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Abstract

Background: The development of immunotherapy has provided new hope for patients with advanced gastric cancer (AGC).
However, due to the high heterogeneity of the disease, the efficacy of first-line immunochemotherapy varies among patients.
Thereistill alack of simple and effective models to predict the efficacy of immunochemotherapy in this setting.

Objective: This study aimed to identify critical factors and develop predictive models to evaluate the efficacy of first-line
immunochemotherapy in patients with AGC using clinically available data. The goa was to offer evidence-based guidance for
clinical practice and enable personalized treatment strategies.

Methods: To evaluate the effectiveness of first-line immunochemotherapy in AGC, we retrospectively collected clinical data
from The First Affiliated Hospital of Nanjing Medical University between January 2018 and October 2023. The data collected
were divided into atraining set (168/240, 70%) and an internal validation set (72/240, 30%). Additionally, atemporal validation
cohort of 76 patients recruited from November 2023 to September 2024 was assembled to further evaluate the predictive
performance of the models. We used univariate and multivariate Cox regression analyses, along with the least absolute shrinkage
and selection operator (LASSO) regression, and integrated clinical expertise to identify key predictors of treatment efficacy and
to construct the LASSO-Cox model. We developed 4 models (LASSO-Cox, random survival forest [RSF], extreme gradient
boosting, and survival support vector machine) and evaluated their performance using the C-index, area under the curve (AUC),
calibration curves, and decision curve analysis. The optimal model was interpreted using Shapley additive explanations, and its
risk scores were used to stratify patients for Kaplan-Meier survival anaysis.

Results:  Among the 4 prognostic models developed in this study, the RSF model demonstrated superior predictive accuracy
and discrimination for progression-free survival, as evidenced by its higher AUC, concordance index, continuous AUC curves,
and calibration curves compared with the other 3 models. Additionally, decision curve analysis showed that the RSF model
offered greater net clinical benefit. The Shapley additive explanations resultsidentified that age, histological subtype, the proportion

of CD19" B cells, CD16"CD56" natural killer cells, and the presence of liver metastasis were key prognostic factors influencing
patient outcomes. Patients in the low-risk group, as determined by the RSF model’s risk score, exhibited a significantly higher
progression-free survival rate than thosein the high-risk group, further validating the value of the RSF model for risk stratification.

Conclusions: Thisstudy isthefirst to use machinelearning algorithmsto devel op a predictive model for the efficacy of first-line
immunochemotherapy in AGC, and to identify key predictors of treatment outcome. The results indicate that the RSF model not
only enables precise stratification of patients likely to benefit but, more importantly, provides quantifiable decision support for
individualized clinical strategies, underscoring its potential valuein clinical decision-making.
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Introduction

Gadtric cancer (GC) ranks asthe fifth most common malignancy
worldwide and is the fourth leading cause of cancer-related
mortality [1]. In 2022, there were over 968,000 new cases of
GC, resulting in nearly 660,000 deaths [2]. Due to the delayed
onset of clinical symptoms and the absence of effective
diagnostic methods for early-stage GC, 40% of patients are
diagnosed at an advanced stage, where surgical intervention is
typically not feasible [3]. Among patients undergoing radical
resection, over two-thirds experience recurrence or metastasis
[4,5]. Consequently, chemotherapy remains the cornerstone of
treatment for advanced gastric cancer (AGC), yet the prognosis
for advanced or metastatic casesremains dismal, with an overall
survival (OS) of only 9-14 months [6]. Therefore, a
comprehensive upfront assessment of prognosisis essential for
guiding clinical decisions in multidisciplinary treatment
approaches [7].

The advent of immune checkpoint inhibitors (ICls), particularly
those targeting programmed cell death protein 1 (PD-1) and
programmed death-ligand 1 (PD-L 1), hasrevolutionized cancer
therapy, yielding robust and durable responsesin GC. Clinical
trials, such as CheckMate-649 and KEYNOTE-062, have
demonstrated  that  combining  immunochemotherapy
significantly improves OS and progression-free survival (PFS)
in patients with PD-L1-positive tumors [8,9]. However, the
high heterogeneity of GC leads to variations in the efficacy of
immunochemotherapy among different patients[10]. Identifying
individuals who are likely to respond to immunochemotherapy
istherefore critical for providing personalized treatment.

