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Abstract
Background: Deep learning models have shown strong potential for automated fracture detection in medical images.
However, their robustness under varying image quality remains uncertain, particularly for small and subtle fractures, such
as scaphoid fractures. Understanding how different types of image perturbations affect model performance is crucial for
ensuring reliable deployment in clinical practice.
Objective: This study aimed to evaluate the robustness of a deep learning model trained to detect scaphoid fractures in
radiographs when exposed to various image perturbations. We sought to identify which perturbations most strongly impact
performance and to explore strategies to mitigate performance degradation.
Methods: Radiographic datasets were systematically modified by applying Gaussian noise, blurring, JPEG compression,
contrast-limited adaptive histogram equalization, resizing, and geometric offsets. Model accuracy was evaluated across
different perturbation types and levels. Image quality was quantified using peak signal-to-noise ratio and structural similarity
index measure to assess correlations between degradation and model performance.
Results: Model accuracy declined with increasing perturbation severity, but the extent varied across perturbation types.
Gaussian blur caused the most substantial performance drop, whereas contrast-limited adaptive histogram equalization
increased the false-negative rate. The model demonstrated higher resilience to color perturbations than to grayscale degra-
dations. A strong linear correlation was found between peak signal-to-noise ratio–structural similarity index measure and
accuracy, suggesting that better image quality led to improved detection. Geometric offsets and pixel value rescaling had
minimal influence, whereas resolution was the dominant factor affecting performance.
Conclusions: The findings indicate that image quality, especially resolution and blurring, substantially influences the
robustness of deep learning–based fracture detection models. Ensuring adequate image resolution and quality control can
enhance diagnostic reliability. These results provide valuable insights for designing more accurate and resilient medical
imaging models under real-world variability.
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Introduction
Significant advances in computer vision have led to
remarkable improvements in deep neural network (DNN)
performance on tasks such as medical image classifica-
tion [1]. Despite these achievements, DNN-based systems
exhibit limited robustness compared with human percep-
tion, especially in the context of image perturbations and
corruption [2]. Adversarial attacks can cause substantial
misclassifications, and even minor noise can adversely affect
performance [3-5]. Nevertheless, state-of-the-art classifiers
appear to exhibit some ability to overcome random noise [6].

In real-world medical imaging, DNN model robustness
is critical because low-quality images and noise are not
uncommon; these issues include radiographic underexposures
and motion artifacts as well as downstream processing or
transfer distortions that can alter image fidelity and affect
artificial intelligence (AI) performance [7,8]. In addition,
real-world clinical workflows may involve low-resolution
screen recapturing or smartphone-captured radiographs in
urgent or resource-limited settings, which introduce com-
pounded degradations, such as resizing, compression, and
display-related artifacts [9]. Our previous work on a DNN
model that detected both visible and occult scaphoid fractures
demonstrated that it was possible to reliably detect fractures
of small bones and to assist in the radiographic detection
of occult fractures that are not visible to human observers
[10]. This experience indicated that image preprocessing, file
formatting, and data storage could negatively impact model
performance. We discovered that image processing techni-
ques introduced noise into input files, potentially mislead-
ing the DNN model. Such noise, often imperceptible to the
human eye, can significantly affect model performance and
potentially lead to incorrect diagnoses [11]. Consequently,
evaluation of performance is vital in convolutional neural
network (CNN)–based models that process noisy images;
this evaluation poses frequent challenges in clinical settings.
Prior studies have revealed that neural networks are most
accurate when the data to be classified exhibit quality similar
to that of the model training data; it was recommended that
noise be injected into the training data to increase model
robustness [12]. However, the addition of many possible
noises to a training dataset is both computationally expensive
and impractical. To the best of our knowledge, no study
has investigated the impacts of different types of noise on
neural networks designed for fracture classification when
radiographs serve as inputs.

This study investigated the robustness of our CNN-based
scaphoid fracture classification model when various types
of image noise were present. To comprehensively evaluate
model performance, we simulated real-world conditions that
yield low-quality clinical images. Using fine-tuning techni-
ques to create noisy samples, we sought to enhance model
performance under noisy or degraded conditions, thereby
mitigating the adverse effects of image corruption [7].
Additionally, we examined the impacts of specific forms
of image degradation on model performance; we explored
particular model vulnerabilities that might warrant further
refinement. Our goals were to ascertain model accuracy when
processing low-quality clinical images and to identify the
types of noise that most confounded the model, thereby
providing valuable insights to aid the development of more
resilient DNN-based medical image classifiers appropriate for
real-world applications.

Methods
Ethical Considerations
The study protocol was approved by the institutional review
board of Chang Gung Memorial Hospital (202202256B0).
Scaphoid Fracture Classification Model
As previously described in our earlier work [10], the scaphoid
fracture classification model was built using an Efficient-
NetB1 [13] backbone and 240×240-pixel red, green, and blue
(RGB) images with a classification threshold of 0.5. In a
study by Yoon et al [10], the model was originally trained and
validated using 3991 scaphoid fracture radiographs and 5542
normal scaphoid radiographs.

In this study, we adopted the same model architecture as in
the study by Yoon et al [10] and initialized the network with
the finalized pretrained weights from that study, as shown
in Figure 1. We then further fine-tuned this model using
the 5286 training radiographs from the dataset described in
the “Dataset and Preprocessing” section and evaluated it on
an independent test set. Fine-tuning was performed using
the AdamW optimizer, with appropriate adjustments to the
learning rate, weight decay, and batch size. The learning rate
was reduced if the validation loss failed to improve over 6
epochs, and training was stopped early when model perform-
ance did not increase further after 15 epochs.
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Figure 1. Complete pipeline for inference of a scaphoid fracture, including fracture (red box) and occult fracture. This report solely focuses on the
performance of the fracture model.

Dataset and Preprocessing
The scaphoid fracture classification model used in this
study was fine-tuned and evaluated using 5954 radiographs
stored in Chang Gung Memorial Hospital in Taiwan. Of
these radiographs, 1483 were of fractured scaphoids, and
the remaining 4471 were of normal scaphoids. Images were
captured by commercially available x-ray machines from
multiple manufacturers. All radiographs were reviewed by 3
experienced radiologists and labeled as fractured or normal.
This dataset is distinct from the dataset used in our previous
work [10], in which the model was originally developed using
3991 fracture and 5542 normal radiographs. In this study,
we adopted the same model architecture as in the study by
Yoon et al [10], initialized the network with the finalized
pretrained weights from that study, and further fine-tuned the
model using the 5286 training images described below before
evaluating it on an independent test set.

