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Abstract
Background: Accurate classification and grading of lymphoma subtypes are essential for treatment planning. Traditional
diagnostic methods face challenges of subjectivity and inefficiency, highlighting the need for automated solutions based on
deep learning techniques.
Objective: This study aimed to investigate the application of deep learning technology, specifically the U-Net model, in
classifying and grading lymphoma subtypes to enhance diagnostic precision and efficiency.
Methods: In this study, the U-Net model was used as the primary tool for image segmentation integrated with attention
mechanisms and residual networks for feature extraction and classification. A total of 620 high-quality histopathological
images representing 3 major lymphoma subtypes were collected from The Cancer Genome Atlas and the Cancer Imaging
Archive. All images underwent standardized preprocessing, including Gaussian filtering for noise reduction, histogram
equalization, and normalization. Data augmentation techniques such as rotation, flipping, and scaling were applied to improve
the model’s generalization capability. The dataset was divided into training (70%), validation (15%), and test (15%) subsets.
Five-fold cross-validation was used to assess model robustness. Performance was benchmarked against mainstream convolu-
tional neural network architectures, including fully convolutional network, SegNet, and DeepLabv3+.
Results: The U-Net model achieved high segmentation accuracy, effectively delineating lesion regions and improving the
quality of input for classification and grading. The incorporation of attention mechanisms further improved the model’s ability
to extract key features, whereas the residual structure of the residual network enhanced classification accuracy for complex
images. In the test set (N=1250), the proposed fusion model achieved an accuracy of 92% (1150/1250), a sensitivity of
91.04% (1138/1250), a specificity of 89.04% (1113/1250), and an F1-score of 90% (1125/1250) for the classification of the
3 lymphoma subtypes, with an area under the receiver operating characteristic curve of 0.95 (95% CI 0.93‐0.97). The high
sensitivity and specificity of the model indicate strong clinical applicability, particularly as an assistive diagnostic tool.
Conclusions: Deep learning techniques based on the U-Net architecture offer considerable advantages in the automated
classification and grading of lymphoma subtypes. The proposed model significantly improved diagnostic accuracy and
accelerated pathological evaluation, providing efficient and precise support for clinical decision-making. Future work may
focus on enhancing model robustness through integration with advanced algorithms and validating performance across
multicenter clinical datasets. The model also holds promise for deployment in digital pathology platforms and artificial
intelligence–assisted diagnostic workflows, improving screening efficiency and promoting consistency in pathological
classification.

JMIR MEDICAL INFORMATICS Zhao et al

https://medinform.jmir.org/2026/1/e72679 JMIR Med Inform 2026 | vol. 14 | e72679 | p. 1
(page number not for citation purposes)

https://medinform.jmir.org/2026/1/e72679


JMIR Med Inform 2026;14:e72679; doi: 10.2196/72679
Keywords: deep learning; lymphoma; U-Net; pathological subtype; automated diagnosis; medical image analysis; artificial
intelligence; AI

Introduction
Lymphoma is a malignant tumor originating in the lymphatic
system, with a steadily increasing global incidence. On the
basis of its clinical features and histological characteristics,
lymphoma can be classified into various subtypes, with
Hodgkin lymphoma and non-Hodgkin lymphoma being the
most prevalent [1,2]. Accurate classification and grading of
lymphoma are critical for clinical treatment and prognostic
evaluation [3]. Conventional diagnostic approaches rely on
the visual examination of tissue sections by pathologists
under a microscope, a process that is labor-intensive and
influenced by subjective judgment. Diagnostic accuracy is
often limited by the pathologist’s expertise and technical
proficiency and by sample quality [4,5]. With the advance-
ments in medical imaging and computational technology,
artificial intelligence (AI) techniques such as deep learning
have been gradually introduced into medical image analysis
[6], showing great potential in automated image segmenta-
tion, feature extraction, and disease diagnosis [7].

