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Abstract

Background: Delirium is a frequent postoperative complication among patients who have undergone cardiac surgery and is
associated with prolonged hospitalization, cognitive decline, and increased mortality. Early prediction of delirium is therefore
critical for initiating timely interventions.

Objective: This study proposes the development and validation of a machine learning—based model to predict postoperative
deliriumin patients undergoing cardiac surgery during intensive care unit (ICU) care, facilitating the early detection of individuals
at high risk of delirium and supporting clinicians in the deployment of targeted preventive strategies.

Methods: This study extracted data on postoperative cardiac surgery patients who remained in the ICU for more than 24 hours
from the Medical Information Mart for Intensive Care IV version 2.0 (MIMIC-IV 2.0) database and the el CU Collaborative
Research Database (el CU-CRD). The MIMIC-1V 2.0 cohort was randomly divided into atraining set and an internal validation
set in a 7:3 ratio, whereas the el CU-CRD functioned as an independent validation cohort. We used data from the first 24 hours
of 1CU monitoring to model thelikelihood of delirium over the entire |CU admission period. Delirium wasidentified by apositive
Confusion Assessment Method for the Intensive Care Unit evaluation (ie, score >4). We built predictive models by using logistic
regression, support vector classifier, extreme gradient boosting (XGB), and random forest classifiers. Their performance was
assessed via the area under the receiver operating characteristic curve, accuracy, sensitivity, positive predictive value, negative
predictive value, and F;-score.

Results: Theanalysisinvolved 2124 patientsfrom the MIMIC-1V 2.0 database and 2406 from theel CU-CRD. A set of 57variables
was sl ected to construct the predictive models. Among the various machine | earning model stested, the X GB model demonstrated
the best performance for delirium prediction during internal validation. As for external validation, the model achieved an area
under the receiver operating characteristic curve of 0.75, indicating strong discriminatory ability. The most important predictive
features identified by the model included hospital length of stay, minimum Glasgow Coma Scale score, mean blood pressure,
Sequential Organ Failure Assessment score, weight, urine output, heart rate, and age.

Conclusions: The XGB model with strong predictive capability for ICU delirium after cardiac surgery was developed and

externally validated. This model offers essential technical support for building real-time delirium alert systems and enables
ongoing risk stratification and evidence-based decision-making within the ICU environment.
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Introduction

Delirium is an acute neuropsychiatric syndrome commonly
associated with encephalopathy, acute cerebral dysfunction,
and states of confusion, particularly following surgical
procedures [1-4]. In patients undergoing cardiac surgery, the
incidence of postoperative delirium has been reported to range
from 10% to 40% [5-7]. This condition islinked to avariety of
adverse outcomes, including heightened pain perception,
depression, cognitive impairment, and increased mortality [8,9].
Currently, the assessment of patients' arousal can be conducted
using standardized tools such as the Richmond
Agitation-Sedation Scale and the Confusion Assessment M ethod
for the Intensive Care Unit (CAM-ICU) to identify different
types of delirium with distinct characteristics [10-12]. Despite
the existence of standardized instruments, the diagnosis of
delirium frequently depends on the patient's subjective
assessment of their condition. If the occurrence of delirium in
patients could be predicted within a short period, it will
substantially reduce the aforementioned risks.

Machine learning (ML), a branch of artificial intelligence, has
driven notabl e progress across numerous domains of health care
[13,14]. One such areawhere ML has shown its potential isin
the postoperative surveillance with cardiac surgery, offering
moreinformation to predict delirium [15,16]. It hasthe potential
to improve patient health care outcomes [17,18]. Compared to
traditional data analysis techniques, ML models can provide
more intricate predictions and perform real-time monitoring
using objective data from all patients [19-21]. Furthermore,
recent research has also used ML to forecast the near-term
mortality rates of patients after cardiac operations. For example,
Nistal-Nufio [22] constructed an extreme gradient boosting
(XGB)-based predictive model to estimate 24-hour
postoperative mortality following cardiac surgery. The outcome
demonstrated that XGB attained an area under the receiver
operating characteristic curve (AUC) of 87.5%, signifying the
model’s exceptional performance in forecasting intensive care
unit (ICU) mortality, notably surpassing other models. Zhang
et a [23] assessed an ML model, comparing it to existing
severity-of-illness systems to develop a real-time tool for
predicting death. However, no correlation-predictive models
using ML have been developed for patients who experience
delirium after cardiac surgery.