The training dataset consisted of 5286 images, and the
test dataset comprised 668 images. A total of 28 images
were excluded for reasons including anatomical anomalies
secondary to arthritis (12 images), 3 due to unclear laterality,
2 due to wrong-sided imaging, image artifacts introduced
by the hardware (1 image), and imaging findings of likely
previous fractures or chronic nonunion (10 images). Thus,
the final test dataset contained 640 images. The images
varied in size and position, but all were 12-bit grayscale

images of posteroanterior views of the wrist. Most images
were rectangular, with widths ranging from 1000 to 1600
pixels, and heights ranging from 1600 to 2200 pixels.
If the photometric interpretation of an image was MONO-
CHROME1, the image was converted to MONOCHROME2.
The scaphoid was isolated from each hand radiograph using
a bounding box generated by a separate scaphoid detection
model. This detector (not to be confused with the scaphoid
fracture classifier) was not the focus of this study because its
performance is robust against common perturbations.
Rescaling Images to 8-Bit Depth
All radiographs were 12-bit grayscale posteroanterior wrist
views that varied in terms of size and position, with widths
between 1000 and 1600 pixels, and heights between 1600 and
2200 pixels. The images were rescaled to 8-bit grayscale and
compiled into RGB images using the value of interest (VOI)
lookup table and windowing operations that were also used
during model training.

The DICOM images were stored in 12-bit grayscale, but
the model accepted only 24-bit RGB (color) images. Thus,
the images were first rescaled to 8-bit grayscale (with pixel
values ranging from 0 to 255) and then compiled into RGB
images for interpretation. This rescaling process was based
on the maximum and minimum values of the image, rather
than the actual bit depth. A VOI lookup table and window-
ing operations were applied to all images to adjust the pixel
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values based on the DICOM VOI LUT and windowing
tags (pydicom. pixel_data_handlers.apply_voi_lut, version
1.4, 2022).

Differences emerge when images do not contain the lowest
and highest pixel values. For 12-bit grayscale images, these
pixel values are 0 and 4095, respectively. The resulting
difference can brighten or darken the entire image. Further-
more, the use of a VOI lookup process may change the
brightness and contrast. These differences are minor and
usually imperceptible to the human eye.
Generating Datasets for Noise Testing

Overview
To assess model performance in the presence of distortions,
we generated several low-quality datasets using different

noise perturbations. First, we read the test images using
method 1. Images were cropped to the scaphoid regions
demarcated by the bounding boxes, resized to 240×240
pixels, converted to 8-bit grayscale, and saved in PNG format.
We refer to these baseline images (without noise) as “clean”
hereafter.

To systematically evaluate the robustness of our scaphoid
fracture classification model, we created multiple “noisy” or
“degraded” datasets by applying a variety of image perturba-
tions to our clean baseline test set of 640 scaphoid radio-
graphs. Each perturbation type and severity level corresponds
to a row in Table 1, which lists the name of the treatment,
the number of images, and the specific operation performed.
Next, we describe the main categories of perturbations and
their implementations.

Table 1. Information on all datasets, including the datasets from which they were modified, sample counts, and methods of modification.
Treatment name Modified from N Operation
Clean dataset Original DICOM file 640 Read original DICOM file with (1)
Gaussian blur_0.5 Scaphoid 640 Apply Gaussian blur (σ=0.5) to the cropped scaphoid
Gaussian blur_1.0 Scaphoid 640 Apply Gaussian blur (σ=1.0) to the cropped scaphoid
Gaussian blur_1.5 Scaphoid 640 Apply Gaussian blur (σ=1.5) to the cropped scaphoid
Gaussian blur_2.0 Scaphoid 640 Apply Gaussian blur (σ=2.0) to the cropped scaphoid
Gaussian blur_2.5 Scaphoid 640 Apply Gaussian blur (σ=2.5) to the cropped scaphoid
Gaussian blur_3.0 Scaphoid 640 Apply Gaussian blur (σ=3.0) to the cropped scaphoid
Gaussian noise (RGB)_1 Scaphoid 640 Add RGB Gaussian noise with SD 1.00 to the cropped scaphoid
Gaussian noise (RGB)_2 Scaphoid 640 Add RGB Gaussian noise with SD 2.00 to the cropped scaphoid
Gaussian noise (RGB)_3 Scaphoid 640 Add RGB Gaussian noise with SD 3.00 to the cropped scaphoid
Gaussian noise (RGB)_4 Scaphoid 640 Add RGB Gaussian noise with SD 4.00 to the cropped scaphoid
Gaussian noise (RGB)_5 Scaphoid 640 Add RGB Gaussian noise with SD 5.00 to the cropped scaphoid
Gaussian noise (RGB)_6 Scaphoid 640 Add RGB Gaussian noise with SD 6.00 to the cropped scaphoid
Gaussian noise (grayscale)_1 Scaphoid 640 Convert image to grayscale, add Gaussian noise with SD 1.00 to the

cropped scaphoid
Gaussian noise (grayscale)_2 Scaphoid 640 Convert image to grayscale, add Gaussian noise with SD 2.00 to the

cropped scaphoid
Gaussian noise (grayscale)_3 Scaphoid 640 Convert image to grayscale, add Gaussian noise with SD 3.00 to the

cropped scaphoid
Gaussian noise (grayscale)_4 Scaphoid 640 Convert image to grayscale, add Gaussian noise with SD 4.00 to the

cropped scaphoid
Gaussian noise (grayscale)_5 Scaphoid 640 Convert image to grayscale, add Gaussian noise with SD 5.00 to the

cropped scaphoid
Gaussian noise (grayscale)_6.0 Scaphoid 640 Convert image to grayscale, add Gaussian noise with SD 6.00 to the

cropped scaphoid
JPEG compression_10 Scaphoid 640 Degrade scaphoid images with compression strength=10 (slightest)
JPEG compression_30 Scaphoid 640 Degrade scaphoid images with compression strength=30
JPEG compression_50 Scaphoid 640 Degrade scaphoid images with compression strength=50
JPEG compression_70 Scaphoid 640 Degrade scaphoid images with compression strength=70
JPEG compression_90 Scaphoid 640 Degrade scaphoid images with compression strength=90 (strongest)
CLAHEa_1 Scaphoid 640 Apply CLAHE (clip limit=1.0, tile grid size=[8, 8]) to the cropped

scaphoid
CLAHE_2 Scaphoid 640 Apply CLAHE (clip limit=2.0, tile grid size=[8, 8]) to the cropped

scaphoid
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Treatment name Modified from N Operation
CLAHE_3 Scaphoid 640 Apply CLAHE (clip limit=3.0, tile grid size=[8, 8]) to the cropped

scaphoid
CLAHE_4 Scaphoid 640 Apply CLAHE (clip limit=4.0, tile grid size=[8, 8]) to the cropped

scaphoid
CLAHE_5 Scaphoid 640 Apply CLAHE (clip limit=5.0, tile grid size=[8, 8]) to the cropped

scaphoid
Resize_400 Whole image 640 Resize whole images by width=400 while keeping the aspect ratio and

crop out the scaphoid by projecting the recorded bounding box
coordinates

Resize_600 Whole image 640 Resize whole images by width=600 while keeping the aspect ratio and
crop out the scaphoid by projecting the recorded bounding box
coordinates

