models and used
5-fold cross-validation to improve the accuracy of model
evaluation and reduce random error. Figure 3A displays
the ROC curves and corresponding area under the curve
(AUC) values of the 20 ML models using different col-
ored lines. Figure 3B depicts a radar chart showcasing
the accuracy, F1-score, precision, and recall for 20 ML

algorithms. The accuracy reflects the proportion of correctly
predicted samples; precision reflects the proportion of actual
VTE cases among samples classified as VTE by the model;
recall represents the proportion of VTE cases correctly
classified by the model among all VTE samples; the F1-score
is a value used to comprehensively evaluate both recall and
precision. As illustrated in Figure 3, most models exhibit an
AUC value greater than 0.9, and the radar chart based on
4 parameters evaluation indicates that, except for the KNN
model, all other ML models can make relatively accurate
predictions for VTE.

JMIR MEDICAL INFORMATICS Huang et al

https://medinform.jmir.org/2026/1/e75565 JMIR Med Inform 2026 | vol. 14 | e75565 | p. 5
(page number not for citation purposes)

https://medinform.jmir.org/2026/1/e75565


Figure 3. Performance comparison of 20 machine learning models using receiver operating characteristic (ROC) curves and radar plots. (A) ROC
curves and area under the curve values based on 20 machine learning models. (B) Radar plots comparing accuracy, F1-score, precision, and recall
across models. AdaBoost: adaptive boosting; ANN: artificial neural network; KNN: k-nearest neighbor; LASSO: least absolute shrinkage and
selection operator; SGD: stochastic gradient descent; SVM: support vector machine.

Figure 4 presents the confusion matrices for 20 ML algo-
rithms, among which the sensitivity of all models except
for the KNN fluctuated between 87% and 93%, and the
specificity fluctuated between 79% and 100%. The findings

above indicate that, with the exception of the KNN model,
the remaining 19 ML models possess favorable predictive
efficacy for VTE. Multimedia Appendix 1 presents the DCA
for 20 ML algorithms.

Figure 4. Confusion matrices for 20 machine learning algorithms. The top-left cell indicates the true positive, top-right indicates the false negative,
bottom-left indicates the false positive, and bottom-right indicates the true negative. AdaBoost: adaptive boosting; ANN: artificial neural network;
KNN: k-nearest neighbor; LASSO: least absolute shrinkage and selection operator; SGD: stochastic gradient descent; SVM: support vector machine.
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External Validation of the Models
To ensure the reproducibility and generalizability of the
model, this study performed external validation of the 20
ML models using the GSE48000 dataset. Figure 5 illustrates
the ROC curves and the corresponding AUC based on the
external validation dataset. The results revealed a significant
decrease in the AUC of all models during external validation,

but the AUC of the following 9 models remained above 0.75:
extra tree, RF, Bayesian ridge, elastic net, LASSO, linear
LASSO, ridge cross-validation, ridge regression, and linear
regression. This result indicates that the predictive perform-
ance of the models corresponding to the 9 ML algorithms is
relatively stable, and they exhibit strong generalizability.

Figure 5. The external validation receiver operating characteristic (ROC) curve plot for the 20 machine learning models. AdaBoost: adaptive
boosting; ANN: artificial neural network; KNN: k-nearest neighbor; LASSO: least absolute shrinkage and selection operator; SGD: stochastic
gradient descent; SVM: support vector machine.

Figure 6 displays the confusion matrices of 20 ML algo-
rithms during external validation. The sensitivity of all
models decreased significantly, ranging from 37% to 62%,
whereas the specificity remained relatively stable, fluctuating

between 72% and 96%. These findings suggest that the
models still possess high specificity in the external validation
dataset. Multimedia Appendix 2 displays the DCA for 20 ML
algorithms in external validation.
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Figure 6. Confusion matrices of 20 machine learning algorithms during external validation. The top-left cell indicates the true positive, top-right
indicates the false negative, bottom-left indicates the false positive, and bottom-right indicates the true negative. AdaBoost: adaptive boosting; ANN:
artificial neural network; KNN: k-nearest neighbor; LASSO: least absolute shrinkage and selection operator; SGD: stochastic gradient descent; SVM:
support vector machine.