Deep learning, particularly convolutional neural networks
(CNNs), has achieved significant success in medical image
analysis, offering new approaches for automated lymphoma
diagnosis [8,9]. Among them, the U-Net architecture, a
specialized form of convolutional neural network, has
demonstrated notable effectiveness in segmentation tasks by
enabling precise delineation of lesion areas and producing
high-quality inputs for subsequent classification and grading
[7,10]. Despite these advancements, several challenges
persist in the automated analysis of lymphoma histopa-
thology images [11]. Minimal morphological differences
between subtypes and the inherent complexity of lesion
regions increase classification difficulty [12]. Moreover, the
performance of existing deep learning models remains highly
dependent on large volumes of annotated data. Limited
datasets and overfitting remain a pressing challenge [13,
14]. Therefore, developing a deep learning model that can
effectively improve the accuracy of lymphoma pathologi-
cal image classification and grading has become a critical
research direction in medical image analysis [15].

Recent studies have shown that pathological diagnosis
of lymphoma is associated with considerable interobserver
variability, with consistency coefficients (κ values) ranging
between 0.55 and 0.70. Misclassification frequently occurs
among morphologically similar subtypes, including follicular
lymphoma (FL) and mantle cell lymphoma (MCL). Previ-
ous research has applied CNNs and other machine learning
models for automatic classification of pathological images,
such as Inception-V3–based models for breast cancer image
analysis or residual network (ResNet)–based models for
predicting lung cancer types and molecular features. These
studies highlight the substantial potential of AI in assist-
ing pathological diagnosis. However, research specifically

focused on the classification of lymphoma pathological
subtypes remains limited and often restricted to individual
subtypes or single-model architectures. There is still a lack
of systematic validation of hybrid deep learning models
for fine-grained classification across multiple lymphoma
subtypes.

This study aimed to achieve automated segmentation,
subtype classification, and grading of lymphoma patho-
logical images by integrating deep learning techniques,
including the U-Net model, attention mechanisms, and
residual networks (ResNet), all of which are established
deep learning approaches [4]. This research has significant
clinical and practical implications. Deep learning models
have the potential to significantly improve the accuracy
of lymphoma pathological diagnosis, reduce human-related
diagnostic errors, and provide more objective and consistent
diagnostic results [16]. Automated systems can also process
large volumes of pathological slides at high speed, offer-
ing an efficient auxiliary tool for pathologists, accelerating
the lymphoma diagnostic workflow, and reducing patient
waiting times. Moreover, precise identification and grad-
ing of lymphoma subtypes may contribute to the develop-
ment of personalized treatment strategies, allowing for more
tailored treatment plans and improving treatment outcomes
and survival rates [17].

The primary objective of this study was to explore and
evaluate the application of deep learning techniques in
classifying and grading lymphoma pathological subtypes. An
automated image analysis system was constructed based on
the U-Net architecture. Through deep learning methods such
as image segmentation, feature extraction, and classification
prediction, this study sought to accurately identify differ-
ent lymphoma subtypes and achieve effective grading. In
addition, this study used cross-validation techniques to assess
the stability and accuracy of the proposed model. A compara-
tive analysis with traditional pathological diagnostic methods
was conducted to verify the model’s clinical feasibility.
Ultimately, this study aimed to provide effective technical
support for the early diagnosis of lymphoma, advancing the
application and development of AI into the field of medical
pathology.

Methods
Data Collection and Preprocessing
A total of 620 high-quality histopathological images
representing 3 major lymphoma subtypes were collected from
The Cancer Genome Atlas (TCGA) and The Cancer Imaging
Archive (TCIA). The number of samples per subtype was
approximately balanced. Inclusion criteria required complete
pathological annotations and clearly defined tissue structures.
Images exhibiting severe artifacts, incomplete labeling, or
low resolution were excluded. All slides were stained with
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hematoxylin and eosin and resized to 512 × 512 pixels
to ensure model compatibility. No stain normalization was
applied.

The image data in this study primarily consisted of
standardized lymphoma tissue section images captured using
high-resolution digital scanners and stored in TIFF or
PNG format. Image preprocessing steps included denoising,
contrast enhancement, and image normalization. Gaussian
filtering was used to reduce noise, whereas histogram
equalization was used to enhance contrast and improve
the visibility of lesion regions. All images were uniformly
cropped and resized to ensure consistent input data quality for
the network. These preprocessing procedures were implemen-
ted to improve data quality and model classification accuracy
(Figure S1 in Multimedia Appendix 1).