Resize_800 Whole image 640 Resize whole images by width=800 while keeping the aspect ratio and
crop out the scaphoid by projecting the recorded bounding box
coordinates

Resize_1000 Whole image 640 Resize whole images by width=1000 while keeping the aspect ratio and
crop out the scaphoid by projecting the recorded bounding box
coordinates

Resize_1200 Whole image 640 Resize the whole images by width=1200 while keeping the aspect ratio
and crop out the scaphoid by projecting the recorded bounding box
coordinates

Resize_1400 Whole image 640 Resize whole images by width=1400 while keeping the aspect ratio and
crop out the scaphoid by projecting the recorded bounding box
coordinates

Geometrics_1 Whole image 5120 Modify the center point of bounding box (bbox) x,y coordinates by
−20% and 0% and 20% of bbox length

Geometrics_2 Whole image 5120 Modify the center point of bbox x,y coordinates by −10% and 0% and
10% of bbox length

Geometrics_3 Whole image 10,240 Modify the 4 bbox x,y coordinates (xmin, xmax, ymin, ymax) by −10%
and 10% of bbox length

Geometrics_4 Whole image 10,240 Modify the 4 bbox x,y coordinates (xmin, xmax, ymin, ymax) by −5%
and 5% of bbox length

12-bit-rescale_1 Original DICOM file 640 Read original DICOM file using method (2) and crop the scaphoid with
the recorded bbox coordinates

12-bit-rescale_2 Original DICOM file 640 Read original DICOM file using method (2) and crop the scaphoid with
the detector

Screenshot_MicroDicom_1 Original DICOM file 640 Read DICOM files using MicroDicom with the default settings,
screenshoot the whole image at a resolution of 550×780, and crop the
scaphoid with the detector

Screenshot_MicroDicom_2 Original DICOM file 640 Read DICOM files using MicroDicom with the default settings, enter
fullscreen mode, screenshoot the whole image at a resolution of
900×1050 and crop the scaphoid with the detector

Screenshot_ImageJ Original DICOM file 640 Read DICOM files using ImageJ, adjust contrast to 12-bit, screenshoot
the whole image at a resolution width of 600 while retaining the height-
width ratio, and crop the scaphoid with the detector

aCLAHE: contrast-limited adaptive histogram equalization.

Clean Dataset
We refer to the original 640 cropped scaphoid images (taken
directly from DICOM files and converted to 8-bit depth) as
the “clean” dataset (row 1 in Table 1). This set serves as our
baseline for comparison.

Gaussian Blur
We simulated blur by convolving each scaphoid region
with a Gaussian kernel using SDs (σ) ranging from 0.5 to
3.0 (rows 2-7 in Table 1). Specifically, we used a Python

image-augmentation library (eg, imgaug; Python Software
Foundation) to apply GaussianBlur(σ=x). Each σ setting
generated a separate dataset of 640 images.

Gaussian Noise
For grayscale noise (rows 8-13 in Table 1), we converted
each cropped scaphoid image to 8-bit grayscale, then added
random Gaussian noise with SD values in the set {1, 2, 3, 4,
5, 6}. The resulting noised images were reconverted to RGB
(by replicating the grayscale channel 3 times) to match the
model’s 3-channel input requirement.
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For color (RGB) noise (rows 14-19 in Table 1), we
similarly added Gaussian noise to the 3 RGB channels,
resulting in “colored” noise. SD values were identical (1-6).
Each level produced 640 modified images.

JPEG Compression
We degraded the quality of the cropped scaphoid images by
JPEG compression (rows 20-24 in Table 1), with a com-
pression strength of 10, 30, 50, 70, and 90 (higher values
indicating more severe compression in our chosen library).
Each compression level formed a dataset of 640 images.

This process simulates the impact of lossy image storage
on fracture detection performance.

Contrast-Limited Adaptive Histogram
Equalization
Contrast-limited adaptive histogram equalization (CLAHE;
rows 25-29 in Table 1) enhances local contrast in radiographs,
potentially exaggerating edges and intensifying noise. We
generated 5 datasets by applying OpenCV’s createCLAHE()
with cliplimit in {1.0, 2.0, 3.0, 4.0, 5.0} and tileGrid-
Size=(8,8). Each CLAHE setting yielded 640 images.

Resizing Whole Images
Before cropping the scaphoid region, we resized the entire
original wrist radiograph (rows 30-35 in Table 1) to widths
of 400, 600, 800, 1000, 1200, or 1400 pixels (preserving
the aspect ratio), then reapplied our scaphoid bounding box
coordinates to crop out the scaphoid. Finally, the cropped
regions were resized to 240×240 pixels for model input. This
procedure mimics variations in image resolution and scaling
during clinical acquisition or display.

Geometric Offsets
To examine the robustness of our model to bounding
box inaccuracies, we systematically shifted or distorted the
bounding box coordinates by ±5%, 10%, or ±20% of the
bounding box size. This sometimes resulted in only partial
scaphoid capture. Four separate datasets (Geometrics_1 to
Geometrics_4) covered different offset ranges (rows 36-39 in

Table 1). Each row includes multiple transformations, so the
total number of images can exceed 640.

Twelve-bit Rescaling
Instead of converting the DICOM images with our typical
method (method 1), we used an alternative approach (method
2) that directly scales 12-bit raw pixel values (0-4095) into
8-bit (0-255). We generated 2 variations: (1) 12-bit-rescale_1:
recorded bounding box coordinates were applied to these
rescaled images; (2) 12-bit-rescale_2: we reran the scaphoid
detection model on these rescaled images to obtain new
bounding boxes.

Screenshot Datasets
We opened the original DICOM files in different DICOM
viewing software (eg, MicroDicom; ImageJ developed by
National Institutes of Health and the Laboratory for Opti-
cal and Computational Instrumentation), adjusted the default
display or resolution, and took screenshots of the entire wrist
X-ray. Screen resolutions varied (eg, 550×780 or 900×1050;
rows 42-44 in Table 1). We then cropped out the scaphoid
region using our detection model, resizing the final images to
240×240. Each screenshot setting introduced different display
parameters, simulating suboptimal clinical scenarios where
images may be shared or interpreted via screenshots instead
of original DICOM files.

