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Abstract

Background: Delirium is a frequent postoperative complication among patients who have undergone cardiac surgery and is
associated with prolonged hospitalization, cognitive decline, and increased mortality. Early prediction of delirium is therefore
critical for initiating timely interventions.

Objective: This study proposes the development and validation of a machine learning–based model to predict postoperative
delirium in patients undergoing cardiac surgery during intensive care unit (ICU) care, facilitating the early detection of individuals
at high risk of delirium and supporting clinicians in the deployment of targeted preventive strategies.

Methods: This study extracted data on postoperative cardiac surgery patients who remained in the ICU for more than 24 hours
from the Medical Information Mart for Intensive Care IV version 2.0 (MIMIC-IV 2.0) database and the eICU Collaborative
Research Database (eICU-CRD). The MIMIC-IV 2.0 cohort was randomly divided into a training set and an internal validation
set in a 7:3 ratio, whereas the eICU-CRD functioned as an independent validation cohort. We used data from the first 24 hours
of ICU monitoring to model the likelihood of delirium over the entire ICU admission period. Delirium was identified by a positive
Confusion Assessment Method for the Intensive Care Unit evaluation (ie, score ≥4). We built predictive models by using logistic
regression, support vector classifier, extreme gradient boosting (XGB), and random forest classifiers. Their performance was
assessed via the area under the receiver operating characteristic curve, accuracy, sensitivity, positive predictive value, negative
predictive value, and F1-score.

Results: The analysis involved 2124 patients from the MIMIC-IV 2.0 database and 2406 from the eICU-CRD. A set of 57variables
was selected to construct the predictive models. Among the various machine learning models tested, the XGB model demonstrated
the best performance for delirium prediction during internal validation. As for external validation, the model achieved an area
under the receiver operating characteristic curve of 0.75, indicating strong discriminatory ability. The most important predictive
features identified by the model included hospital length of stay, minimum Glasgow Coma Scale score, mean blood pressure,
Sequential Organ Failure Assessment score, weight, urine output, heart rate, and age.

Conclusions: The XGB model with strong predictive capability for ICU delirium after cardiac surgery was developed and
externally validated. This model offers essential technical support for building real-time delirium alert systems and enables
ongoing risk stratification and evidence-based decision-making within the ICU environment.
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Introduction

Delirium is an acute neuropsychiatric syndrome commonly
associated with encephalopathy, acute cerebral dysfunction,
and states of confusion, particularly following surgical
procedures [1-4]. In patients undergoing cardiac surgery, the
incidence of postoperative delirium has been reported to range
from 10% to 40% [5-7]. This condition is linked to a variety of
adverse outcomes, including heightened pain perception,
depression, cognitive impairment, and increased mortality [8,9].
Currently, the assessment of patients’ arousal can be conducted
using standardized tools such as the Richmond
Agitation-Sedation Scale and the Confusion Assessment Method
for the Intensive Care Unit (CAM-ICU) to identify different
types of delirium with distinct characteristics [10-12]. Despite
the existence of standardized instruments, the diagnosis of
delirium frequently depends on the patient’s subjective
assessment of their condition. If the occurrence of delirium in
patients could be predicted within a short period, it will
substantially reduce the aforementioned risks.

Machine learning (ML), a branch of artificial intelligence, has
driven notable progress across numerous domains of health care
[13,14]. One such area where ML has shown its potential is in
the postoperative surveillance with cardiac surgery, offering
more information to predict delirium [15,16]. It has the potential
to improve patient health care outcomes [17,18]. Compared to
traditional data analysis techniques, ML models can provide
more intricate predictions and perform real-time monitoring
using objective data from all patients [19-21]. Furthermore,
recent research has also used ML to forecast the near-term
mortality rates of patients after cardiac operations. For example,
Nistal-Nuño [22] constructed an extreme gradient boosting
(XGB)–based predictive model to estimate 24-hour
postoperative mortality following cardiac surgery. The outcome
demonstrated that XGB attained an area under the receiver
operating characteristic curve (AUC) of 87.5%, signifying the
model’s exceptional performance in forecasting intensive care
unit (ICU) mortality, notably surpassing other models. Zhang
et al [23] assessed an ML model, comparing it to existing
severity-of-illness systems to develop a real-time tool for
predicting death. However, no correlation-predictive models
using ML have been developed for patients who experience
delirium after cardiac surgery.