Feature Extraction From Image Data
This study used the U-Net architecture to conduct image
segmentation, enabling precise identification of lesion areas
and the generation of high-quality segmentation maps.
Subsequently, ResNet was used for feature extraction and
classification. The residual learning structure in ResNet
enabled the capture of deep pathological features from the
segmented images, thereby improving classification accuracy
and supporting automated grading of lymphoma subtypes.
During training, 5-fold cross-validation was used to optimize
model hyperparameters and reduce the risk of overfitting. The
Adam optimization algorithm was used in conjunction with
a learning rate decay strategy to enhance training stability
and convergence (Figure S2 in Multimedia Appendix 1). The
training dataset was randomly divided into 3 subsets, with
70% allocated to the training set and 15% each allocated to
the validation and test sets.

Model Construction and Training
The model used in this study was based on the standard
U-Net architecture, enhanced by integrating ResNet residual
modules and attention mechanisms. To achieve subtype
classification and grading of lymphoma, the combined use of
U-Net and ResNet allowed for effective image segmentation
and deep feature extraction. The cross-entropy loss function
was used, and the Adam optimizer with an initial learning rate
of 0.001 was adopted to ensure stable model convergence. A
learning rate decay mechanism was applied to progressively
adjust the learning rate, improving model convergence and
training stability (Figure S3 in Multimedia Appendix 1). The
model can automatically extract and learn features of different
lymphoma subtypes and grades from images through this
training process, enabling efficient classification and accurate
grading of new images.

To further justify the selected model architecture, a
comparative evaluation was conducted against several classic
CNN frameworks widely used in medical image analysis
(Table S1 in Multimedia Appendix 1). Fully convolutional
networks offered advantages in simplicity and computational
efficiency but demonstrated limited sensitivity in detecting
small lesions and boundary structures in pathological images.
SegNet achieved reliable semantic segmentation performance

but often resulted in detail loss during the upsampling stage
due to its deconvolutional design. DeepLabv3+, which uses
atrous convolution and multiscale feature fusion, significantly
improved segmentation accuracy but introduced increased
model complexity, computational cost, and reduced inter-
pretability in clinical settings. In contrast, the hybrid deep
learning framework proposed in this study—featuring a
U-Net backbone, ResNet residual connections, and attention
mechanisms—achieved a better balance among segmenta-
tion accuracy, training stability, and interpretability. It is
particularly well-suited for the classification and grading of
lymphoma images characterized by blurry boundaries and
high subtype heterogeneity.