Each of these modifications produced a new dataset of
640 images (except when multiple bounding box transforma-
tions were applied, resulting in a large number of images).
Collectively, these datasets allowed us to evaluate the effects
of image degradations on the classification model’s perform-
ance. Table 1 provides a concise summary of all transforma-
tions, whereas Multimedia Appendix 1 contains more detailed
code snippets and pseudocode for each operation.

Additionally, 5 datasets were produced using the rescale
method or by capturing screenshots from the original DICOM
files on image viewers. Figure 2 and Table 1 detail all
44 perturbations. The details of noise introduction into the
dataset are described in Multimedia Appendix 1.
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Figure 2. Flowchart of the pipeline used to generate clean and noisy datasets. CLAHE: contrast-limited adaptive histogram equalization;

Image Quality Assessment
The peak signal-to-noise ratio (PSNR) and the structural
similarity indexing method (SSIM) [14,15] were used as
image quality assessment methods when gauging alterations
in images. PSNR is a widely used metric that assesses the
fidelity of an image compared with its original or uncom-
pressed version. PSNR quantifies the difference between 2
images by calculating the ratio of the maximum possible
power of the signal (the image) to the power of the noise
(the error that is introduced). A higher PSNR value indicates
better image quality because less noise is introduced during
changes. In contrast, SSIM is a more advanced metric for
measuring image quality that considers structural informa-
tion, luminance, and contrast when comparing 2 images.
SSIM calculates local similarities between the 2 images and
combines them into a single score, ranging from −1 to 1,
where a higher value indicates greater similarity between
the images. Both PSNR and SSIM values were calcula-
ted using TensorFlow image module (TensorFlow Module:
tf.image), which allows efficient and accurate computations
of both metrics. However, neither PSNR nor SSIM can
be used for geometric transformations, such as affine and
rotational adjustments, because both rely on pixel-by-pixel

comparisons. Such comparisons become less meaningful
when the spatial arrangement of image content is altered
via geometric transformations. Consequently, datasets with
modifications to the labeled scaphoid regions were excluded
from comparison to maintain assessment integrity.

We calculated and compared PSNR and SSIM values
for the clean and noisy images. Importantly, neither
assessment is amenable to geometric transformations,
such as affine and rotational adjustments. Therefore,
the following datasets with modifications to the labeled
scaphoid regions were excluded from the PSNR and SSIM
comparisons: the 4 geometric datasets, the 12-bit rescale_2
datasets, and the 3 screenshot datasets. Both PSNR and
SSIM were calculated using TensorFlow image functions
(PSNR and SSIM).
Model Evaluation and Performance
Metrics
The scaphoid fracture classification model was evaluated
by analyzing its performance on various test datasets that
included clean images and distorted images with diverse
noise levels. Performance metrics, including model accuracy,
sensitivity, specificity, and F1-score, were calculated by
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comparing the model predictions with ground truth labels
provided by experienced orthopedic and hand surgeons.
Robustness Against Image Quality
Degradation
To assess model robustness against image quality degrada-
tion, model performances on distorted images were compared
with model performances on clean images. This compari-
son sought to estimate fracture classification accuracy when
perturbations were present, offering insights into potential
real-world applications of the model and its robustness when
image quality varies in clinical settings.
The Environment
Model inferences were executed on Linux Ubuntu 18.04 LTS
(GPU: NVIDIA GeForce RTX 3080 (10 GB); Python version
3.7.13). Implementation was conducted with a TensorFlow
backend and TensorFlow version 2.9.1.

Results
Performance of the Deep Learning Model
With Varied Perturbations
We investigated the efficacy of a deep learning model
designed to detect scaphoid fractures in radiographs,

specifically when image quality had been deliberately
compromised by adding perturbations. The primary datasets
were altered using various methods: addition of Gaussian
noise, blurring, JPEG compression, CLAHE, resizing, and
geometric adjustments. Table 2 presents the quality assess-
ment and model performance results across the evaluated
datasets. Specifically, datasets that underwent blurring,
Gaussian noise addition, JPEG corruption, CLAHE, or
resizing are reported in rows 1–35; geometric datasets in rows
36–39; bit-rescaled datasets in rows 40–41; and screenshot
datasets in rows 42–44. The model achieved an accuracy of
92.03% on the original unaltered dataset, which thus served
as the performance benchmark for other evaluations.