In this study, we created and verified 4 models using ML
techniquesto anticipate the occurrence of delirium and facilitate
identification. Furthermore, we enhanced the interpretability of
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the results by prioritizing the independent variables according
to their predictive significance.

Methods

Ethical Considerations

This study used data from 2 publicly available critical care
databases: Medical Information Mart for Intensive Care IV
version 2.0 (MIMIC-1V 2.0) database and elCU Collaborative
Research Database (el CU-CRD). Both databases were approved
by theinstitutional review boards of the Beth |srael Deaconess
Medical Center and the Massachusetts I nstitute of Technology.
As al data were fully deidentified before release, the
requirement for individual informed consent was waived in
accordance with the Declaration of Helsinki and applicable
regulations. All team members underwent certified training in
“Data or Specimens Only Research” to comply with ethical
regulations governing dataset access.

Study Population

This study used 2 publicly available critical care databases to
develop and validate a predictive model. The training dataset
was sourced from MIMIC-1V 2.0, which includes 76,943 ICU
admissions recorded at Beth Israel Deaconess Medical Center
(Boston, Massachusetts, United States) between 2008 and 2019
[24]. For external validation, we used the el CU-CRD, which
contains deidentified data for over 200,000 patients admitted
to 208 US hospital s between 2014 and 2015 [ 25]. Both databases
contain structured clinical data, including demographics, vital
signs, laboratory test results, procedures, medications, and
outcomes. We included adult patients (aged =18 years) who
underwent major cardiovascular surgeries, such as coronary
artery bypass grafting, heart valve repair or replacement,
combined procedures, or other surgeries involving
cardiopulmonary bypass.

We applied consistent inclusion and exclusion criteria across
both datasets to ensure cohort comparability and data quality.
Inclusion criteria required patients to meet the age threshold
and have documented cardiovascular surgery. We excluded
patients who had ICU stays shorter than 24 hours (to ensure
sufficient observation data), missing essential demographic or
outcome variables, or delirium recorded within thefirst 24 hours
of ICU admission (to preserve the prediction time window).
Although the 2 datasets differ in time range and hospital
coverage, we aligned the study population by applying uniform
definitions for surgical type and using a standardized 24-hour
observation window. Figure 1 summarizes the baseline
characteristics of the 2 cohorts.
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Figure 1. Schematic representation of the study design. el CU-CRD: elCU Collaborative Research Database; | CU: intensive care unit; MIMIC-1V 2.0:

Medical Information Mart for Intensive Care IV version 2.0.

Patients with cardiac surgery during
ICU stay in MIMIC IV 2.0 database
(n=10,832)

Patients with cardiac surgery during
ICU stay in elCU-CRD (n=11,035)

Exclude:
- Exclusion:Age -

18 years old
* Repeated ICU admission
+ Length of ICU stay <24 h
- Died within the first 24 h

MIMIC-IV 2.0 cohort (n=2124)

v (]

elCU cohort (n=2046)

Delirium (n=343) No Delirium (n=1781)

Delirium (n=81) No Delirium (n=1965)

Delirium Assessment

Delirium served asthe primary outcome, identified onthe basis
of a positive CAM-ICU assessment (score =4) and consistent
diagnostic coding. The observation window was the first 24
hours after ICU admission, during which patient data were
collected for modeling. If at least one positive delirium
assessment occurred at the time of prediction, the patient was
considered delirious.

Data Extraction and Processing

The clinical data were retrieved and extracted using the
structured query language, with pgAdmin 4 serving as the
administrative platform for PostgreSQL . The prediction model
included just clinical and laboratory characteristics that were
accessible on the initial day of admission to the ICU, with
patients being recognized by their unique ID numbers. The
predictors consisted of the following variables— (1)
demographics: age, gender, ethnicity and weight; (2) vital signs:
heart rate, mean blood pressure, respiratory rate, systolic blood
pressure, and temperature; (3) laboratory analysis. hemoglobin
level, platelet count, white blood cell count, lactate and urine
output; (4) severity scoring: Glasgow Coma Scale (GCS) and
Sequential Organ Failure Assessment (SOFA) scores; (5)
comorbidities: myocardial infarction, congestive heart failure,
peripheral vascular disease, cerebrovascul ar disease, dementia,
chronic pulmonary disease, rheumatic disease, peptic ulcer
disease,diabetes (with control, without control), paraplegia,
renal disease, malignant cancer, severeliver disease, and AIDS;
(6) medications: opioids, barbiturates, benzodiazepines,
acetaminophen, antipsychotics, anticoagulant, antihistamines,
diuretics, anesthesia, and anticholinergics; (7) treatment
measures. emergency admission, first care unit, last care unit,
renal replacement therapy, invasive ventilation, length of ICU