In this study, we created and verified 4 models using ML
techniques to anticipate the occurrence of delirium and facilitate
identification. Furthermore, we enhanced the interpretability of

the results by prioritizing the independent variables according
to their predictive significance.

Methods

Ethical Considerations
This study used data from 2 publicly available critical care
databases: Medical Information Mart for Intensive Care IV
version 2.0 (MIMIC-IV 2.0) database and eICU Collaborative
Research Database (eICU-CRD). Both databases were approved
by the institutional review boards of the Beth Israel Deaconess
Medical Center and the Massachusetts Institute of Technology.
As all data were fully deidentified before release, the
requirement for individual informed consent was waived in
accordance with the Declaration of Helsinki and applicable
regulations. All team members underwent certified training in
“Data or Specimens Only Research” to comply with ethical
regulations governing dataset access.

Study Population
This study used 2 publicly available critical care databases to
develop and validate a predictive model. The training dataset
was sourced from MIMIC-IV 2.0, which includes 76,943 ICU
admissions recorded at Beth Israel Deaconess Medical Center
(Boston, Massachusetts, United States) between 2008 and 2019
[24]. For external validation, we used the eICU-CRD, which
contains deidentified data for over 200,000 patients admitted
to 208 US hospitals between 2014 and 2015 [25]. Both databases
contain structured clinical data, including demographics, vital
signs, laboratory test results, procedures, medications, and
outcomes. We included adult patients (aged ≥18 years) who
underwent major cardiovascular surgeries, such as coronary
artery bypass grafting, heart valve repair or replacement,
combined procedures, or other surgeries involving
cardiopulmonary bypass.

We applied consistent inclusion and exclusion criteria across
both datasets to ensure cohort comparability and data quality.
Inclusion criteria required patients to meet the age threshold
and have documented cardiovascular surgery. We excluded
patients who had ICU stays shorter than 24 hours (to ensure
sufficient observation data), missing essential demographic or
outcome variables, or delirium recorded within the first 24 hours
of ICU admission (to preserve the prediction time window).
Although the 2 datasets differ in time range and hospital
coverage, we aligned the study population by applying uniform
definitions for surgical type and using a standardized 24-hour
observation window. Figure 1 summarizes the baseline
characteristics of the 2 cohorts.
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Figure 1. Schematic representation of the study design. eICU-CRD: eICU Collaborative Research Database; ICU: intensive care unit; MIMIC-IV 2.0:
Medical Information Mart for Intensive Care IV version 2.0.

Delirium Assessment
Delirium served as the primary outcome, identified on the basis
of a positive CAM-ICU assessment (score ≥4) and consistent
diagnostic coding. The observation window was the first 24
hours after ICU admission, during which patient data were
collected for modeling. If at least one positive delirium
assessment occurred at the time of prediction, the patient was
considered delirious.

Data Extraction and Processing
The clinical data were retrieved and extracted using the
structured query language, with pgAdmin 4 serving as the
administrative platform for PostgreSQL. The prediction model
included just clinical and laboratory characteristics that were
accessible on the initial day of admission to the ICU, with
patients being recognized by their unique ID numbers. The
predictors consisted of the following variables— (1)
demographics: age, gender, ethnicity and weight; (2) vital signs:
heart rate, mean blood pressure, respiratory rate, systolic blood
pressure, and temperature; (3) laboratory analysis: hemoglobin
level, platelet count, white blood cell count, lactate and urine
output; (4) severity scoring: Glasgow Coma Scale (GCS) and
Sequential Organ Failure Assessment (SOFA) scores; (5)
comorbidities: myocardial infarction, congestive heart failure,
peripheral vascular disease, cerebrovascular disease, dementia,
chronic pulmonary disease, rheumatic disease, peptic ulcer
disease,diabetes (with control, without control), paraplegia,
renal disease, malignant cancer, severe liver disease, and AIDS;
(6) medications: opioids, barbiturates, benzodiazepines,
acetaminophen, antipsychotics, anticoagulant, antihistamines,
diuretics, anesthesia, and anticholinergics; (7) treatment
measures: emergency admission, first care unit, last care unit,
renal replacement therapy, invasive ventilation, length of ICU
stay.