Table 2. The quality assessment and model performance results across the evaluated datasets.
Treatment PSNRa, mean (SD) Average SSIMb, mean (SD) Accuracy Precision Recall
Clean dataset Inf 1.0000 0.9203 0.915 0.9119
Gaussian blur _0.5 52.5622 (2.6778) 0.9975 (0.0010) 0.9031 0.8896 0.9017
Gaussian blur _1.0 42.7419 (2.5447) 0.9758 (0.0096) 0.8422 0.7836 0.9085
Gaussian blur _1.5 39.9809 (2.5143) 0.9545 (0.0172) 0.8078 0.7299 0.9254
Gaussian blur _2.0 37.2251 (2.3945) 0.9183 (0.0272) 0.7625 0.6819 0.9085
Gaussian blur _2.5 35.4838 (2.3231) 0.8842 (0.0356) 0.7250 0.6530 0.8610
Gaussian blur _3.0 34.8328 (2.3077) 0.8674 (0.0399) 0.7203 0.6526 0.8407
Gaussian noise (grayscale)_1 47.7838 (0.1157) 0.9917 (0.0018) 0.9109 0.9190 0.8847
Gaussian noise (grayscale)_2 42.0190 (0.0432) 0.9697 (0.0066) 0.8906 0.8840 0.8780
Gaussian noise (grayscale)_3 38.5493 (0.0308) 0.9357 (0.0135) 0.8688 0.8436 0.8780
Gaussian noise (grayscale)_4 36.0689 (0.0271) 0.8929 (0.0216) 0.8422 0.7994 0.8780
Gaussian noise (grayscale)_5 34.1382 (0.0267) 0.8444 (0.0298) 0.8172 0.7602 0.8814
Gaussian noise (grayscale)_6 32.5600 (0.0276) 0.7932 (0.0376) 0.7734 0.7027 0.8814
Gaussian noise (RGB)_1 47.7851 (0.1134) 0.9917 (0.0018) 0.9156 0.9288 0.8847
Gaussian noise (RGB)_2 42.0211 (0.0368) 0.9697 (0.0065) 0.9094 0.9100 0.8915
Gaussian noise (RGB)_3 38.5487 (0.0225) 0.9357 (0.0135) 0.8969 0.8962 0.8780
Gaussian noise (RGB)_4 36.0686 (0.0180) 0.8929 (0.0215) 0.8891 0.8784 0.8814
Gaussian noise (RGB)_5 34.1376 (0.0173) 0.8444 (0.0299) 0.8547 0.8279 0.8644
Gaussian noise (RGB)_6 32.5599 (0.0168) 0.7931 (0.0376) 0.8219 0.7701 0.8746
JPEG compression_10 (slightest) 44.5076 (1.7566) 0.9829 (0.0046) 0.9141 0.9255 0.8847
JPEG compression_30 40.8137 (1.6190) 0.9619 (0.0091) 0.8922 0.9154 0.8441
JPEG compression_50 38.7102 (1.4519) 0.9411 (0.0119) 0.8688 0.8893 0.8169
JPEG compression_70 36.7313 (1.3293) 0.9125 (0.0150) 0.8609 0.8732 0.8169
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Treatment PSNRa, mean (SD) Average SSIMb, mean (SD) Accuracy Precision Recall
JPEG compression_90 (strongest) 32.6132 (1.1419) 0.8146 (0.0233) 0.7656 0.6845 0.9119
CLAHEc_1 27.5678 (1.9698) 0.932 (0.0095) 0.8875 0.9176 0.8305
CLAHE_2 21.3350 (1.4853) 0.7836 (0.0182) 0.8250 0.9256 0.6746
CLAHE_3 18.7906 (1.3643) 0.6860 (0.0220) 0.7953 0.9457 0.5898
CLAHE_4 16.6896 (1.2363) 0.5904 (0.0262) 0.7812 0.9641 0.5458
CLAHE_5 15.6361 (1.1716) 0.5395 (0.0306) 0.7703 0.9353 0.5390
Resize_400 27.4436 (2.8561) 0.6578 (0.1013) 0.7188 0.6353 0.9153
Resize_600 29.2871 (3.0279) 0.7108 (0.1042) 0.8172 0.7514 0.9017
Resize_800 30.8330 (3.07574) 0.7651 (0.1007) 0.8516 0.8106 0.8847
Resize_1000 32.3258 (3.6219) 0.8130 (0.0932) 0.8672 0.8454 0.8712
Resize_1200 33.3882 (3.8631) 0.8432 (0.08724) 0.8797 0.8682 0.8712
Resize_1400 34.5316 (3.6730) 0.8754 (0.0748) 0.8938 0.8874 0.8814
Geometrics_1 N/Ad N/A 0.8635 0.8524 0.8513
Geometrics_2 N/A N/A 0.8949 0.9003 0.8682
Geometrics_3 N/A N/A 0.8827 0.8765 0.8678
Geometrics_4 N/A N/A 0.9021 0.9041 0.8809
12-bit-rescale_1 48.0188 (8.0564) 0.9945 (0.0181) 0.9188 0.9119 0.9119
12-bit-rescale_2 N/A N/A 0.9141 0.9027 0.9119
Screenshot_MicroDicom_1 N/A N/A 0.8281 0.7666 0.9017
Screenshot_MicroDicom_2 N/A N/A 0.8625 0.8439 0.8610
Screenshot_ImageJ N/A N/A 0.7812 0.7123 0.8814

aPSNR: peak signal-to-noise ratio.
bSSIM: structural similarity index measure.
cCLAHE: contrast-limited adaptive histogram equalization.
dN/A: not applicable.

The Effects of Noise and Perturbations
This section discusses model performance on datasets directly
modified from the cropped scaphoid radiographs and resized
datasets without geometric modifications. Table 2 presents
the quality assessment and model performance results across
the evaluated datasets. Specifically, datasets that underwent
blurring, Gaussian noise addition, JPEG corruption, CLAHE,
or resizing are reported in rows 1–35; geometric datasets
in rows 36-39; bit-rescaled datasets in rows 40-41; and
screenshot datasets in rows 42-44. Further details can be
found in Multimedia Appendix 1.

For datasets that included cropped scaphoid radiographs
and resized images, if the severity of image degradation was
minimal, the effect on model accuracy was negligible. An
important observation was that the model exhibited varying
degrees of resilience against different image perturbations.
Even in some datasets with similar PSNR and SSIM values
and comparable image quality, some discrepancies in model
performances were observed. These findings underscore the
nuanced robustness of the deep learning model against
different image distortions.

On some noisy datasets, such as Gaussian blur_0.5,
Gaussian noise (RGB)_1, Gaussian noise (grayscale)_1, and
JPEG compression_10, the model performances were similar
to that on the clean dataset. These datasets had the least
severe distortions; the pixel values changed minimally, as

indicated by the high PSNR and SSIM values. However,
as the perturbations increased in severity, image features
deteriorated further, and model performance declined. This
trend was observed across all treatments, although the extent
of performance decline varied according to the type of
perturbation. We conclude that if the severity of a perturba-
tion can be maintained below a specific level in degraded
images, the model can maintain good performance.
Robustness Against Different Types of
Perturbations
Next, we compared model robustness across different image
perturbations. Although some datasets yielded similar average
PSNR and SSIM assessments, model performances differed.
This finding suggested that the model is more robust against
certain types of distortions but more vulnerable to others.
Color and Grayscale Gaussian Noise
We expected that the PSNR and SSIM assessments would
be similar after the introduction of Gaussian noise, regardless
of whether the noise was in color or grayscale. This expecta-
tion was confirmed by the similar average PSNR and SSIM
values of the corresponding RGB and grayscale Gaussian
noise datasets. Nevertheless, model accuracy was considera-
bly lower when grayscale noise was present, suggesting that
the model solely enhanced resilience to color perturbations.
This may be explained by the fact that the training set was
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exclusively composed of grayscale samples, although the
model input layer accepted 3-channel color images.

Gaussian Blurring
Gaussian blurring substantially degraded model performance,
comparatively more than other noises with similar image
quality metrics. For images with PSNR values between 35
and 50, linear regression analysis revealed that Gaussian
blurring was associated with a 5% to 12% decrease in
accuracy compared with other nongeometric transformation
techniques. Although blurring an image does not signifi-
cantly decrease image quality, blurring likely affects fracture
features and thus negatively affects detection. This finding
is consistent with the results of a previous study, which
concluded that neural networks are very sensitive to blurring,
probably because textures and edges are removed [16-18].

JPEG Compression
The effect of JPEG compression on model performance was
similar to the effect of grayscale Gaussian noise. The neural
network was surprisingly resilient to JPEG compression.
Even after a 90% file size reduction via JPEG compression,
the model achieved an accuracy of greater than 81%. This
finding has important clinical implications: DICOM images,
which are often larger than 20 MB, can be compressed by up
to 70% via JPEG, but the model will maintain 90% accuracy
in terms of detecting scaphoid fractures. This capability will
render model implementation more computationally efficient.