stay.
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Missing Data M anagement

Variables exhibiting a missing value rate exceeding 10% were
omitted to prevent potential bias. Variables with less than 10%
missing values were subjected to multivariable imputations
[26].

Data Balance

The dataset showed a marked imbalance, with notably fewer
positive delirium cases compared with negative ones, which
caused the model to lean toward predicting the majority
(negative) class. To mitigate this issue, we used the Synthetic
Minority Oversampling Technique to artificially augment the
number of positive samples, thereby achieving amore balanced
class distribution and enhancing the mode’s ability to
generdlize.

Feature Selection

The feature selection process involved using the recursive
elimination of features approach of therandom forest [27]. This
method was used to identify the most optimal combinations of
predictive variables. By examining the weight of features and
their correlation and after stratified 10-fold cross-validation,
final features were selected based on importance scores,
correlation analysis, and cross-validation results. This process
reduced dimensionality while preserving predictive power.

Model Development and Hyperparameter Tuning

The MIMIC-IV 2.0 dataset (N=2124) was randomly split into
atraining set (1487/2124, 70%) and a testing set (637/2124,
30%), whereas the el CU-CRD dataset was used as an external
validation cohort. We developed prediction models using 4
widely adopted ML agorithms. Logistic regression was
implemented for binary classification using maximum likelihood
estimation [28]. Random forest, an ensemble learning method,
combined multiple decision trees through majority voting to
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enhance predictive performance [29]. XGB used a gradient
boosting framework to iteratively build strong learners from
weak ones [30]. Support vector classifier aimed to find the
optimal hyperplanein ahigh-dimensional spacefor classification
[31]. Bayesian optimization was used to identify optimal
hyperparameters for each model, improving training efficiency
and performance [32].

M odel Performance Evaluation

To comprehensively assess the discriminatory performance of
the prediction models, we used the receiver operating
characteristic (ROC) as the primary evaluation metric.
Additional metricsincluded accuracy, positive predictive value,
negative predictive value, and sensitivity. We also reported the
F,-score, the harmonic mean of precision and sensitivity, to
reflect the balance between these two metrics. Together, these
indicators were used to evaluate the clinical applicability of
each model in stratifying the risk of postoperative delirium
among cardiac surgery patients. Shapley Additive Explanations
(SHAP) was used to investigate the interpretability of the final
predictive model.

Statistical Analysis

All statistical analyses were conducted using Stata 17.0 and
SPSS (version 27.0; IBM Corp). Frequencies and percentages
were used to summarize categorical variables, with comparisons
made via the chi-square test. The distribution of continuous
variables was assessed using the Shapiro-Wilk test. Normally
distributed datawere reported as mean (SD) and compared using
independent 2-tailed t tests. Skewed data were summarized as
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median and QR and analyzed using the Mann-Whitney U or
Kruskal-Wallis test, based on group composition. Statistical
significance was determined using 2-sided tests, with athreshold
of P<.05.

Results

Baseline Characteristics

A total of 2124 patients from the MIMIC-1V 2.0 database were
included in the final analysis. Among them, 16.1% (343/2124)
of cardiac surgery patientswere diagnosed with delirium during
their hospital stay, occurring after the first day of ICU
admission. In the external validation cohort, an analysis was
conducted on 2046 cases obtained from the el CU-CRD, of
whom 3.81% (81/2046) developed delirium during the same
postoperative period, also defined as after the first ICU day. In
these patients with delirium, maximum heart rate, minimum
mean blood pressure, minimum hemoglobin level, minimum
platelet count, maximum white blood cell count, urine output,
minimum GCS score, SOFA, and length of ICU stay showed a
notable disparity between the two different groups. Tables 1-3
present a concise summary of the comparison of fundamental
traits, vital signs, and laboratory analysis between patientswith
and without delirium. According to the data, patients with
delirium are predominantly male, typicaly older, and have
longer hospital stayswith higher severity scores upon admission.
Additionally, factors such asweight loss, decreased urine output,
and decreased mean arterial pressure may all exacerbate the
likelihood of delirium in patients.
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Table 1. Characteristics of patients and controls from the devel opment dataset for the first 24-hour model cohort: demographics and vital signs.