Discussion
Principal Findings
As a rapidly advancing field in computer science, AI has
the ability to process vast and intricate medical data for the
diagnosis and prediction of potential clinical outcomes [17].
ML, as a component of AI, can extract valuable informa-
tion and patterns from vast amounts of data through learn-
ing and analysis, thereby achieving AI [18]. In the medical
field, ML is predominantly used for medical image analysis,
disease prediction and risk assessment, health care manage-
ment, decision support, and drug development, among other
applications [19-21]. As the first study to construct a VTE
risk prediction model based on whole blood gene expres-
sion information, the present research aims to empower the
diagnosis of VTE through the use of ML algorithms. It is
important to note that the current model was trained and
validated only on healthy controls versus patients with VTE
and does not assess its discriminative ability in populations
with other inflammatory or thrombotic conditions. On the
other hand, the external validation results indicate that the
models developed in this study are characterized by low
sensitivity and high specificity. According to the “No free
lunch” theory proposed by Wolpert et al [22], a perfect
model does not exist. In other words, if a certain ML
model outperforms other algorithms in a particular evaluation
metric, it must inevitably sacrifice some performance in other

metrics as a trade-off. As a result of this constraint, it is not
feasible to determine a flawless ML model as the conclusive
outcome. Rather, a more fitting model is chosen by taking
into account a comprehensive evaluation of diverse metrics.

At present, the models used for predicting the risk of VTE
occurrence are predominantly built upon clinical features.
Darzi et al [23] conducted a meta-analysis that included
17 studies, which indicated that VTE may be associated
with the following factors: advanced age, elevated C-reac-
tive protein levels, increased D-dimer and fibrinogen levels,
tachycardia, thrombocytosis, leukocytosis, fever, leg swelling,
malignancy, immobility, infection, and so on. In 2021, Pandor
et al [24] conducted a systematic review of 24 VTE risk
assessment models to evaluate their predictive performance.
The results showed that the C-statistic was generally less
than 0.7 for all models, with only a few models having
favorable C-statistics (>0.8). Among these models, sensitiv-
ity fluctuated between 12% and 100%, while specificity
varied between 7.2% and 100%. Based on the aforemen-
tioned findings, the study suggests that the existing VTE risk
prediction models have generally weak predictive ability and
high heterogeneity, and thus, does not recommend the use of
any specific prediction model. Our study is an exciting and
innovative attempt to discover modeling features based on
gene expression analysis. In the internal validation, most of
the models developed in this study exhibited good perform-
ance (AUC >0.90), while in the external validation, the
data showed that 9 models had an AUC greater than 0.75.
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Considering clinical applicability, we note that models such
as LASSO, ridge regression, and linear regression not only
performed well in external validation (AUC >0.75), but also
offer the advantages of simplicity, computational efficiency,
and interpretability. In contrast, while ensemble models such
as RF and extra trees demonstrated strong predictive power,
their black-box nature may pose challenges for clinical
interpretation. As such, we believe interpretable models like
LASSO may be better suited as candidates for further clinical
translation.