Model Evaluation and Optimization
Model performance was evaluated using multiple metrics,
including accuracy, recall, precision, and F1-score, to assess
classification effectiveness. The receiver operating character-
istic curve and the area under the curve (AUC) were used
to further evaluate the model’s discriminative ability. To
prevent overfitting and enhance generalization capability, the
model incorporated dropout layers and data augmentation
techniques. Augmentation strategies included image rotation,
translation, and flipping, which increased the diversity of
the training data and improved model robustness. During
training, the performance on the validation set was monitored
in real time to identify and preserve the model with the best
generalization ability for subsequent testing (Figure S4 in
Multimedia Appendix 1).
Traditional Pathology Baseline and
Metric Sources
To establish a reproducible baseline for comparison with
traditional pathological diagnosis, we conducted a random-
ized crossover washout reading study. Six board-certified
pathologists with ≥5 years of professional experience were
enrolled. From the 620 cases included in this study, a subset
of 180 (29%) was stratified by subtype, center, and diagnos-
tic difficulty to form the reading set. The reference stand-
ard (ground truth) was determined by 2 senior pathologists
independently, with any discrepancies resolved by a third
expert adjudicator. Each reader completed case interpreta-
tion under 2 study arms: unassisted and AI-assisted (with
U-Net–generated segmentation masks and posterior probabil-
ity and attention cues displayed). The order of arms and
case sequence was computer randomized, with a washout
period of at least 2 weeks, and the readers were blinded to
previous assessments. The primary endpoint was case-level
accuracy. Secondary endpoints included sensitivity, specific-
ity, F1-score, AUC, mean average precision (mAP), weighted
κ, and single-case reading time. Segmentation performance
was evaluated using case-level dice coefficient and inter-
section over union (macro- and microaveraged). Classifica-
tion and grading were assessed at the whole-slide image
level; patch-level probabilities were aggregated via attention
pooling, and classification thresholds were determined on
the validation set using the Youden index and subsequently
fixed for the test set. For statistical analyses, the DeLong
test was used to compare AUCs, whereas the McNemar test
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was applied to paired proportions (accuracy, sensitivity, and
specificity). The 95% CIs were estimated via the bias-correc-
ted and accelerated bootstrap method (1000 iterations), and
Holm-Bonferroni correction was used for multiple compari-
sons.
Image Data Analysis Methods
Image data analysis focused on 2 primary tasks: image
classification and subtype grading. First, deep CNNs based
on U-Net and ResNet were used to analyze histopatholog-
ical slide images. These architectures effectively captured
cellular morphology and tissue-level structural features,
enabling accurate differentiation among lymphoma subtypes.
For subtype grading, the analysis extended beyond sub-
type identification to include the evaluation of lymphocyte
distribution, morphological variation, and lesion heteroge-
neity within the image (Figure S5 in Multimedia Appen-
dix 1). To ensure accuracy in classification and grading,
the image analysis methods integrated traditional medical
imaging analysis techniques with deep learning approaches
using automated and manual annotation strategies.
Statistical Analysis and Result Validation
Following model construction, statistical methods were used
to validate its performance comprehensively. In addition
to conventional classification evaluation metrics, a confu-
sion matrix was used to analyze the model’s prediction
results in detail, identifying errors such as false positives
and false negatives. The average accuracy of the model
was calculated through multiple repeated experiments, and
k-fold cross-validation was used to ensure the robustness of
the results. Furthermore, 2-tailed t tests or ANOVA were
conducted to analyze differences among models, ensuring
that the selected model demonstrated superior performance
in lymphoma subtype classification and grading tasks (Figure
S6 in Multimedia Appendix 1).
Feature Analysis and Subtype
Differentiation
Feature analysis was conducted using the U-Net and ResNet
architectures to extract and differentiate cellular and tissue-
level characteristics from histopathological images. Key
features, including tumor cell morphology, tissue architec-
ture, and cellular distribution, were effectively captured to
support the accurate identification of lymphoma subtypes and
enhance understanding of histological variation among them.

U-Net provided precise segmentation of lesion regions,
whereas ResNet enabled efficient feature extraction and
supported deeper network training. The combination of
these 2 architectures facilitated the recognition of complex

spatial relationships between cells and tissues, contributing to
improved classification accuracy.

In addition, statistical analysis methods are crucial in
evaluating model performance. Metrics such as sensitivity,
specificity, precision, and recall were calculated to com-
prehensively assess the performance of different models
in classifying lymphoma pathological subtypes. Confusion
matrices and receiver operating characteristic curve analyses
were also used to evaluate each model’s predictive effec-
tiveness, providing deeper insights into the strengths and
limitations of the models in identifying various subtypes.
Ethical Considerations
All histopathological images used in this study were obtained
from publicly available databases (TCGA project and TCIA).
All datasets underwent strict anonymization procedures
before public release and complied with the relevant ethical
policies and data sharing regulations. No new patient samples
were collected during the course of this research. There-
fore, additional ethics approval was not required. This study
adhered to the ethical principles outlined in the Declaration of
Helsinki and its subsequent amendments. Access to the image
data is available under the open access policies of TCGA and
TCIA or upon request from the corresponding author.

Results
Effect Analysis of Data Preprocessing
and Image Quality Enhancement
In this study, the quality of lymphoma pathological slide
images directly affected the performance of the deep
learning model. Therefore, multiple image preprocessing
techniques, including Gaussian filtering for noise reduc-
tion, histogram equalization, and image normalization, were
applied to improve image quality. Figure 1 illustrates the
visual differences between raw and preprocessed images.
In the preprocessed images, background noise was substan-
tially reduced, edges appeared sharper, and lesion regions
became more prominent. These enhancements facilitated
clearer visualization of pathological features and improved
input consistency for model training. During subsequent deep
learning model training, the preprocessed images exhibi-
ted higher segmentation accuracy and lower error rates. A
detailed dataset analysis was also conducted to assess sample
distribution. Table 1 presents the number of samples in the
training, validation, and test sets, along with the specific
distribution of each class, providing crucial data support for
subsequent model training.
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Figure 1. Visualization of data preprocessing effects. This figure showcases the effects of different preprocessing stages on the same lymphoma
image slide: (A) the original image; (B) the denoised image processed through Gaussian filtering; (C) the contrast-enhanced image after histogram
equalization; and (D) the normalized image, showing clearer edges and details.