Patient characteristics

MIMIC-1V 2.02 cohort

€l CU-CRDP cohort

No delirium Delirium (n=343) P value No delirium Delirium (n=81) P value
(n=1781) (n=1965)
Gender, n (%) .10 .09
Male 1144.0 (64.2) 195.0 (56.9) 937.0 (49.5) 46 (57)
Female 637.0 (35.8) 148.0 (43.1) 992.0 50.5) 35(43)
Race, n (%) .80 .62
Asian 47.0 (2.6) 6.0 (1.7) 29.0 (1.5) 6.0 (1.4)
Black 80.0 (4.5) 19.0(5.5) 475.0 (24.2) 18.0 (22.5)
Hispanic 126.0(7.1) 42.0(12.2) 1227.0 (62.4) 53.0 (65)
White 1391.0(78.1) 219.0 (63.8) 132.0(6.7) 12.0(14.8)
Unknown 29.0(1.6) 47.0(13.7) 96.0 (4.9) 10.0 (2.3)
Other 108.0 (6.1) 10.0(2.) 6.0 (0.3) 2.0(2.5)
Age (y), median (IQR) 70.0 (61.0-79.0) 75.0 (64.0-81.0) <.001 68.0 (57.0-77.0) 71.0(61.0-79.8) <.001
Weight (kg), median (IQR) 83.8(70.8-96.7) 80.0 (60.0-95.4) .02 85.2 (70.0-102.0) 84.5(67.9-103.4) .31
Vital signs, median (IQR)
Heart rate min (bpm) 67.0 (60.0-74.0) 680 (59.0-77.0) .12 69.0 (59.0-80.0) 70.0 (60.0- .29
80.0)
Heart rate max (bpm) 94.0(86.0-106.0) 97.0 (88.0- <.001 101.0 (88.0- 107.0 (92.2- <.001
110.0) 116.0) 124.5)
Heart rate mean (bpm) 80.2 (73.3-87.5) 82.7 (75.6-89.3) <.001 83.6 (75.7-94.4) 86.3 (75.7-97.9) .007
Mean blood pressuremin ~ 57.0 (53.0-62.0) 55.0 (49.5-60.0) <.001 62.0 (54.0-72.0) 60.0 (52.0-68.0) <.001
(mm Hg)
Mean blood pressuremax ~ 97.0(89.0-107.0)  95.0(88.0-108.0) .33 103.0(99.0-118.0)  104.0 (91.0- 31
(mm Hg) 122.0)
Mean blood pressure mean  74.6 (70.3-79.4) 73.3(69.3-78.8) .02 80.0 (76.6-90.4) 78.2(70.3-88.2) .02
(mm Hg)
Respiratory rate min (bpm)  12.0 (10.0-14.0) 12.0(9.0-14.0) .75 13.0 (11.0-16.0) 13.0(11.0-16.0) .63
Respiratory rate max (bpm) 26.0 (23.0-29.0) 26.0 (23.00-30.0) .69 27.0 (24.0-32.00) 28.0(24.0-33.00) .42
Respiratory ratemean (bpm) 17.8 (16.2-19.6) 18.1 (16.2-20.2) .23 19.2 (17.1-21.9) 19.2(16.9-229) .76
Systolic blood pressuremin  93.0 (91.0-95.0) 93.0(91.00-96.0) .85 97.0 (95.6-98.4) 97.1 (95.34- .001
(mm Hg) 98.63)
Systolic blood pressuremax  91.0 (93.0-95.0) 93.0 (91.0-96.0) .003 92.0 (89.0-94.0) 91.0(86.3-94.0) .15
(mm Hg)
Systolic blood pressure 97.7 (96.5-98.7) 97.9 (96.7-99.0) 14 100.0 (99.0-100.0)  100.0 (100.0- .92
mean (mm Hg) 100.0)
Temperature mean ('C) 36.7 (36.5-36.9) 36.72 (36.5-37.0) .48 36.7 (36.6-37.0) 36.8 (36.9-36.5) .007

aMIMIC-1V Medical Information Mart for Intensive Care |V version 2.0.

belCU-CRD: el CU Collaborative Research Database.
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Table2. Characteristicsof patients and controlsfrom the devel opment dataset for thefirst 24-hour model cohort: |aboratory test results and comorbidities.