Nowadays, numerous biomarkers, including tumor mutation
burden (TMB), PD-L1 expression, microsatellite instability
(MSI), and Epstein-Barr virus infection status, have been
proposed to predict responsivenessto PD-1 and PD-L 1 inhibitors
[11,12]. Additionally, circulating tumor DNA positivity has
been associated with relapse and poorer prognosis [13].
However, given the highly heterogeneous nature of GC, relying
on asinglefactor for prognostic prediction is often insufficient
[14]. For instance, only 45% of patients with high TMB (=20
mutations per megabase [ mut/Mb]) respond to immunotherapy,
while approximately 5% of patients with low TMB exhibit
significant therapeutic responses to ICIs[15,16]. Furthermore,
the predictive utility of single biomarkersisundermined by the
dynamic alteration of the tumor microenvironment following
therapeutic interventions (eg, chemotherapy or radiotherapy),
as well as inconsistencies in detection methodologies and
threshold definitions—such as the varying PD-L1 scoring
systems (tumor proportion score, combined positive score,
immune cell score, and H-score) and platform-dependent criteria
for MSI and TMB. While recent studies have developed
prognostic models based on transcriptomics or targeted
metabolomics [17-19], the clinical trandation of these
omics-based signatures is severely constrained by their high
costs, complex data processing, and reliance on specialized
laboratory infrastructure[20,21]. This createsaclear and unmet
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need for prognostic tools built on more accessible, cost-effective,
and routinely collected data. Although recent studies have made
progress in applying machine learning (ML) algorithms to
clinical data for postoperative patients with GC or to predict
immunotherapy-related adverse eventsin AGC [22,23], acritical
gap remains, as robust predictive models for the efficacy of
first-line immunochemotherapy in the advanced setting are
notably lacking. Therefore, this study was designed to address
this specific gap. We aimed to develop and validate a robust
prognostic model based only on readily available baseline
clinical parameters. The objective of this tool is to effectively
predict first-line immunochemotherapy outcomes, identify
patients most likely to benefit, and thereby advance personalized
therapy for AGC. Furthermore, understanding the key risk
factors derived from such a model is crucia for devising
appropriate follow-up strategies.

The Cox proportional hazards model haslong been the standard
for quantifying the impact of clinical indicators on survival
outcomes [24,25]. However, its reliance on linear assumptions
often fails to capture the intricate, nonlinear patterns
characteristic of heterogeneous diseaseslike GC. Consequently,
there is a need for more adaptive modeling strategies to
maximize predictive performance. To this end, we used a
comprehensive ML framework comprising random survival
forest (RSF), extreme gradient boosting (XGBoost), and survival
support vector machine (SVM). These al gorithmswere selected
for their specific strengths in handling complex survival data:
RSFisrobust in ranking variableimportance[26,27]; X GBoost
offers superior efficiency and the ability to model complex
featureinteractions; and survival-SVM excelsin distinguishing
risk stratifications in high-dimensional spaces [28,29]. Our
primary objective was not merely to compare these
methodol ogies, but to leverage their combined strengthsto select
the best-performing model. This approach ensures the
development of a clinically practical and highly accurate
prognostic instrument for first-line immunochemotherapy
[30-32].