Resizing
The resizing perturbations were designed to simulate a
realistic low-resolution workflow in which radiographs may
be downsampled before region extraction and later rescaled
for AI inference; therefore, this setting reflects the combined
effects of downscaling information loss and upscaling or
interpolation artifacts from small cropped regions of interest
(ROIs), rather than a purely isolated resolution test. The
downscaling treatments required the new image to store
information using fewer pixels than the original, which forced
the image to compress its content. As a result, a substan-
tial amount of information was lost when the number of
available storage units was reduced, leading to blurry images
and lowered image quality, as demonstrated by the PSNR
and SSIM values. However, fracture detection accuracy did
not significantly decline until the PSNR values fell below
30. Compared with other noise treatments, resizing an image
may adequately preserve the features required for fracture
detection.

Contrast-Limited Adaptive Histogram
Equalization
CLAHE treatment enhances image contrast and thus
dramatically alters the image [19,20]. A CLAHE-enhanced
image can inadvertently mislead the model, especially if
the model has not been trained with CLAHE-augmented
data. Model accuracy decreased as the parameter “clip limit”
(maximum limit of the adaptive histogram equalization)

increased, considerably lowering the PSNR and SSIM values.
However, the poor metric values do not necessarily imply
that CLAHE transformation worsens the model performance
more severely than that of other perturbations. Even at a
cliplimit of 2, the PSNR declined to 21, lower than the
PSNR after any Gaussian blur or JPEG treatment, and the
model accuracy decreased to 83%. As the cliplimit was
subsequently increased, the accuracy precipitously fell to 77%
(Table 2). This finding differs from the result of a previ-
ous study, in which neural networks were resilient against
changes in image contrast [17]. This discrepancy may be
because Dodge and Karam [5] investigated contrast reduc-
tion only via grayscale image superimposition and assessed
correct image classification (eg, a dog and a cat) using
network models. In contrast, a scaphoid DNN must detect
subtle linear features when identifying fractures, and CLAHE
likely obscures contrast along the fracture line. CLAHE is
useful when enhancing x-ray images before human interpre-
tation, but it should only be used in neural networks that
are trained via CLAHE augmentation. Additionally, if a
chosen medical imaging software exhibits built-in CLAHE-
enhancing features, the neural network must be trained with
CLAHE-augmented data.
Differences in the Reductions of
Precision and Recall Rates
The prevalence of scaphoid fractures in the test dataset was
46%. As all noisy datasets were derived from this dataset, the
prevalences were identical. Accordingly, a decline in model
accuracy can be attributed to either reduced precision or recall
rates, with the former creating more false positives and the
latter creating more false negatives.

In the last step of training, the model was fine-tuned to
achieve precision and recall rates of 91%. We expected that
these performance metrics would decrease when interpreting
noisy datasets. Intriguingly, the severities of performance
decline differed for precision and recall. Although most
noisy datasets triggered declines in both precision and recall,
the performance deteriorations exhibited by the precision
rates were more pronounced. However, the recall rate was
usually acceptable, even in heavily altered datasets. As the
model seeks to identify all possibly useful scaphoid fractures,
it remains clinically robust in terms of detecting fractures
despite image perturbation, but at the cost of increased
false-positive rates.

Only a few datasets showed the opposite, with a pre-
cision rate much greater than the recall rate; these were
the JPEG compression_50, JPEG compression_70, and all
CLAHE datasets. Conversely, the remaining JPEG compres-
sion datasets demonstrated a higher recall than precision rate,
similar to other changes. Therefore, JPEG compression is
likely not the principal explanation for such findings.

However, we found that CLAHE image treatment must
be performed with caution. CLAHE primarily reduces recall
(increasing false negatives) while precision tends to increase,
indicating a heightened risk of missed fractures at higher
clip limits (Table 2). If the images to be interpreted are of
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low quality and CLAHE enhancements are applied, machine
learning scientists should be wary of inadvertently increasing
the false-negative rates.
Relationship Between Image Quality
Assessments and Model Performance
We combined all noisy datasets (excluding the CLAHE
datasets, given their heterogeneity) into a single dataset with
18,560 samples exhibiting various perturbations. We used
this combined dataset to investigate the relationship between
image quality and model performance.

We calculated 25 quantiles of SSIM value distributions
and grouped the images according to quantile; this approach

yielded 25 groups with 742 or 743 samples each. Our
grouping method effectively randomized the images and
eliminated the effect of any particular degradation treatment
when grouping images from different datasets by image
quality. We regrouped images by SSIM quantiles, rather than
PSNR quantiles, because the distributions of SSIM values
within each noisy dataset were wider and enabled easier
stratification.

For each group, the average PSNR, average SSIM, and
model accuracy were calculated (Figure 3). We found a
strong linear relationship between average image quality and
model accuracy. The model performed better on images with
higher quality assessments.
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Figure 3. The images were divided into 25 groups according to the structural similarity index measure (SSIM) value quantiles. PSNR: peak
signal-to-noise ratio.
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The average PSNR, average SSIM, and group accuracy
for each were plotted; the accuracy exhibited strong linear
relationships with both image quality assessments.

Both PSNR and SSIM regressions yielded high adjus-
ted R-squared values (P<.001). As the PSNR and SSIM
values are not independent, it is reasonable to expect that
the 2 assessments would yield similar results for most
image degradations [21]. However, the SSIM was normal-
ized, whereas the PSNR was not. Robust linear associations
between image quality evaluations and model performan-
ces were evident. Specifically, PSNR and SSIM, indicators
of image quality, served as reliable independent tests that
predicted AI performance under various perturbations. Higher
image quality evaluations were invariably correlated with
superior model performances. Although certain perturbations,
such as geometric offsets or pixel value rescaling, did
not appear to influence model performance, resolution was
identified as a key factor, particularly in screenshot images.
An enhanced focus on the ROI, such as zooming, effectively
averted accuracy reduction. Recent research introduced a
framework for the creation of Robust Medical Imaging AI
models, which focuses on developing robust AI models for
chest radiographs by addressing real-world sources of image
degradation such as device heterogeneity, screen-captured
inputs, and compression artifacts [22].
Effects of Geometric Offsets
CNN models extract hierarchical features from local regions
of an image through convolution and pooling operations. In
principle, a moderate change in object location within the
image should therefore not drastically confuse the model. Our

results generally reflected this expectation: the 4 geomet-
rically modified datasets retained good overall accuracy
when the scaphoid remained fully within the field of view.
However, accuracy declined as the strength of the affine
transformations increased. A likely explanation is that parts
of the scaphoid were shifted outside the image boundaries,
resulting in cropped or incomplete scaphoid regions being
presented to the model. Such extreme geometric distortions
are unlikely to occur under real-world clinical conditions.