Patient characteristics MIMIC-IV 2.0% cohort €l CU-CRDP cohort
No delirium Delirium (n=343) P value No delirium Delirium (n=81) P value
(n=1781) (n=1965)
Laboratory results, median (I1QR)
Hemoglobin min (g/100 mL) 8.4 (7.5-9.6) 9.0(7.9-10.3) <.001 8.4 (7.3-9.4) 9.0(7.9-10.3) <.001
Hemoglobin max (g/100mL) 11.5 (10.0-12.9) 11.4(104-142) .64 11.4(104-12.9)  11.4(104-20.1) .62
Platelet min (1091) 147.0 (111.0-198.0) 130.0(95.0-179.0) <.001 145.0 (109.0- 128.0(96.0-178.0) <.001
197.0)
Platelet count max (10%L)  125.0 (151.0-245.0) 1880 (149.0- 57 128.0(97.0-235.0) 186.0 (153.0- 55
242.0) 245.0)
White blood cell min (109L) 88 (6.3-11.7) 95(6.9-12.3) 12 9.2 (6.3-12.0) 9.6 (7.0-12.4) 14
Whiteblood cell max (10%L) 13.1(10.0-17.3) 14.8(11.3-19.6)  <.001 14.0(10.0-17.3)  14.7(114-200)  <.001
Lactate min (mmol/L) 1.2 (0.9-15) 1.2 (0.9-1.6) 21 1.4 (1.0-2.1) 1.3(0.9-1.9) 18
Urine output (mL) 1832.0 (1290.0- 1575.0 (1002- <.001 1496.0 (796.3- 1229.5 (600.0- <.001
2617.0) 2321.0) 2600.0) 2056.0)
Comorbidity, n (%)
Myocardia infarction 30(1.7) 3(0.9) 37 181 (9.2) 30(6.8) A1
Congestive heart failure 724 (40.7) 184 (53.6) <.001 1251 (63.7) 51 (63) 78
Peripheral vascular disease 281 (15.8) 84 (24.5) <.001 14 (0.7) 1.0(1.1) .36
Cerebrovascular disease 186 (10.4) 65 (19.0) <.001 90 (4.6) 6(7.3) 02
Chronic pulmonary disease 498 (28) 125 (36.4) .002 303 (15.4) 11 (13.6) 35
Renal disease 387 (21.7) 96 (28.0) 01 321 (16.3) 13(15.7) 74
Diabetes with control 1538 (7.7) 30(8.7) 53 155 (7.9) 7(85) 58
Diabetes without control 495 (27.8) 97 (28.3) 85 503 (30.2) 24.(29.5) 84
Rheumatic disease 78 (4.4) 23(6.7) .06 82.0 (4.6) 5(6.5) .06
Pentic ulcer disease 13(0.7) 72 .02 9.0 (0.5) 1(15) .02
Severe liver disease 16 (0.9) 72 .06 18.0 (1.0) 2(23) 07
Dementia 11 (0.6) 3(0.9) 59 13.0(0.7) 1(0.9) 61
Paraplegia 15 (0.8) 12 (3.5) <.001 16.0 (0.9) 3(37) <.001
Malignant cancer 103 (5.8) 16 (4.7) 41 181.0(9.2) 5(6.8) A1
AIDS 4(0.2) 5(3) 38 1964.00 (99.0) 1(1.2) 04

AMIMIC-IV Medical Information Mart for Intensive Care IV version 2.0.
Pel CU-CRD: el CU Collaborative Research Database.
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Table 3. Characteristics of patients and controls from the development dataset for the first 24-hour model cohort: score, drug, and treatment measures.