Missing Data Management
Variables exhibiting a missing value rate exceeding 10% were
omitted to prevent potential bias. Variables with less than 10%
missing values were subjected to multivariable imputations
[26].

Data Balance
The dataset showed a marked imbalance, with notably fewer
positive delirium cases compared with negative ones, which
caused the model to lean toward predicting the majority
(negative) class. To mitigate this issue, we used the Synthetic
Minority Oversampling Technique to artificially augment the
number of positive samples, thereby achieving a more balanced
class distribution and enhancing the model’s ability to
generalize.

Feature Selection
The feature selection process involved using the recursive
elimination of features approach of the random forest [27]. This
method was used to identify the most optimal combinations of
predictive variables. By examining the weight of features and
their correlation and after stratified 10-fold cross-validation,
final features were selected based on importance scores,
correlation analysis, and cross-validation results. This process
reduced dimensionality while preserving predictive power.

Model Development and Hyperparameter Tuning
The MIMIC-IV 2.0 dataset (N=2124) was randomly split into
a training set (1487/2124, 70%) and a testing set (637/2124,
30%), whereas the eICU-CRD dataset was used as an external
validation cohort. We developed prediction models using 4
widely adopted ML algorithms. Logistic regression was
implemented for binary classification using maximum likelihood
estimation [28]. Random forest, an ensemble learning method,
combined multiple decision trees through majority voting to
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enhance predictive performance [29]. XGB used a gradient
boosting framework to iteratively build strong learners from
weak ones [30]. Support vector classifier aimed to find the
optimal hyperplane in a high-dimensional space for classification
[31]. Bayesian optimization was used to identify optimal
hyperparameters for each model, improving training efficiency
and performance [32].

Model Performance Evaluation
To comprehensively assess the discriminatory performance of
the prediction models, we used the receiver operating
characteristic (ROC) as the primary evaluation metric.
Additional metrics included accuracy, positive predictive value,
negative predictive value, and sensitivity. We also reported the
F1-score, the harmonic mean of precision and sensitivity, to
reflect the balance between these two metrics. Together, these
indicators were used to evaluate the clinical applicability of
each model in stratifying the risk of postoperative delirium
among cardiac surgery patients. Shapley Additive Explanations
(SHAP) was used to investigate the interpretability of the final
predictive model.

Statistical Analysis
All statistical analyses were conducted using Stata 17.0 and
SPSS (version 27.0; IBM Corp). Frequencies and percentages
were used to summarize categorical variables, with comparisons
made via the chi-square test. The distribution of continuous
variables was assessed using the Shapiro-Wilk test. Normally
distributed data were reported as mean (SD) and compared using
independent 2-tailed t tests. Skewed data were summarized as

median and IQR and analyzed using the Mann-Whitney U or
Kruskal-Wallis test, based on group composition. Statistical
significance was determined using 2-sided tests, with a threshold
of P<.05.

Results

Baseline Characteristics
A total of 2124 patients from the MIMIC-IV 2.0 database were
included in the final analysis. Among them, 16.1% (343/2124)
of cardiac surgery patients were diagnosed with delirium during
their hospital stay, occurring after the first day of ICU
admission. In the external validation cohort, an analysis was
conducted on 2046 cases obtained from the eICU-CRD, of
whom 3.81% (81/2046) developed delirium during the same
postoperative period, also defined as after the first ICU day. In
these patients with delirium, maximum heart rate, minimum
mean blood pressure, minimum hemoglobin level, minimum
platelet count, maximum white blood cell count, urine output,
minimum GCS score, SOFA, and length of ICU stay showed a
notable disparity between the two different groups. Tables 1-3
present a concise summary of the comparison of fundamental
traits, vital signs, and laboratory analysis between patients with
and without delirium. According to the data, patients with
delirium are predominantly male, typically older, and have
longer hospital stays with higher severity scores upon admission.
Additionally, factors such as weight loss, decreased urine output,
and decreased mean arterial pressure may all exacerbate the
likelihood of delirium in patients.
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Table 1. Characteristics of patients and controls from the development dataset for the first 24-hour model cohort: demographics and vital signs.