Table 1. Distribution of dataset samples—the number of samples in the training, validation, and test sets along with their corresponding categories.
Dataset Number of immune cell samples Number of epithelial cell samples Number of matrix cell samples Total
Training set 4000 3000 2500 9500
Validation set 500 400 350 1250
Test set 500 400 350 1250
Total 5000 3800 3200 12,000

To evaluate the impact of image preprocessing on model
performance, a comparative experiment was conducted using
both unprocessed and preprocessed images. The results
showed that unprocessed images achieved only 77.12%
(964/1250) accuracy in the segmentation task, with poor edge
detection quality, slower model convergence, and a substan-
tially higher error rate. In contrast, preprocessed images
achieved a segmentation accuracy of 84.4% (1055/1250),
demonstrating clearer delineation of lesion boundaries and
exhibiting a noticeably faster training speed (Table S2
in Multimedia Appendix 1). These findings highlight the
importance of preprocessing steps such as Gaussian filter-
ing, histogram equalization, and normalization in significantly
enhancing segmentation performance.
Performance of the U-Net Model in
Image Segmentation
The application of the U-Net architecture in image seg-
mentation demonstrated strong performance in accurately

segmenting lesion areas in lymphoma pathological slides,
significantly outperforming traditional methods. Figure 2
illustrates the performance of the U-Net model in segmen-
tation tasks. During training and validation, the U-Net
model achieved a segmentation accuracy exceeding 85.04%
(1063/1250) on the test set, with a recall rate of 88%
(1100/1250). These results confirmed the capability of U-Net
in handling complex medical images, particularly lymphoma
pathological slides. Effective segmentation of lesion areas
provided high-resolution input data for downstream tasks,
including subtype classification and pathological grading.
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Figure 2. U-Net image segmentation results. This figure shows the performance of the U-Net model on the image segmentation task for lymphoma
pathological slides. Segmented regions are marked in different colors to distinguish lesion areas from healthy tissue.

Analysis of the Synergistic Effects of
Attention Mechanisms and ResNet
Integrating attention mechanisms with ResNet for feature
extraction and classification markedly enhanced model
performance. Figure 3 shows the results of lymphoma
subtype classification using the combined model. Incor-
porating the attention mechanism enabled the network
to concentrate on diagnostically relevant image regions,

thereby reducing errors in differentiating morphologically
similar subtypes. Meanwhile, the residual structure of
ResNet effectively mitigated the vanishing gradient prob-
lem and facilitated the learning of complex image features.
Compared with traditional CNNs, the classification accu-
racy of the proposed deep learning model increased from
81.04% (1013/1250) to 91.04% (1138/1250), representing an
improvement of approximately 10 percentage points.
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Figure 3. Analysis of attention mechanism and residual network (ResNet) synergy. This figure compares model performance in subtype classification
tasks: (A) results of a traditional convolutional neural network and (B) results after incorporating attention mechanisms and ResNet, showing
significant improvement in accuracy. CLL: chronic lymphocytic leukemia; FL: follicular lymphoma; MCL: mantle cell lymphoma.

Evaluation of Model Stability and
Generalization Capability
To evaluate the stability and generalization capability of the
model, 5-fold cross-validation was performed. The model
demonstrated high consistency across the 5 independently
partitioned training-validation subsets with only minor

fluctuations in accuracy (Figure 4). During cross-valida-
tion (N=10,750 samples), the model achieved an average
accuracy of 90% (9675/10,750), confirming its robustness
and reliability. Even under small-sample conditions, the
model maintained high predictive accuracy, indicating good
generalization ability and strong resistance to overfitting.