Patient characteristics MIMIC-IV 2.0% cohort

€l CU-CRDP cohort

No delirium Delirium(n=343) P value No delirium Delirium (n=81) P value
(n=1781) (n=1965)
Score, median (IQR)
GCSE (min) 14.0(14.0-150)  11.0(6.0-140) <.001 15.0 (14.0-1500)  12.0(8.0-14.0)  <.001
sorad 40 (2.0-7.0) 80(6.0-11.0)  <.001 5.0 (3.0-7.0) 70(50-100)  <.001
Drug, n (%)
Acetaminophen 1005 (56.4) 164 (47.8) .003 1104 (56.2) 41 (50.6) 054
Anesthesia 38(2.1) 5(15) .002 35(1.9) 1(1.2) .02
Anticholinergics 1062 (59.6) 221 (64.4) 10 387(19.7) 19 (23.5) .03
Anticoagulant 519 (29.1) 92 (26.8) 39 539 (27.4) 36 (44.4) 41
Antipsychotics 18 (1.0) 11(3.2) .001 21(1.1) 17 (3.9) <.001
Barbiturates 2.0(0.1) 343 (100) 54 3(0.2) 81 (100) 54
Benzodiazepines 138 (7.7) 32(9.3) 32 142 (8) 35(9.5) 34
Diuretics 694 (39) 131(38.2) 79 854 (43.5) 29 (35.5) .008
Opioids 1040 (58.4) 201 (58.6) 94 981 (49.9) 38 (46.9) 28
Treatment measures, n (%)
Emergency admission 1121 (62.9) 231 (67.3) 12 380 (19.3) 17 (20.9) 52
First care unit 1724 (96.8) 321 (93.6) .004 1779 (90.5) 75 (92.6) 04
Last care unit 42 (2.4) 16 (4.7) .02 453 (23) 36 (44.4) <.001
Renal Replacement Therapy 15 (0.8) 11(3.2) <.001 719 (36.6) 46 (56.8) 047
Invasive ventilation 1179 (66.2) 298 (86.9) <.001 1699 (86.5) 77 (95.1) <.001
Length of ICU® stay, median (IQR) 24 (2.0-3.4) 59 (40-103) <001 3.20(3.0-5.5) 6.7(53125 <001

3MIMIC-IV Medical Information Mart for Intensive Care IV version 2.0.
bel CU-CRD: el CU Collaborative Research Database.

°GCS: Glasgow Coma Scale.

ISOFA: Sequential Organ Failure Assessment.

€ICU: intensive care unit.

M odel Performance Evaluation

Using 4 ML algorithms, we developed predictive models to
assess the risk of postoperative delirium in cardiac surgery
patients, leveraging electronic health record data for early
identification of high-risk individuals. Figure 2 presents ROC
curves of all models, allowing a systematic comparison of their
discriminative performance. Among the models, XGB
demonstrated the best overall predictive performance, achieving
the highest AUC for identifying patientsat risk of delirium. The
random forest classifiers also exhibited strong performance,
although dightly lower than that of the XGB model. Notably,
both XGB and random forest classifiers maintained high
predictive accuracy, indicating good model generalizability. In
contrast, support vector classifier and logistic regression models
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showed substantially lower discriminative power. To further
validate the clinical applicability of the XGB model, model
performance was assessed using several  evaluation
metrics,including accuracy, sensitivity, positive predictive value,
and negative predictive value (Table 4). Furthermore, the
corresponding confusion matricesillustrating these metrics are
displayed in Figure 3.

The model was externally validated using the elCU-CRD, a
large-scale critical care dataset incorporating records from 208
hospitals, to assess its performance on independent data. The
XGB model maintained strong discriminative performance in
ROC analysis, with high AUC values confirming its reliability
acrossingtitutions (Figure4). The model wasfurther rigorously
validated through precision-recall analysisand calibration curves
(Figures 5A and B).

JMIR Med Inform 2026 | vol. 14 | €73283 | p. 7
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR MEDICAL INFORMATICS

Huetd

Figure 2. Receiver operating characteristic curves of different machine learning algorithms evaluated on the internal validation set. LR: logistic
regression; SV C: support vector classifier; RFC: random forest classifier; XGB: extreme gradient boosting.
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Table 4. Test set evaluation of machine learning model performance.