Given the poor prognosis and high recurrence rate of AGC, as
well as the urgent need for individualized treatment strategies,
the ability to predict risk factors associated with prognosis and
survival rates before treatment could enable more targeted
therapeutic adjustments, ultimately improving patient outcomes
and qudlity of life. This study aims to retrospectively anayze
the clinical and pathological data of patients with AGC who
received first-line immunochemotherapy. By identifying key
prognostic  factors that predict the efficacy of
immunochemotherapy, 4 prognostic models will be devel oped
and compared in terms of discrimination, calibration, stability,
and clinical net benefit. The optimal model will be selected for
clinical application, providing a reference for personalized
treatment strategies and ultimately improving the prognosis of
patients with AGC.
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Methods

Data Source and Study Population

Clinical dataof patientsfor the model development cohort were
collected retrospectively from January 1, 2018, to October 31,
2023, at The First Affiliated Hospital of Nanjing Medical
University, China. Additionally, a temporal validation cohort
between November 1, 2023, and September 13, 2024, was
included from the same hospital. Patients were enrolled in this
study based on the following inclusion criteria: (1) aged 18
years or older, (2) histologicaly or cytologically confirmed
gastric adenocarcinoma, (3) received | Clsasfirst-line treatment
for advanced disease, (4) presence of at least 1 measurablelesion
according to the Response Evaluation Criteriain Solid Tumors
(RECIST) version 1.1. (lesions in hollow viscera, such as the
esophagus and stomach, were not considered measurable; lesions
Situated in a previously irradiated area were considered
measurable only if progression had been demonstrated), and
(5) Eastern Cooperative Oncology Group performance status
of 0 or 1. The exclusion criteria were (1) discontinuation of
treatment due to intolerance to immunotherapy or combination
agents, (2) receiving fewer than 2 treatment cycles, precluding
efficacy assessment, (3) presence of concurrent malignancies
of other origins, and (4) incomplete baseline clinical data or
lost to follow-up.

Data Collection and Outcomes

Baseline characteristics were assessed, including age, sex, BMI,
presence of underlying comorbidities, Eastern Cooperative
Oncology Group performance status, smoking history, drinking
history, tumor location (including cardia and esophagogastric
junction, fundus, body, antrum, and pylorus of the stomach),
Lauren classification (including intestina type, mixed type,
diffuse type, and unknown), tumor differentiation (including
G3, G2, G2-G3, and unknown), histopathological type
(including gastric adenocarcinoma and signet ring cell
carcinoma), intraperitoneal chemotherapy (with or without),
type of PD-1 or PD-L1 inhibitor (including sintilimab,
nivolumab, tiselizumab, camrelizumab, and others),
radiotherapy (with or without), targeted therapy (with or
without), use of antiangiogenic drugs (including anlotinib,
apatinib, others, and none), pretreatment levels of
alpha-fetoprotein (AFP; <1.9 or 21.9 ng/uL), the pretreatment

percentage of CD16"CD56" natural killer (NK) cell (<27.41 or
>27.41), the pretreatment percentage of the ratio of CD4" to
CD8" T cell (<2.66 or >2.66), the pretreatment percentage of

CD19" B cell (<12.04 or 212.04), human epidermal growth
factor receptor 2 (HER2) expression status (including positive,
negative, and unknown), PD-L1 expression status (including
positive, negative, and unknown), microsatellite stability
(including microsatellite stability, high MSI, and unknown),
TMB status (including low, high, and unknown), presence of
liver metastasis (with or without), peritoneal metastasis (with
or without), bone metastasis (with or without), and distant organ
metastasis (with or without).