Figure 4. Analysis of model stability and generalization capability. This figure shows the accuracy changes during 5-fold cross-validation. The blue
line represents the training set, and the red line represents the validation set. The figure shows stable and minimal fluctuations in model performance
across different data splits.
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Analysis of Lymphoma Subtype
Classification Results
To evaluate the performance of the deep learning model in
lymphoma subtype classification, classification results on the
test set were analyzed using accuracy, precision-recall curves,
and mAP as evaluation metrics. The results showed that the
model achieved a classification accuracy of 98% (1225/1250)
when distinguishing FL, chronic lymphocytic leukemia, and

MCL. Additionally, the precision-recall curve demonstra-
ted a high AUC, and the mAP reached 97%, indicating
strong overall classification performance. Multiclass analysis
revealed that most classification errors occurred between
subtypes with similar morphological characteristics, such as
FL and MCL (Figure 5). The incorporation of a feature
enhancement module significantly improved the model’s
ability to extract critical features from key regions, leading
to a nearly 5% increase in classification performance.
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Figure 5. Evaluation of lymphoma subtype classification performance. This figure shows the model’s performance in subtype classification,
including (A) accuracy, (B) precision-recall curve, and (C) mean average precision (mAP), reflecting comprehensive performance in multiclass
classification tasks. CLL: chronic lymphocytic leukemia; FL: follicular lymphoma; MCL: mantle cell lymphoma.
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Under 5-fold cross-validation (total sample size: n=10,750),
the model achieved an average classification accuracy of 90%
(9675/10,750; SD 1.9%), an F1-score of 90% (9673/10750;
SD 2.3%), and an AUC of 0.95 (SD 0.015) across the 3
lymphoma subtypes, all statistically significant (=0.004). In
terms of subtype performance, the model demonstrated the
highest sensitivity for FL at 94.2% (393/417), followed by
chronic lymphocytic leukemia at 90.6% (378/417), whereas
the performance for MCL was relatively lower at 87.3%
(363/416), which may be attributed to the blurred bounda-
ries and higher heterogeneity typically observed in MCL
images. As this study primarily focused on model architec-
ture and performance evaluation, interpretability tools such
as gradient-weighted class activation mapping were not
incorporated. Future work will include model interpretability
analyses to enhance its clinical applicability.

To evaluate the superiority of the proposed model
across different deep learning architectures, we systemati-
cally compared the fusion model with several mainstream
CNN-based frameworks (Table S3 in Multimedia Appen-
dix 1). The results showed that traditional fully convolu-
tional networks and SegNet underperformed in the detection
of small lesions and boundary delineation, with overall
accuracies of 81.04% (1013/1250) and 83.52% (1044/1250),
respectively—significantly lower than those of U-Net and
its improved variants (P=0.006). DeepLabv3+ achieved
improved segmentation accuracy (dice coefficient=83.9%)
but suffered from increased training complexity and limited
interpretability. In contrast, U-Net demonstrated stable
performance in both segmentation and classification tasks
(dice coefficient=85.5%; accuracy=1099/1250, 87.92%). The
further incorporation of attention mechanisms and ResNet led
to continuous performance gains, and the final fusion model
achieved the best results in segmentation dice coefficient,
classification accuracy, and AUC (dice coefficient=89.7%;
accuracy=1150/1250, 92%; AUC=0.95), with statistically
significant differences (P<). These findings indicate that the
proposed fusion model provides a significant advantage in
multisubtype classification and grading tasks.
Comparative Analysis With Traditional
Pathological Diagnosis Methods
Compared to traditional pathologists’ manual slide review
methods, the deep learning model in this study demonstrated