eICU-CRDb cohortMIMIC-IV 2.0a cohortPatient characteristics

P valueDelirium (n=81)No delirium
(n=1965)

P valueDelirium (n=343)No delirium
(n=1781)

.09.10Gender, n (%)

46 (57)937.0 (49.5)195.0 (56.9)1144.0 (64.2)Male

35 (43)992.0 50.5)148.0 (43.1)637.0 (35.8)Female

.62.80Race, n (%)

6.0 (1.4)29.0 (1.5)6.0 (1.7)47.0 (2.6)Asian

18.0 (22.5)475.0 (24.2)19.0 (5.5)80.0 (4.5)Black

53.0 (65)1227.0 (62.4)42.0 (12.2)126.0 (7.1)Hispanic

12.0 (14.8)132.0 (6.7)219.0 (63.8)1391.0 (78.1)White

10.0 (2.3)96.0 (4.9)47.0 (13.7)29.0 (1.6)Unknown

2.0 (2.5)6.0 (0.3)10.0 (2.)108.0 (6.1)Other

<.00171.0 (61.0-79.8)68.0 (57.0-77.0)<.00175.0 (64.0-81.0)70.0 (61.0-79.0)Age (y), median (IQR)

.3184.5 (67.9-103.4)85.2 (70.0-102.0).0280.0 (60.0-95.4)83.8 (70.8-96.7)Weight (kg), median (IQR)

Vital signs, median (IQR)

.2970.0（60.0-
80.0）

69.0（59.0-80.0）.1268.0 （59.0-77.0）67.0 (60.0-74.0)Heart rate min (bpm)

<.001107.0 (92.2-
124.5)

101.0（88.0-
116.0）

<.00197.0 （88.0-
110.0）

94.0 (86.0-106.0)Heart rate max (bpm)

.00786.3 (75.7-97.9)83.6 (75.7-94.4)<.00182.7 (75.6-89.3)80.2 (73.3-87.5)Heart rate mean (bpm)

<.00160.0 (52.0-68.0)62.0 (54.0-72.0)<.00155.0 (49.5-60.0)57.0 (53.0-62.0)Mean blood pressure min
(mm Hg)

.31104.0 (91.0-
122.0)

103.0 (99.0-118.0）.3395.0 (88.0-108.0)97.0 (89.0-107.0)Mean blood pressure max
(mm Hg)

.0278.2 (70.3-88.2)80.0 (76.6-90.4).0273.3 (69.3-78.8)74.6 (70.3-79.4)Mean blood pressure mean
(mm Hg)

.6313.0 (11.0-16.0)13.0 (11.0-16.0).7512.0 (9.0-14.0)12.0 (10.0-14.0)Respiratory rate min (bpm)

.4228.0 (24.0-33.00)27.0 (24.0-32.00).6926.0 (23.00-30.0)26.0 (23.0-29.0)Respiratory rate max (bpm)

.7619.2 (16.9-22.9)19.2 (17.1-21.9).2318.1 (16.2-20.2)17.8 (16.2-19.6)Respiratory rate mean (bpm)

.00197.1 (95.34-
98.63)

97.0 (95.6-98.4).8593.0 (91.00-96.0)93.0 (91.0-95.0)Systolic blood pressure min
(mm Hg)

.1591.0 (86.3-94.0)92.0 (89.0-94.0).00393.0 (91.0-96.0)91.0 (93.0-95.0)Systolic blood pressure max
(mm Hg)

.92100.0 (100.0-
100.0)

100.0 (99.0-100.0).1497.9 (96.7-99.0)97.7 (96.5-98.7)Systolic blood pressure
mean (mm Hg)