To ensure data consistency and reliability, all data collection
adhered to strict standards. Tumor location, differentiation grade,
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Lauren classification, and histopathological type were
categorized based on the 2024 guidelines of the Chinese Society
of Clinical Oncology. BMI was classified according to the
World Health Organization criteria, withaBMI =25 considered
overweight. Continuous numerical variables, including age,
pretreatment levelsof AFP, and pretreatment lymphocyte subset
percentages, were subsequently categorized into discrete groups
by determining optimal cutoff values in order to enhance
analytical convenience and effectiveness. HER2 expression
status was determined through immunohistochemistry or
fluorescence in situ hybridization: 0 to 1+ was classified as
negative; 2+ was considered equivocal, requiring confirmation
viafluorescencein situ hybridization; and 3+ was classified as
positive. PD-L1 expression status was assessed following the
standards of the US Food and Drug Administration: PD-L1
combined positive score <1 was classified as negative; PD-L1
combined positive score =1 was classified as positive.
Microsatellite stability status was defined as follows:
microsatellite stability indicated no significant difference in
microsatellite length between tumor and normal tissue; high
MSI was defined as the presence of insertion or deletion
mutations in at least 2 microsatellite loci. TMB=10 mut/Mb
was classified as high expression; TMB<10 mut/Mb was
categorized aslow expression. AFP and lymphocyte subset data
were obtained from peripheral blood samples collected before
first-line immunochemotherapy in patients with AGC. Distant
metastasis and disease progression were evaluated through
contrast-enhanced computed tomography scans of the chest and
entire abdomen. Progressive disease was determined based on
the RECIST version 1.1. The primary end points of this study
were the predictive capability, validity, and clinical utility of
the developed prognostic model. The primary time-to-event
outcome was PFS, defined as the interval from the initiation of
first-line immunochemotherapy to the date of radiologically
confirmed disease progression. The model development cohort
was followed up until March 13, 2024, while the temporal
validation cohort was followed up until September 13, 2024.
Progressive disease was assessed via imaging evaluations
conducted every 2 treatment cycles, ensuring that all outcome
assessments were supported by radiographic evidence. This
methodology ensures the robustness and clinical applicability
of the prognostic models developed in this study.

Statistical Analysis

The dataset for the model development cohort was split into a
training cohort (168/240, 70%) and avalidation cohort (72/240,
30%). The training cohort was used for model construction,
whilethetraining cohort and theinternal validation cohort were
used for model assessment. Additionally, atemporal validation
cohort was used to further assess model performance over time
asan external validation set. Categorical variablesare presented
as frequencies and percentages, with group comparisons made
using the chi-square test or Fisher exact test. Normally
distributed continuous variabl es are expressed as the mean and
SD, and between-group comparisons are performed using the
2-tailed t-test. Nonnormally distributed continuous variables
are reported as the median and IQR, with between-group
comparisons conducted using the Wilcoxon rank-sum test.
Statistical significance is defined as P<.05.
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All baseline clinical characteristics were incorporated into the
construction of the prognostic model. Patientswith missing data
rates =210% for baseline characteristics were excluded from the
analysis. For caseswith missing values <10%, we used multiple
imputation by chained equations, implemented with the“ mice”
R package. The multiple imputation by chained equations
procedure was configured to generate five imputed datasets
(m=5), with afixed random seed to ensure reproducibility. The
imputation model included predictor variables (the pretreatment

proportions of CD16°CD56" NK cells, CD19" B cells, and

CD4'/CD8" T cells) and the outcome variable (PFS and event
status) to preserve prognostic correlations. For continuous
variables, the default predictive mean matching method was
used, which isrobust to nonnormality. This advanced approach
iteratively generates multipleimputed datasets through observed
data patterns while appropriately accounting for the uncertainty
inherent in theimputation process. After imputation, we generate
diagnostic plotsto examine the distribution of the imputed data
(Multimedia Appendix 1). The results indicated that, for most
variables, theimputed values aligned well with the original data
distribution. Because missing data patterns may influence study
outcomes, we conducted 2-tailed t-tests and
Kolmogorov-Smirnov (KS) tests on both the imputed and
original complete datasets to assess any significant differences.

The pretreatment proportion of CD16°CD56" NK cells had
2-tailed t-test and KStest P values of .73 and .98, respectively,
before and after imputation; the pretreatment proportion of

CD19" B cells showed 2-tailed t-test and KS test P values of
.51 and .99, respectively; and the pretreatment proportion of

CD4'/CD8" T cells had 2-tailed t-test and K S test P values of
.60 and .99, respectively. None of these variables demonstrated
astatistically significant difference (P>.05), suggesting that the
chosen imputation method had minimal impact on the overall
analysis. Furthermore, to assess the robustness of our results
and rule out potential bias introduced by the imputation of
missing values, a sensitivity analysis was performed. We
reconstructed and re-evaluated al 4 models using a
complete-case cohort (excluding all patientswith missing data).
Theresultsfrom this analysi s were consistent with those derived
from the imputed dataset, indicating that the imputation
procedure introduced negligible bias to the model performance
(Multimedia Appendix 2).