significant advantages in classification and grading tasks
of lymphoma pathology images. Figure S7 in Multimedia
Appendix 1 shows a comparison of accuracy between the
deep learning model and the average accuracy of pathologists.
Under conditions involving small sample sizes or diagnos-
tically complex subtypes, the model maintained consistent
performance and achieved higher classification accuracy
than pathologists. Particularly in images with rich details
or blurred edges, the deep learning model reduced human
error and improved diagnostic efficiency, highlighting its
potential application in clinical practice. To ensure fairness
in comparison, all participating pathologists were mid- to
senior-level professionals with more than 5 years of diagnos-
tic experience in hematopathology (Figure S7 in Multime-
dia Appendix 1). Diagnoses were conducted in accordance
with the World Health Organization classification guide-
lines and the expert consensus on pathological diagnosis
of lymphoma. Each pathologist independently reviewed the
same set of blinded slide images, and no communication was
allowed during the review process. Final diagnostic results
were determined through majority consensus. This selection
protocol was designed to reflect the average diagnostic level
of experienced pathologists in routine clinical practice.
Model Optimization and Accuracy
Improvement Strategies
To improve model accuracy and stability, a series of
optimization strategies were implemented, including learning
rate decay, data augmentation, and dropout regularization,
which significantly improved model performance. Figure
6 illustrates the performance changes of the model under
different optimization strategies. The model gained greater
diversity during training through the use of data augmen-
tation, effectively improving its generalization capability.
The incorporation of dropout layers effectively mitigated
overfitting by reducing model reliance on specific neurons,
allowing the network to maintain high accuracy on new
datasets.
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Figure 6. Effects of model optimization on accuracy improvement. This figure illustrates the impact of optimization strategies (learning rate decay,
data augmentation, and dropout regularization) on model training: (A) changes in the loss function before and after optimization and (B) changes in
accuracy before and after optimization, showing improved accuracy.

Discussion
Principal Findings
This study explored the application of deep learning
techniques, particularly the U-Net model, in classifying
and grading lymphoma pathological subtypes. The results
showed that deep learning models significantly improved the
efficiency and accuracy of automated lymphoma diagnosis.
By integrating U-Net for image segmentation with ResNet for
feature extraction, a robust diagnostic system was developed
capable of differentiating Hodgkin lymphoma from non-
Hodgkin lymphoma and accurately predicting lesion grades.
Notably, the proposed deep learning model demonstrated
significant advantages in segmentation accuracy, classifica-
tion accuracy, and model stability. These results validated
the potential of deep learning in medical image analysis,
especially in disease diagnosis and clinical decision support
systems.

U-Net exhibited outstanding performance in image
segmentation tasks. Its precision in delineating lesion regions
highlighted its ability to process complex pathological
features. Lymphoma lesion regions often display irregular
morphology and poorly defined boundaries, which limit the
effectiveness of conventional manual segmentation methods.
U-Net, through the hierarchical feature extraction capabilities
of CNNs [15], enabled automated and accurate segmentation
of lesion areas while minimizing subjective variability. The
model achieved an accuracy exceeding 85.04% (1063/1250)
on the test set, significantly improving the efficiency of lesion
recognition and extraction [9].

However, despite the excellent performance of the
deep learning model, several challenges were encountered,
particularly regarding data scarcity and annotation quality.
The acquisition of pathological images of lymphoma remains
difficult, particularly for high-quality annotated data, which

may impact model training effectiveness and generalization
ability [7]. To address this issue, this study used strategies
such as data augmentation and cross-validation [18] to
improve the robustness and accuracy of the model. Neverthe-
less, inconsistencies in data quality, particularly the subjective
differences among pathologists during annotation [19], may
still affect model training and prediction. Future work could
benefit from the development of standardized annotation
protocols and the construction of larger, high-quality datasets
to further refine model performance.

To optimize model accuracy and stability, several
techniques were incorporated, including attention mecha-
nisms, ResNet-based residual learning, and comprehensive
data augmentation. The use of attention modules enabled
the model to more precisely focus on diagnostically relevant
regions within the pathological images, thereby reducing
the influence of irrelevant features and enhancing subtype
classification accuracy. ResNet’s residual structure effectively
mitigated the common issue of vanishing gradients in deep
networks, enhancing the model’s ability to learn complex
pathological features. These optimization strategies signif-
icantly improved the model’s performance in lymphoma
subtype classification, achieving a classification accuracy
of 92% (1150/1250) and a grading accuracy of 89.04%
(1113/1250).

Compared to traditional pathological diagnostic methods,
deep learning models offer distinct advantages. Traditional
pathology relies on pathologists’ experience and techni-
cal expertise, making the diagnostic process vulnerable
to subjectivity and relatively inefficient when analyzing
complex histological images [20]. In contrast, deep learn-
ing models can process large volumes of images quickly
and provide efficient and objective diagnostic results [21].
Comparative analysis with manual slide review by patholo-
gists revealed that deep learning models exhibited higher
accuracy in handling complex and detail-rich images.
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Specifically, deep learning models reduced human error and
improved diagnostic efficiency in lesion segmentation and
subtype differentiation [6,22,23].