To further assess whether the detection model contrib-
uted to performance degradation under realistic settings,
we evaluated its robustness on the 3 real-world screenshot
datasets and the 12-bit-rescale_2 dataset and compared these
results with those from the 4 geometric offset datasets. As
summarized in Table 3, the mean intersection over union
(IoU) values for the screenshot and 12-bit-rescale_2 datasets
(0.8728, SD 0.0679 to 0.9836, SD 0.0268) were consistently
higher than those of the geometric offset datasets (0.5752,
SD 0.0952 to 0.8530, SD 0.0222). The geometric offset
datasets (Geometrics_1‐4) were intentionally designed as
synthetic baselines to simulate pure localization errors of the
detector. The lower IoU values in Geometrics_1‐3 (0.5752‐
0.7546) correspond to increasingly large artificial offsets,
whereas Geometrics_4 (mean 0.8530, SD 0.0222) represents
the least-modified geometric condition in which the scaphoid
remains fully visible after offset treatment. Notably, Table
3 presents that the detector achieved IoU values exceeding
Geometrics_4 on all screenshot datasets, suggesting that the
detection model remains stable under realistic screenshot-
related degradation.

Table 3. IoU values of the datasets which the detection model was involved with and the geometric datasets.
Datasets involve detection model IoUa, mean (SD)
Screenshot_MicroDicom_1 0.8768 (0.0625)
Screenshot_MicroDicom_2 0.8728 (0.0679)
Screenshot_ImageJ 0.8907 (0.0554)
12-bit-rescale_2 0.9836 (0.0268)
Geometric datasetsb

  Geometrics_1 0.5752 (0.0952)
  Geometrics_2 0.7546 (0.0662)
  Geometrics_3 0.7063 (0.0529)
  Geometrics_4 0.8530 (0.0222)

aIoU: intersection over union.
bConsidering geometric datasets IoU as baseline, the detection model performed better on all the screenshot datasets, showing its robustness toward
perturbations, and that the performance of the detection model would not be a major factor leading to failure of the classification model when image
degradation occurs.

As the classification model still maintained reasonable
accuracy across the geometric baselines, IoU values
comparable to or higher than Geometrics_4 indicate that
under real-world screenshot- and rescaling-related perturba-
tions, the detector’s localization accuracy is at least similar to
its best geometric baseline performance and therefore is less
likely to be a dominant contributor to the observed classifica-
tion performance changes. Overall, these findings suggest that

detector-related bounding box offsets likely play a limited
role in the performance degradation observed in these realistic
conditions.
Effects of Pixel Value Rescaling Methods
The 2 methods for rescaling images from 12-bit to 8-
bit did not materially affect model performance. The 2
datasets derived from the alternative rescaling method,
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12-bit-rescale_1 and 12-bit-rescale_2, showed only a minor
decrease in accuracy (<1%), although the rescaled images
were nearly identical. Examination of the few inconsistent
cases revealed that the classification confidence scores for
“fracture” and “nonfracture” were much closer in these
instances, with differences typically on the order of 102.
In contrast, in most other cases, the confidence score
gap exceeded 103, indicating stronger and more stable
model decisions. These relatively uncertain confidence scores
suggest that the inconsistent cases were inherently difficult
for the model to judge, even without perturbation. As the
model’s decisions for such cases were already unstable,
slight modifications introduced by the alternative rescal-
ing algorithms—despite causing only minimal pixel value
changes—could flip the predicted label. This likely explains
the minor performance differences observed among the clean
dataset and the 2 rescaled datasets (12-bit-rescale_1 and
12-bit-rescale_2).
Screenshot Datasets
Taking screenshots was the most complex perturbation of
all the studied treatments. Resolution may be the factor
that most strongly affects model performance. The only
difference between the datasets Screenshot_MicroDicom_1
and Screenshot_MicroDicom_2 was the resolution; changing
the resolution from 900×1050 to 550×780 pixels resulted
in an accuracy reduction from 86.3% to 82.8%. The data-
set Screenshot_ImageJ, the dataset with images resized to
a width of 600 pixels while keeping the aspect ratio collec-
ted using ImageJ, exhibited the worst resolution and worst
read accuracy (78.1%). Such declines in accuracy, preci-
sion rate, and recall rate were similar to declines observed
in the corresponding resized datasets (Screenshot_MicroDi-
com_1 with Resize_600, Screenshot_MicroDicom_2 with
Resize_1000, and Screenshot_ImageJ with Resize_600).
Although the detection model had been involved in the
preparation of these datasets, Table 3 implies that in these
cases, scaphoids were correctly detected and cropped. In
conjunction with the fact that the classification perform-
ance of screenshot datasets was worse than that of any of
the geometric datasets, the degradation in model perform-
ance indeed stems from resizing effects. We also observed
that although resolution deterioration was the major factor,
the screenshot process did not impact model performance
identically to pure resizing. Specifically, Screenshot_ImageJ
showed a modest but consistent performance drop compared
with its corresponding resized dataset (Resize_600) and also
performed worse than another screenshot dataset (Screen-
shot_MicroDicom_1) collected at a similar resolution. This
suggests that viewer-specific display or resampling algo-
rithms during screenshot capture may also influence model
performance.

On the basis of these results, one strategy that may prevent
accuracy reduction after taking screenshots would be to zoom
into the image and then take a screenshot at the 100% level.
Although the radiographic image subsequently may not fit
within the screen display, it is unnecessary to capture the
entire image because the only ROI is the scaphoid.

Computational Cost and Inference Time
We evaluated the average inference time by running through
the 640 whole-hand x-ray images from the clean testing
dataset using the complete preprocessing, bounding box
detection, and classification inference pipeline. We obtained
a computation time of approximately 6 to 8 ms per image
on an NVIDIA RTX 3080 (10 GB RAM), while warmup
runs were not included. The end-to-end pipeline used less
than 200 MB GPU memory per 240×240×3 input (including
framework overhead), enabling near real-time inference on a
single RTX 3080. Consequently, our approach is compatible
with near-real-time applications, assuming a well-optimized
implementation. Although resizing or blurring images may
incur a minor preprocessing overhead, these operations add
only approximately 1 ms to the total inference time, indicat-
ing that real-time usage in clinical workflow is feasible on a
modern GPU.

Discussion
Principal Findings
Taken together, our findings highlight that the deep learn-
ing model’s performance is inversely related to the severity
of image degradation, with Gaussian blur, grayscale noise,
and CLAHE standing out as the most disruptive factors.
These types of distortions can destroy or obscure the crucial
edge information that the network relies upon for detecting
subtle fracture lines. In contrast, moderate JPEG compres-
sion, resizing, or color noise had a less pronounced effect.
Notably, the resizing experiments in this study reflect a
realistic low-resolution workflow involving downscaling,
then cropping, and then upscaling, which is consistent with
real-world recaptured or low-resolution imaging scenarios
described in the literature [9]. While accuracy decreases were
comparable between Screenshot_ImageJ and the correspond-
ing Resize datasets, Screenshot_ImageJ showed a modest
additional reduction in recall, suggesting that screenshot
recapture can affect sensitivity beyond pure resizing.