.00736.8 (36.9-36.5)36.7 (36.6-37.0).4836.72 (36.5-37.0)36.7 (36.5-36.9)Temperature mean (℃)

aMIMIC-IV Medical Information Mart for Intensive Care IV version 2.0.
beICU-CRD: eICU Collaborative Research Database.
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Table 2. Characteristics of patients and controls from the development dataset for the first 24-hour model cohort: laboratory test results and comorbidities.

eICU-CRDb cohortMIMIC-IV 2.0a cohortPatient characteristics

P valueDelirium (n=81)No delirium
(n=1965)

P valueDelirium (n=343)No delirium
(n=1781)

Laboratory results, median (IQR)

<.0019.0 (7.9-10.3)8.4 (7.3-9.4)<.0019.0 (7.9-10.3)8.4 (7.5-9.6)Hemoglobin min (g/100 mL)

.6211.4 (10.4-20.1)11.4 (10.4-12.9).6411.4 (10.4-14.2)11.5 (10.0-12.9)Hemoglobin max (g/100 mL)

<.001128.0 (96.0-178.0)145.0 (109.0-
197.0)

<.001130.0 (95.0-179.0)147.0 (111.0-198.0)Platelet min (109/L)

.55186.0 (153.0-
245.0)

128.0 (97.0-235.0).57188.0 (149.0-
242.0)

125.0 (151.0-245.0)Platelet count max (109/L)

.149.6 (7.0-12.4)9.2 (6.3-12.0).129.5 (6.9-12.3)8.8 (6.3-11.7)White blood cell min (109/L)

<.00114.7 (11.4-20.0)14.0 (10.0-17.3)<.00114.8 (11.3-19.6)13.1 (10.0-17.3)White blood cell max (109/L)

.181.3 (0.9-1.9)1.4 (1.0-2.1).211.2（0.9-1.6）1.2（0.9-1.5）Lactate min (mmol/L)

<.0011229.5 (600.0-
2056.0)

1496.0 (796.3-
2600.0)

<.0011575.0 (1002-
2321.0)

1832.0 (1290.0-
2617.0)

Urine output (mL)

Comorbidity, n (%)

.1130 (6.8)181 (9.2).373 (0.9)30 (1.7)Myocardial infarction

.7851 (63)1251 (63.7)<.001184 (53.6)724 (40.7)Congestive heart failure

.361.0 (1.1)14 (0.7)<.00184 (24.5)281 (15.8)Peripheral vascular disease

.026 (7.3)90 (4.6)<.00165 (19.0)186 (10.4)Cerebrovascular disease

.3511 (13.6)303 (15.4).002125 (36.4)498 (28)Chronic pulmonary disease

.7413 (15.7)321 (16.3).0196 (28.0)387 (21.7)Renal disease

.587 (8.5)155 (7.9).5330 (8.7)1538 (7.7)Diabetes with control

.8424 (29.5)503 (30.2).8597 (28.3)495 (27.8)Diabetes without control

.065 (6.5)82.0 (4.6).0623 (6.7)78 (4.4)Rheumatic disease

.021 (1.5)9.0 (0.5).027 (2)13 (0.7)Peptic ulcer disease

.072 (2.3)18.0 (1.0).067 (2)16 (0.9)Severe liver disease

.611 (0.9)13.0 (0.7).593 (0.9)11 (0.6)Dementia

<.0013 (3.7)16.0 (0.9)<.00112 (3.5)15 (0.8)Paraplegia

.115 (6.8)181.0 (9.2).4116 (4.7)103 (5.8)Malignant cancer

.041 (1.2)1964.00 (99.0).385 (3)4 (0.2)AIDS

aMIMIC-IV Medical Information Mart for Intensive Care IV version 2.0.
beICU-CRD: eICU Collaborative Research Database.
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Table 3. Characteristics of patients and controls from the development dataset for the first 24-hour model cohort: score, drug, and treatment measures.

eICU-CRDb cohortMIMIC-IV 2.0a cohortPatient characteristics

P valueDelirium (n=81)No delirium
(n=1965)