Despite the robust performance of deep learning mod-
els, several technical limitations remain. First, deep learning
models’ “black-box” nature presents a significant challenge,
especially in clinical settings, where physicians tend to favor
interpretable diagnostic methods. Future research should
focus on enhancing model interpretability by using visualiza-
tion techniques and traceability analysis, allowing clinicians
to better understand the rationale behind model predictions.
Second, although the model achieved high accuracy in
feature extraction and classification tasks, minor errors may
still occur in subtype classification and grading, particularly
when morphological differences between subtypes are subtle.
Improving the model’s performance in analyzing complex
pathological images remains a key direction for future
research.

In summary, this study confirmed the immense potential
of deep learning technologies in lymphoma pathological
image analysis and provides robust technical support for the
automated diagnosis of clinical lymphoma. With ongoing
advancements in computational methods, the application of
deep learning in medical imaging analysis will become more
extensive and profound. Such progress will play a vital
role in developing personalized treatment plans, evaluating
therapeutic efficacy, and improving patient survival rates,
thereby providing substantial clinical value. The successful
application of the proposed approach not only accelerated the
diagnostic workflow but also provided clinicians with precise
and efficient diagnostic tools, promoting greater automation
and enhanced analytical capability in pathological image
analysis.
Conclusions
This study demonstrated the significant potential of deep
learning techniques, particularly the U-Net model, in
lymphoma pathological subtype classification and grading.
By combining U-Net for image segmentation and ResNet
for feature extraction, an efficient and accurate diagnostic
framework was developed capable of distinguishing Hodgkin
lymphoma from non-Hodgkin lymphoma and precisely
predicting the grades of lesions. The proposed model
achieved strong performance in segmentation accuracy,
classification accuracy, and model stability, validating the
potential of deep learning technologies in medical imaging
analysis, especially in disease diagnosis and clinical decision
support.

As the core of this research, the U-Net model exhibi-
ted exceptional performance in segmenting pathological
regions, effectively addressing challenges such as irregular
morphology and blurred boundaries in lymphoma tissues.
These capabilities significantly improved segmentation
efficiency and accuracy, providing high-quality input data
for subsequent classification and grading tasks. Addition-
ally, integrating attention mechanisms and ResNet further
optimized feature extraction and classification capabilities,
achieving a classification accuracy of 92% (1150/1250) and a
grading accuracy of 89.04% (1113/1250).

Despite the encouraging results, certain limitations remain.
The limited availability of annotated lymphoma pathological
images and inconsistencies in labeling quality may affect the
model’s training effectiveness and generalizability. Although
data augmentation and cross-validation were used to improve
robustness, variability in annotation and the scarcity of
high-quality labeled data continue to pose challenges. In
addition, the deep learning model’s “black-box” nature limits
its interpretability, which affects clinical acceptance and the
transparency of decision-making. Moreover, the dataset used
in this study was primarily derived from publicly available
databases with a relatively limited sample size and with-
out multicenter or real-world clinical validation, which may
introduce sampling bias and increase the risk of overfit-
ting. The model also exhibited relatively lower recognition
performance for morphologically ambiguous subtypes such
as MCL, suggesting that further optimization is needed to
address highly heterogeneous lesions. Future work should
focus on expanding the dataset with multicenter cohorts,
integrating the model into digital pathology workflows as
a clinical decision support tool, enhancing interpretability
through visualization-based modules, and addressing ethical
and regulatory challenges to ensure the safe and responsible
application of AI technologies in health care settings.

In summary, this study demonstrated the outstanding
performance of U-Net–based deep learning models in
analyzing lymphoma pathological images. These techniques
significantly improved diagnostic efficiency and accuracy
while offering clinicians effective and reliable decision
support tools. As AI technology continues to evolve,
deep learning models are expected to play an increasingly
important role in medical imaging analysis, offering robust
support for developing personalized treatment plans and
enhancing patient outcomes, thereby advancing medical
imaging analysis toward greater automation and intelligence
as shown in Multimedia Appendix 2.
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