From a clinical perspective, these results underscore the
importance of maintaining sufficient image fidelity and
avoiding overly aggressive postprocessing steps. If CLAHE-
based enhancement or heavy contrast adjustments are used,
training the model with matching augmentations may be
necessary to preserve performance. Similarly, our analy-
sis indicates that modest compression does not necessarily
compromise diagnostic accuracy, suggesting an avenue for
reducing file sizes without compromising model output.

Although the network proved fairly robust across various
perturbations, investigators should remain cautious when
applying transformations, such as extreme blurring, under or
overexposure, or very low-resolution screenshots. In these
scenarios, crucial details may be irretrievably lost, leading to
significantly higher misclassification rates. Our results also
emphasize that the precision rate is especially sensitive to
noise, often dropping faster than recall. This behavior means
that some perturbations can inflate false positives, which may
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still be acceptable in screening contexts that favor high recall
but could impact workflows that depend on precise diagnoses.

In certain clinical scenarios, obtaining the original
radiographic file may not be immediately feasible—such
as in emergency settings, remote consultations, or when
imaging systems have limited data access privileges. In such
situations—particularly in emergency department workflows
where the original radiographic DICOM file may not be
readily accessible because of time pressure, remote consul-
tation needs, or limited system privileges—clinicians or
technicians may rely on on-screen screenshots or smart-
phone photographs for rapid review, sharing, or AI-assisted
interpretation. Although practical, these recaptured images
can introduce unintended degradation due to variations
in capture resolution, scaling distortions, and secondary
compression, which may obscure subtle fracture cues. This
real-world practice motivated our inclusion of screenshot-
based perturbations as a clinically relevant proxy for urgent
or resource-limited conditions. To replicate such real-world
conditions, our study incorporated a “screenshot” perturba-
tion by capturing radiographs at different image sizes and
resolutions. The resulting artifacts mimic the geometric and
pixel-level distortions that may arise in urgent or resource-
limited workflows, providing insight into how these factors
influence model performance.

Although this study was conducted using data from a
single institution, the dataset represents one of the largest and
most diverse radiographic collections in Taiwan, drawn from
multiple campuses within the Chang Gung Memorial Hospital
system, with different scanners and protocols, introducing
natural variability while maintaining consistent image quality
and annotation standards. The main objective of this study
was to test a methodological approach for evaluating model
robustness to image degradation, rather than to claim broad
generalization to all clinical environments. The single-institu-
tion design, therefore, provided a stable yet sufficiently varied
dataset for controlled experimentation.
Comparison With Prior Work
Our findings are consistent with prior studies showing that
CNNs are sensitive to image degradation and domain shifts
in medical imaging. Recent research introduced the RoMIA
framework, which aims to develop robust AI models for
chest radiographs by addressing real-world sources of image
degradation, such as device heterogeneity, screen-captured
inputs, and compression artifacts. In parallel, previous studies
have shown that AI can enhance image quality and improve
diagnostic reliability across multiple imaging modalities,
including computed tomography and radiography [1,7,23].
Moreover, real-world deployments have demonstrated that
recaptured or smartphone-captured radiographs introduce
compounded degradations (eg, scaling, compression, and
display artifacts) that can alter AI outputs, underscoring
the clinical relevance of evaluating robustness under such
workflows [9]. Taken together, these studies highlight the
growing emphasis on image fidelity and consistent acquis-
ition parameters as key factors for ensuring robust and
generalizable AI performance. Previous research [18] has

demonstrated that blurring and contrast alteration primarily
affect the high-frequency components essential for delineat-
ing structural boundaries—similar to the degradation patterns
observed in this study. The alignment between our results
and those of earlier works reinforces that these degradation
effects are likely intrinsic to CNN-based architectures rather
than model-specific artifacts.

Limitations
This study has several limitations. First, the robustness results
reported here are relative to our standard clinical preprocess-
ing pipeline. Specifically, the “clean” baseline was gener-
ated by detector-based cropping followed by resizing each
scaphoid ROI to 240×240 pixels to match the fixed input
size of EfficientNetB1. As this crop-and-resize step is itself
a lossy operation, our robustness conclusions should be
interpreted within this trained-and-deployed pipeline context,
rather than as absolute performance relative to the raw,
unprocessed DICOM images. Second, our analysis was
confined to a single deep learning architecture, Efficient-
NetB1. Different backbones (eg, ResNet and DenseNet)
may exhibit varying levels of robustness to specific noise
types, such as Gaussian blur or CLAHE. Nevertheless, we
expect that many of the general trends—such as vulnerabil-
ity to edge-destroying blur—would hold true across CNN-
based architectures. Third, all experiments were performed on
retrospective datasets from a single institution and focused on
controlled pixel-level perturbations. As a result, the data may
not fully capture the diversity of real-world clinical acquisi-
tion conditions or additional artifacts, such as motion blur,
partial occlusions, and multiview variability. Future prospec-
tive, multi-institutional studies incorporating these realistic
factors would provide a more comprehensive assessment of
model resilience and generalizability.
Future Directions
Future work could extend our methodology by evaluat-
ing multiple architectures under identical perturbations to
quantify differences in susceptibility and to determine
whether certain network designs are inherently more robust.
Incorporating multiview data and realistic clinical artifacts
(eg, motion blur and underexposure) may also help develop
more generalizable models. Additionally, advanced data
augmentation strategies that simulate image degradation
during training could enhance robustness. Exploring hybrid or
ensemble models that integrate texture- and shape-based cues,
as well as integrating domain-specific priors, could further
mitigate the impact of low-quality inputs.
Conclusions
Neural network models designed to complement radiographic
interpretation in clinical practice will inevitably encounter
image quality distortions due to variations in acquisition,
processing, and storage. In this study, we systematically
evaluated the effects of image degradation on the perform-
ance of a DNN for scaphoid fracture classification. We
found a strong negative correlation between image quality
and model accuracy, with Gaussian blur, grayscale Gaus-
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sian noise, and CLAHE exerting the greatest influence on
performance.

Performance decline was primarily driven by decreases in
precision, whereas recall remained relatively stable. When
developing neural networks for fracture detection in clinical

radiography, training with targeted perturbations—particu-
larly Gaussian blur, grayscale noise, and CLAHE—may
improve the model robustness and ensure more reliable
performance in diverse clinical environments.
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