Model Accuracy Sensitivity AUC? ppvP NPVC Fq-score
LRY 0.82 0.73 0.88 0.44 0.95 0.55
XGB® 0.83 0.77 0.91 0.47 0.95 0.58
svcf 0.83 0.67 0.87 0.45 0.94 054
RFCY 0.88 0.75 0.90 0.58 0.95 0.65

8AUC: area under the receiver operating characteristic curve.
bppy: positive predictive value.

°NPV: negative predictive value.

9dR: logistic regression.

©X GB: extreme boosting gradient.

fsve: support vector classifier.

9RFC: random forest classifier.
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Figure 3. Confusion matrix for binary classification. (A) Logistic regression (LR), (B) extreme gradient boosting (XGB), (C) support vector classifier
(SVC), (D) random forest classifier (RFC).
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Figure4. Receiver operating characteristic curves of various machinelearning models evaluated on the external validation cohort. LR: logistic regression;
RFC: random forest classifier; SV C: support vector classifier; XGB: extreme gradient boosting.
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Figure5. (A) Precision-recal curve. (B) Calibration curves and calculated Brier scores. LR: logistic regression; RFC: random forest classifier; SVC:
support vector classifier;X GB: extreme gradient boosting.
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Variable Importance age, mean blood pressure, SOFA score, weight, heart rate and

urine output (Figure 6). To further interpret the influence and
The predictive contribution of each variable to postoperative directionality of these features on model predictions, we
delirium varied among cardiac surgery ICU patients. TheXGB  generated SHAP summary plots (Figure 7). Thesevisualizations
algorithm was used to estimate variable importance and provide a detailed explanation of how individual features
highlight the top predictors influencing model accuracy. The

_ ! _ contributed to the model output, offering insights into their
top predictorsincluded length of stay inICU, lowest GCSscore,  relative impact and potential clinical relevance.

Figure 6. Variable contribution rankings estimated using the XGB model

. GCS: Glasgow Coma Scale; ICU_los: the length time of ICU; MBP: mean
blood pressure; SOFA: Sequential Organ Failure Assessment.
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Figure 7. Shapley Additive Explanations (SHAP) summary plots illustrating feature contributions in the extreme gradient boosting (XGB) model.
GCS: Glasgow ComaScale; ICU_los: length of stay in theintensive care unit; MBP: mean blood pressure; SOFA: Sequential Organ Failure Assessment.
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Discussion [12,39,40]. Therefore, balancing feasibility and validity in

Principal Findings

In this large-scale retrospective study, we developed and
validated an ML model to predict postoperative delirium, a
common and burdensome complication after cardiac surgery,
with reported incidence rates ranging from 18% to 52% [ 33-35].
The XGB-based model, trained on the MIMIC-1V 2.0 dataset,
demonstrated excellent performance in internal validation
(AUC=0.91) and maintained strong discriminative power in
external validation using the el CU-CRD dataset (AUC=0.75).
Key predictors identified by the model included length of stay
in ICU, min GCS score, mean blood pressure, SOFA score,
weight, urine output, heart rate, and age. Asfar asweare aware,
this study presents one of the earliest ML models that are
developed to predict delirium in adiverse popul ation of cardiac
surgery patients. Importantly, our model relies on routinely
availableclinica datafrom thefirst 24 hours of ICU admission,
enabling early identification of high-risk patients throughout
their ICU stay. This early-warning capability offers a critical
window for timely intervention, alowing clinicians to
implement targeted strategies at the earliest stages of delirium
onset. The model’s high temporal relevance and wide
applicability support its potential use in guiding personalized
care plans and improving patient outcomes.

Comparison With Previous Work

Among existing tools for predicting postoperative cognitive
complications, the CAM-ICU score remains the most widely
used [36-38]. However, its applicability may be limited in
certain surgical contexts or patient subgroups. Someindividual
populations require more tailored analysis, and it is important
to note that CAM-ICU may not capture the full spectrum of
delirium severity, potentially compromising itsconstruct validity

https://medinform.jmir.org/2026/1/e73283

RenderX

specific clinical settingsisessential. Our ML approach addresses
these limitations by offering a data-driven, individualized risk
assessment that adapts to patient heterogeneity and enables
broader clinical applicability.