In this study, important predictive features were identified
through a combination of univariate analysis, least absolute
shrinkage and selection operator (LASSO) regression,
multivariate analysis, and the clinical expertise of 2 experienced
clinicians, which served as the foundation for constructing a
LASSO-Cox model. In parallel, ML was used to develop RSF,
XGBoost, and survival-SVM models, with parameter tuning
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carried out for each. The performance of these 4 models was
systematically evaluated and compared using metrics such as
area under the curve (AUC), concordance index (C-index),
receiver operating characteristic (ROC) curves, continuous AUC
curves, calibration curves, and decision curve analysis (DCA)
to identify the optimal predictive model. Patients were then
stratified into high- and low-risk groups based on therisk scores
derived from this optimal model, and Kaplan-Meier (KM)
analysis was performed to assess survival differences. Finally,
Shapley additive explanations (SHAP) analysis was conducted
tointerpret the optimal model and to pinpoint the key predictive
variables. All statistical analyses were performed using R
version 4.4.1 (R Foundation for Statistical Computing).

Ethical Consider ations

This study was approved by the Ethics Committee of The First
Affiliated Hospital of Nanjing Medical University (approval
2024-SR-453). No personaly identifiable information was
involved in this study. Due to the retrospective nature of the
research, the requirement for informed consent was waived.

Results

The Clinical Characteristics of Patients With AGC

Theworkflow of the study isillustrated in Figure 1. Ultimately,
316 eligible patients were included in the study. Among them,
240 patients were enrolled between January 1, 2018 and October
31, 2023, forming the model development cohort, while the
remaining 76 patients, recruited between November 1, 2023
and September 13, 2024, comprised the temporal validation
cohort for further assessment of the model’s predictive
performance. The median follow-up duration for the model
development cohort was 16 (95% CI 13.1-18.9) months, with
a median progression-free survival (mPFS) of 8.97 (95% ClI
7.9-11.1) months. In the temporal validation cohort, the median
follow-up time was 10.3 (95% CI 9.5-upper limit not reached)
months. Patients in the model development cohort were
randomly divided into a training set (=168, 70%) and an
internal validation set (n=72, 30%). Baseline clinical
characteristics of all patients are summarized in Multimedia
Appendix 3. The mPFS was 8.83 (95% Cl 7.43-11.4) months
in the training cohort and 10 (95% CI 7.77-15.6) monthsin the
internal validation cohort. Inthe temporal validation cohort, the
mPFS was 6.8 (95% CI 6.4-8.03) months. The 6-month,
12-month, and 18-month PFSratesin the training set were 619,
25%, and 11%, respectively, whilein theinternal validation set,
they were 57%, 26%, and 13%, respectively. In the temporal
validation cohort, the 6-month, 9-month, and 12-month PFS
rates were 53%, 17%, and 8%, respectively. Due to the limited
follow-up period inthe temporal validation cohort, the 18-month
PFS rate was not determined.
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Figure 1. Study flow chart. LASSO: least absolute shrinkage and selection operator; SVM: support vector machine; RSF: random survival forest;

XGBoost: extreme gradient boosting.

1340 patients with gastric cancer treated with
immunochemotherapy from January 1, 2018, to October 31,

1100 patients were excluded

659 non-advanced gastric cancer
263 non-advanced first line immunotherapy

75 intolerant to immunochemotherapy
16 two or more primary malignant tumors
87 lost to follow-up

240 patients with advanced gastric cancer treated with first-

line immunochemotherapy were included in this study
Training cohort | Internal validation cohort 76 patients from November 1,
N=168 N=T2 2023, to September 13, 2024 as the
LASSO-Cox Model temporal validation cohort
RSF Model
Model
construction
XGBoost Model
Survival-SVM Model
Comparison