P valueDelirium (n=343)No delirium
(n=1781)

Score, median (IQR)

<.00112.0 (8.0-14.0)15.0 (14.0-15.00)<.00111.0 (6.0-14.0)14.0 (14.0-15.0)GCSc (min)

<.0017.0 (5.0-10.0)5.0 (3.0-7.0)<.0018.0 (6.0-11.0)4.0 (2.0-7.0)SOFAd

Drug, n (%)

.05441 (50.6)1104 (56.2).003164 (47.8)1005 (56.4)Acetaminophen

.021 (1.2)35 (1.9).0025 (1.5)38 (2.1)Anesthesia

.0319 (23.5)387 (19.7).10221 (64.4)1062 (59.6)Anticholinergics

.4136 (44.4)539 (27.4).3992 (26.8)519 (29.1)Anticoagulant

<.00117 (3.9)21 (1.1).00111 (3.2)18 (1.0)Antipsychotics

.5481 (100)3 (0.1).54343 (100)2.0 (0.1)Barbiturates

.3435 (9.5)142 (8).3232 (9.3)138 (7.7)Benzodiazepines

.00829 (35.5)854 (43.5).79131 (38.2)694 (39)Diuretics

.2838 (46.9)981 (49.9).94201 (58.6)1040 (58.4)Opioids

Treatment measures, n (%)

.5217 (20.9)380 (19.3).12231 (67.3)1121 (62.9)Emergency admission

.0475 (92.6)1779 (90.5).004321 (93.6)1724 (96.8)First care unit

<.00136 (44.4)453 (23).0216 (4.7)42 (2.4)Last care unit

.04746 (56.8)719 (36.6)<.00111 (3.2)15 (0.8)Renal Replacement Therapy

<.00177 (95.1)1699 (86.5)<.001298 (86.9)1179 (66.2)Invasive ventilation

<.0016.7 (5.3-12.5)3.20 (3.0-5.5)<.0015.9（4.0-10.3）2.4 (2.0-3.4)Length of ICUe stay, median (IQR)

aMIMIC-IV Medical Information Mart for Intensive Care IV version 2.0.
beICU-CRD: eICU Collaborative Research Database.
cGCS: Glasgow Coma Scale.
dSOFA: Sequential Organ Failure Assessment.
eICU: intensive care unit.

Model Performance Evaluation
Using 4 ML algorithms, we developed predictive models to
assess the risk of postoperative delirium in cardiac surgery
patients, leveraging electronic health record data for early
identification of high-risk individuals. Figure 2 presents ROC
curves of all models, allowing a systematic comparison of their
discriminative performance. Among the models, XGB
demonstrated the best overall predictive performance, achieving
the highest AUC for identifying patients at risk of delirium. The
random forest classifiers also exhibited strong performance,
although slightly lower than that of the XGB model. Notably,
both XGB and random forest classifiers maintained high
predictive accuracy, indicating good model generalizability. In
contrast, support vector classifier and logistic regression models

showed substantially lower discriminative power. To further
validate the clinical applicability of the XGB model, model
performance was assessed using several evaluation
metrics,including accuracy, sensitivity, positive predictive value,
and negative predictive value (Table 4). Furthermore, the
corresponding confusion matrices illustrating these metrics are
displayed in Figure 3.

The model was externally validated using the eICU-CRD, a
large-scale critical care dataset incorporating records from 208
hospitals, to assess its performance on independent data. The
XGB model maintained strong discriminative performance in
ROC analysis, with high AUC values confirming its reliability
across institutions (Figure 4). The model was further rigorously
validated through precision-recall analysis and calibration curves
(Figures 5A and B).
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Figure 2. Receiver operating characteristic curves of different machine learning algorithms evaluated on the internal validation set. LR: logistic
regression; SVC: support vector classifier; RFC: random forest classifier; XGB: extreme gradient boosting.

Table 4. Test set evaluation of machine learning model performance.