Furthermore, this study incorporated SHAP to enhance the
interpretability of the XGB model. SHAP providesatransparent
and traceable explanation framework for individualized risk
prediction of delirium, allowing visualization of how each
feature influences the model’s output in both direction and
magnitude [41,42]. This helps clinicians better understand the
rational e behind specific predictions. Through SHAP analysis,
we identified a set of clinically relevant predictors closely
associated with patient deterioration, including length of stay
in ICU, lowest GCS score, age, mean blood pressure, SOFA
score, weight, urine output, and heart rate.

The XGB model demonstrated superior predictive performance,
its clinical value extends beyond accuracy—it liesin its ability
to inform real-time decision-making. Future research should
focus on integrating these key features into dynamic clinical
monitoring and intervention workflows. For instance, early
abnormalities in high-impact variables, such as lowest GCS
score, mean blood pressure, or urine output could trigger
automated alerts within electronic heath record systems,
enabling real-timerisk strtification. Additionally, individualized
SHAP-based explanations could support patient-centered clinical
strategies, facilitating a closed-loop “early warning—targeted
intervention” model. This approach may ultimately enhance
early prevention and improve outcomes in postoperative
delirium management.

Strengthsand Limitations

This study has several notable strengths. First, model
development was based on large scale, real-world data from 2
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publicly available critical care databases (MIMIC-1V 2.0 and
elCU-CRD), which offer extensive clinical information and
robust sample sizes, thereby increasing the trustworthiness and
genera applicability of our findings. Second, as far as we are
aware, thisisthe earliest known study to apply ML techniques
for predicting postoperative delirium in abroad cardiac surgery
cohort. This tailored approach enables more accurate risk
stratification by accounting for individual variability across
surgical subtypes. One notable strength of our model liesin its
exclusive use of routinely available clinical dataobtained within
thefirst day of ICU stay, eliminating the need for additional or
specialized testing. The use of early time-series features to
quantify dynamic changesin key physiological indicatorsallows
real-time risk estimation with high clinical practicality and
timeliness. From a trandational perspective, the model
demonstrated a sensitivity of 77% in identifying high-risk
patients early, providing a valuable window for initiating
preventive interventions. These proactive measures have the
potential to reduce ICU length of stay, lower per-patient
hospitalization costs, and minimize readmission risk, ultimately
interrupting the cascade of adverse outcomes often associated
with postoperative delirium. Finally, by focusing on the first
day of ICU data, the model creates a strategic opportunity for
timely clinical action, supporting the implementation of early,
targeted strategies aimed at mitigating symptom progression
and reducing complication rates.

Our study has several limitations. First, we acknowledge that
our findings may be racially biased against White patients and
the applicability to other populations may be limited dueto the
database being derived from Western countries. Second, the
use of open public databases to obtain data may introduce
missing data bias, which is unavoidable. Third, asthis study is
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retrospective and observational in nature, selection bias is
inevitable. Specifically, the collection of retrospective data
depends on existing medical records that may vary in
completeness and accuracy due to differences in clinical
documentation practices and data entry habits. Such
inconsistencies can result in missing or inaccurate key clinical
information, which in turn affects the quality of data used for
model training. Moreover, retrospective studies lack the ability
to actively intervenein or control the research process, making
it difficult to eliminate the influence of confounding variables.
Thislimitation weakensthe strength of causal inferencesdrawn
from the analysis. Additionally, our model has not yet undergone
prospective clinical validation, which limits its current
applicability in real-world clinical practice. Prospective
validation, idealy conducted under well-controlled tria
conditions and standardized workflows, is essential for
evaluating the predictive performance and robustness of the
model in diverse clinical settings. Without this step, there
remainsarisk that the model’s actual performance may deviate
from the retrospective findings, particularly when applied to
different health care systems or patient popul ations.

Conclusions

We constructed and assessed an effective predictive model
targeting postoperative delirium in patients admitted to the ICU
after cardiac surgery. This model leverages routinely available
patient information from theinitial 24-hour ICU stay to estimate
therisk of delirium throughout the hospitalization period. Given
itsreliance on readily avail abl e early-stage variables, the model
has the potential to serve as a practical and accessible risk
stratification tool for health care professiona sand patientswhen
selecting optimal cardiac treatment strategies.
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