'————| of predictive performance
of four models

Construction of theL ASSO-Cox M odel and Nomogram

The prognostic value of various factors for predicting PFS was
assessed using the training cohort. In univariate anaysis, age,
histological subtype, pretreatment levels of AFP, pretreatment

proportion of CD19" B cell, CD16"CD56" NK cell, CD4'/CD8"
T cell, TMB expression, and the presence of liver metastases
weredl found to be statistically significant (P<.05) (Multimedia
Appendix 4). Recognizing that reliance solely on univariate
analysismight introduce bias, 2 experienced cliniciansreviewed
these results and manually incorporated additional clinically
relevant variablesthat, although not significant in the univariate
analysis, have been linked to treatment efficacy, for example,
PD-L1 expression, HER2 status, and MSI. This approach
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ensured that the model encompassed variables that are both
clinically relevant and biologically meaningful. Subsequently,
the significant factors from the univariate analysis were
combined with clinically pertinent variablesto form a LASSO
regression. The LASSO algorithm was applied to identify the
variables most strongly associated with PFS (Figure 2A).
Through cross-validation, the optimal regul arization parameter
(A) was determined to be 0.043, corresponding to the minimum
partial likelihood deviance. Ultimately, 7 variableswith nonzero
coefficients were retained, that is, age, histological subtype,

pretreatment levels of AFP, pretreatment proportion of CD19"

B cell, CD16'CD56" NK cell, CD4*/CD8" T cell, and the
presence of liver metastases (Figure 2B).
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Figure 2. Feature selection using the least absolute shrinkage and selection operator regression. (A) The variation characteristics of the coefficient of
variables; and (B) the selection process of the optimum value of the parameter A in the least absol ute shrinkage and sel ection operator regression model

by cross-validation method.

Coefficients

Log Lambda

To further evaluate the independent impact of the selected
variables on the prognosis of AGC, a multivariate Cox
regression analysis was performed based on the 7 variables
identified through LASSO regression. Among these, age
(P=.047), histological subtype (P<.001), pretreatment levels of

AFP (P=.02), pretreatment proportion of CD19" B cells (P=.02),

CD4*/CD8" T cells (P=.001), and liver metastasis (P=.001)
were identified as independent predictors of PFS in patients
with AGC (Table 1). The forest plot of the multivariate Cox
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regression analysis is illustrated in Figure 3A. Subsequently,
the 6 independent predictors determined by the multivariate
analysis were incorporated into a nomogram model for visual
representation. In the nomogram, each variable is assigned a
specific weight, and scores for individua predictors are
projected onto atotal points axis. The cumulative scoreisthen
used to estimate the 6-, 12-, and 18-month PFSrates by drawing
avertical line from the total pointsto the outcome axis (Figure
3B).

Table 1. Results of multivariate Cox proportional hazards regression analysis for progression-free survival in the training set.

Characteristics Multivariable P value
Cox regression, hazard ratio (95% CI)

Age (years)

263 vs <63 0.660 (0.44-0.99) .047
Histological type

Signet ring cell carcinoma vs gastric adenocarcinoma 3.35 (1.75-6.40) <0.001
AFP (ng/pL)

219vs<19 1.97 (1.12-3.46) .02
The proportion of CD16"CD56" T cell

227.41vs<27.41 0.61(0.33-1.12) 110
The proportion of CD19"B cell

>12.04 vs<12.04 1.77 (1.08-2.89) .02
The proportion of CD4*/CD8*T cell

22.66 vs <2.66 0.47 (0.30-0.74) .001
Liver metastasis

Without vs with 0.47 (0.31-0.72) .001
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Figure 3. (A) Forest plot showing hazard ratios for different factors. (B) Nomogram for predicting progression-free survival of patients with advanced
gastric cancer receiving first-line treatment with immunochemotherapy. AFP: a pha-fetoprotein.
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Construction of Prognostic Models Based on ML