F1-scoreNPVcPPVbAUCaSensitivityAccuracyModel

0.550.950.440.880.730.82LRd

0.580.950.470.910.770.83XGBe

0.540.940.450.870.670.83SVCf

0.650.950.580.900.750.88RFCg

aAUC: area under the receiver operating characteristic curve.
bPPV: positive predictive value.
cNPV: negative predictive value.
dLR: logistic regression.
eXGB: extreme boosting gradient.
fSVC: support vector classifier.
gRFC: random forest classifier.
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Figure 3. Confusion matrix for binary classification. (A) Logistic regression (LR), (B) extreme gradient boosting (XGB), (C) support vector classifier
(SVC), (D) random forest classifier (RFC).

Figure 4. Receiver operating characteristic curves of various machine learning models evaluated on the external validation cohort. LR: logistic regression;
RFC: random forest classifier; SVC: support vector classifier; XGB: extreme gradient boosting.
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Figure 5. (A) Precision-recall curve. (B) Calibration curves and calculated Brier scores. LR: logistic regression; RFC: random forest classifier; SVC:
support vector classifier;XGB: extreme gradient boosting.

Variable Importance
The predictive contribution of each variable to postoperative
delirium varied among cardiac surgery ICU patients. The XGB
algorithm was used to estimate variable importance and
highlight the top predictors influencing model accuracy. The
top predictors included length of stay in ICU, lowest GCS score,

age, mean blood pressure, SOFA score, weight, heart rate and
urine output (Figure 6). To further interpret the influence and
directionality of these features on model predictions, we
generated SHAP summary plots (Figure 7). These visualizations
provide a detailed explanation of how individual features
contributed to the model output, offering insights into their
relative impact and potential clinical relevance.

Figure 6. Variable contribution rankings estimated using the XGB model. GCS: Glasgow Coma Scale; ICU_los: the length time of ICU; MBP: mean
blood pressure; SOFA: Sequential Organ Failure Assessment.

JMIR Med Inform 2026 | vol. 14 | e73283 | p. 10https://medinform.jmir.org/2026/1/e73283
(page number not for citation purposes)

Hu et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 7. Shapley Additive Explanations (SHAP) summary plots illustrating feature contributions in the extreme gradient boosting (XGB) model.
GCS: Glasgow Coma Scale; ICU_los: length of stay in the intensive care unit; MBP: mean blood pressure; SOFA: Sequential Organ Failure Assessment.

Discussion

Principal Findings
In this large-scale retrospective study, we developed and
validated an ML model to predict postoperative delirium, a
common and burdensome complication after cardiac surgery,
with reported incidence rates ranging from 18% to 52% [33-35].
The XGB-based model, trained on the MIMIC-IV 2.0 dataset,
demonstrated excellent performance in internal validation
(AUC=0.91) and maintained strong discriminative power in
external validation using the eICU-CRD dataset (AUC=0.75).
Key predictors identified by the model included length of stay
in ICU, min GCS score, mean blood pressure, SOFA score,
weight, urine output, heart rate, and age. As far as we are aware,
this study presents one of the earliest ML models that are
developed to predict delirium in a diverse population of cardiac
surgery patients. Importantly, our model relies on routinely
available clinical data from the first 24 hours of ICU admission,
enabling early identification of high-risk patients throughout
their ICU stay. This early-warning capability offers a critical
window for timely intervention, allowing clinicians to
implement targeted strategies at the earliest stages of delirium
onset. The model’s high temporal relevance and wide
applicability support its potential use in guiding personalized
care plans and improving patient outcomes.

Comparison With Previous Work
Among existing tools for predicting postoperative cognitive
complications, the CAM-ICU score remains the most widely
used [36-38]. However, its applicability may be limited in
certain surgical contexts or patient subgroups. Some individual
populations require more tailored analysis, and it is important
to note that CAM-ICU may not capture the full spectrum of
delirium severity, potentially compromising its construct validity

[12,39,40]. Therefore, balancing feasibility and validity in
specific clinical settings is essential. Our ML approach addresses
these limitations by offering a data-driven, individualized risk
assessment that adapts to patient heterogeneity and enables
broader clinical applicability.