The current clinical diagnostic techniques for VTE
primarily consist of D-dimer testing, ultrasonography, and
venography [5]. Each of the aforementioned 3 diagnostic
methods has their own limitations to varying degrees. In
2016, Crawford et al [25] conducted a meta-analysis of 1585
patients from 4 studies and reported that the sensitivity and
specificity of D-dimer for diagnosing VTE were 80% to
100% and 23% to 63%, respectively. Although the sensitivity
and specificity of D-dimer for diagnosing VTE may vary
slightly across different studies, they generally exhibit high
sensitivity and low specificity. The main reason for this
phenomenon is that various conditions, including trauma,
malignancy, and inflammation, can cause an elevation in
D-dimer levels, leading to high sensitivity but low specificity
in diagnosing VTE using D-dimer testing [26]. In summary,
an isolated increase in D-dimer levels is insufficient to
establish a diagnosis of VTE. The VTE risk prediction
model developed in this study complements D-dimer well
in terms of diagnostic performance. Moreover, since both
tests use blood samples, they are highly compatible with each
other in combination. The high specificity of the developed
models, when used in combination with D-dimer testing, can
assist clinicians in excluding false-positive cases that may
be misdiagnosed as VTE by D-dimer alone. Furthermore,
the joint use of the models and D-dimer has the potential
to improve the diagnostic accuracy of VTE in patients.
This patient population should be regarded as a priority for
VTE prevention by clinicians to optimize VTE prevention
measures, avoid wastage of medical resources, and achieve
greater precision in VTE prevention. A potential clinical
application of the gene expression-based models could be in
a 2-step diagnostic pathway. For instance, the models may be
used as a secondary triage tool following a positive D-dimer
result to improve specificity and reduce unnecessary imaging
procedures. Alternatively, they could be selectively applied
to high-risk subpopulations (eg, older patients, postopera-
tive individuals, or those with cancer) where D-dimer alone
may be insufficiently specific. On the other hand, despite
encouraging AUC values and specificity in external valida-
tion, we acknowledge that the observed sensitivity levels
(ranging from 37%-62%) limit the standalone diagnostic

capability of the models. This performance pattern may partly
result from the significant class imbalance in the validation
dataset and potential dataset shift. Importantly, the models are
not intended to replace established diagnostic tools, but rather
to serve as adjunctive decision aids. Their high specificity
may be particularly valuable in ruling out false positives
among D-dimer positive patients. Future work may con-
sider ensemble approaches, risk stratification frameworks, or
combining these models with clinical parameters to improve
sensitivity while preserving specificity.

This study has several limitations. First, the modeling
and external validation data were obtained from 2 sequenc-
ing cohorts in the GEO database (n=133; n=132), which
may be considered a relatively small sample size, and the
external validation set also exhibited a notable class imbal-
ance (107 VTE vs 25 controls), which may have contrib-
uted to the observed reduction in sensitivity. Second, as
the model has not yet been implemented in clinical prac-
tice, and both datasets were derived from US populations
without detailed ethnicity annotations in the GEO records,
its predictive performance in real-world clinical settings and
across diverse ethnic backgrounds remains unverified. Third,
we used a sequential feature selection strategy combining
LASSO, RF, and RFE, aiming to enhance robustness and
reduce dimensionality. However, we acknowledge that this
approach may introduce complexity and the potential risk
of overfitting, particularly when applied to algorithms that
already incorporate internal regularization mechanisms. This
redundancy could limit generalizability. Moreover, although
some of the best-performing models in this study are
inherently nontransparent, several interpretable models (eg,
LASSO and logistic regression) were also included to ensure
interpretability and practical applicability. In future work, we
aim to further improve the explainability of complex models
by using Shapley Additive Explanations or Local Inter-
pretable Model-Agnostic Explanations–based interpretation
frameworks, thereby enhancing their clinical interpretability
and reliability. Future studies may benefit from alternative
feature selection strategies, such as embedded or end-to-
end feature learning methods within specific model frame-
works, and from incorporating formal calibration analyses to
improve clinical interpretability and reliability.
Conclusions
The current study used ML algorithms to construct 20 VTE
risk prediction models based on whole blood gene expression
information. Notably, 9 of these models displayed favorable
diagnostic performance in the external validation dataset.
Thus, these models, in conjunction with D-dimer, have the
potential to serve as a valuable reference for the clinical
diagnosis of VTE.
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