Furthermore, this study incorporated SHAP to enhance the
interpretability of the XGB model. SHAP provides a transparent
and traceable explanation framework for individualized risk
prediction of delirium, allowing visualization of how each
feature influences the model’s output in both direction and
magnitude [41,42]. This helps clinicians better understand the
rationale behind specific predictions. Through SHAP analysis,
we identified a set of clinically relevant predictors closely
associated with patient deterioration, including length of stay
in ICU, lowest GCS score, age, mean blood pressure, SOFA
score, weight, urine output, and heart rate.

The XGB model demonstrated superior predictive performance,
its clinical value extends beyond accuracy—it lies in its ability
to inform real-time decision-making. Future research should
focus on integrating these key features into dynamic clinical
monitoring and intervention workflows. For instance, early
abnormalities in high-impact variables, such as lowest GCS
score, mean blood pressure, or urine output could trigger
automated alerts within electronic health record systems,
enabling real-time risk stratification. Additionally, individualized
SHAP-based explanations could support patient-centered clinical
strategies, facilitating a closed-loop “early warning–targeted
intervention” model. This approach may ultimately enhance
early prevention and improve outcomes in postoperative
delirium management.

Strengths and Limitations
This study has several notable strengths. First, model
development was based on large scale, real-world data from 2
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publicly available critical care databases (MIMIC-IV 2.0 and
eICU-CRD), which offer extensive clinical information and
robust sample sizes, thereby increasing the trustworthiness and
general applicability of our findings. Second, as far as we are
aware, this is the earliest known study to apply ML techniques
for predicting postoperative delirium in a broad cardiac surgery
cohort. This tailored approach enables more accurate risk
stratification by accounting for individual variability across
surgical subtypes. One notable strength of our model lies in its
exclusive use of routinely available clinical data obtained within
the first day of ICU stay, eliminating the need for additional or
specialized testing. The use of early time-series features to
quantify dynamic changes in key physiological indicators allows
real-time risk estimation with high clinical practicality and
timeliness. From a translational perspective, the model
demonstrated a sensitivity of 77% in identifying high-risk
patients early, providing a valuable window for initiating
preventive interventions. These proactive measures have the
potential to reduce ICU length of stay, lower per-patient
hospitalization costs, and minimize readmission risk, ultimately
interrupting the cascade of adverse outcomes often associated
with postoperative delirium. Finally, by focusing on the first
day of ICU data, the model creates a strategic opportunity for
timely clinical action, supporting the implementation of early,
targeted strategies aimed at mitigating symptom progression
and reducing complication rates.

Our study has several limitations. First, we acknowledge that
our findings may be racially biased against White patients and
the applicability to other populations may be limited due to the
database being derived from Western countries. Second, the
use of open public databases to obtain data may introduce
missing data bias, which is unavoidable. Third, as this study is

retrospective and observational in nature, selection bias is
inevitable. Specifically, the collection of retrospective data
depends on existing medical records that may vary in
completeness and accuracy due to differences in clinical
documentation practices and data entry habits. Such
inconsistencies can result in missing or inaccurate key clinical
information, which in turn affects the quality of data used for
model training. Moreover, retrospective studies lack the ability
to actively intervene in or control the research process, making
it difficult to eliminate the influence of confounding variables.
This limitation weakens the strength of causal inferences drawn
from the analysis. Additionally, our model has not yet undergone
prospective clinical validation, which limits its current
applicability in real-world clinical practice. Prospective
validation, ideally conducted under well-controlled trial
conditions and standardized workflows, is essential for
evaluating the predictive performance and robustness of the
model in diverse clinical settings. Without this step, there
remains a risk that the model’s actual performance may deviate
from the retrospective findings, particularly when applied to
different health care systems or patient populations.

Conclusions
We constructed and assessed an effective predictive model
targeting postoperative delirium in patients admitted to the ICU
after cardiac surgery. This model leverages routinely available
patient information from the initial 24-hour ICU stay to estimate
the risk of delirium throughout the hospitalization period. Given
its reliance on readily available early-stage variables, the model
has the potential to serve as a practical and accessible risk
stratification tool for health care professionals and patients when
selecting optimal cardiac treatment strategies.
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