To establish a robust predictive model, PFS was categorized
into short-PFS and long-PFS groups based on the cut point value
determined in the training cohort. A decision tree (DT) model
was first developed using the training cohort and validated on
the internal validation cohort. However, the DT model
demonstrated suboptimal performance (accuracy=0.5278). Given
the limitations of the DT model described above, we turned to
a more robust ML method—the RSF model. In the training
cohort, we used 5-fold cross-validation and grid search to
optimizethe model’ s hyperparameters. The grid search spanned
arange of valuesfor “mtry” (1 to 30) and “nodesize” (1 to 50),
and the number of trees (“ntree”) was ultimately fixed at 1000.
When “mtry” (the number of variables considered at each split)
was set to 9 and “nodesize’ (the minimum sample size in
terminal nodes) was set to 6, the model achieved an out-of-bag
error rate of 37%. At this configuration, the model reached its
maximum AUC, while the error rate remained low and stable
(Multimedia Appendix 5). The RSF model presents the
relationship between the trees and error rate, and the variable
importance rankings and grid search process. Thetop 9 variables
significantly influencing the model were age, pretreatment

proportion of CD19" B cells, liver metastasis, pretreatment
proportion of CD16"CD56" NK cells, histological subtype,
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pretreatment proportion of CD4'/CD8" T cells, pretreatment
levels of AFP, sex, and PD-L1 expression (Multimedia
Appendix 6).

In addition, we devel oped X GBoost and survival-SVM models
based on ML methods to comprehensively evaluate the
performance of different algorithmsfor predicting prognosisin
patients with AGC. For the XGBoost model, grid search and
cross-validation were used to determine the optimal
hyperparameters, and the model was constructed and fine-tuned
on the training cohort. In contrast, the survival-SVM model
leveraged the strengths of SYMs in handling survival data by
optimizing kernel parametersto capture nonlinear relationships
among samples. Subsequently, the predictive performance of
these 4 models was compared to assess their robustness and
practical applicability.

Comparison of Predictive Performance of 4 Models

To evaluate the predictive performance of the models, we
assessed their discrimination, calibration, and robustness at
different time points (Table 2). The RSF and X GBoost models
exhibit higher C-index values, suggesting stronger predictive
capabilities. In both the internal validation cohort and the
temporal validation cohort, the RSF model demonstrated
significantly superior AUC values compared with the other 3
models, indicating its superior discriminatory power.
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Table 2. The concordance index and area under the curve values for the 4 models in both the internal validation cohort and the temporal validation

cohort.

Model C-index® AuCP

Internal validation cohort (n=72) Temporal validation cohort (n=76)

6 months 12 months 18 months 6 months 9 months 12 months
RSFC 0.828 0.887 0.943 0.945 0.896 0.930 0.950
L ASSO%-Cox 0.719 0.660 0.756 0.778 0.724 0.720 0.728
XGBoost® 0.836 0.743 0.634 0.605 0.771 0.792 0.663
Survival-svm' 0.740 0.789 0.808 0.711 0.802 0.825 0.697

8C-index: concordance index.

BAUC: area under the curve.

°RSF: random survival forest.

4L ASSO: least absolute shri nkage and sel ection operator.
€X GBoost: extreme gradient boosting.

fsvm: support vector machine.

Figures 4A-4F illustrate the ROC curvesfor predicting 6-, 12-,
and 18-month PFS rates using 4 modelsin both thetraining and
internal validation cohorts, while Figures 4G-4l display the
ROC curves for predicting 6-, 9-, and 12-month PFS rates in
the temporal validation cohort. To compare the performance of
these models, we analyzed the differencesin AUC values using
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the DelLong test. The results confirmed that the RSF model
significantly outperformed the other 3 modelsat all time points
(P<.05). Notably, the RSF model exhibited higher AUC values
for 12- and 18-month PFS predictions across all cohorts,
suggesting its strong potential in long-term survival prediction.
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Figure 4. Comparison of time-dependent receiver operating characteristic curves of 4 models for predicting progression-free survival. (A-C) Receiver
operating characteristic curvesin the training cohort; (D-F) receiver operating characteristic curve in the internal validation cohort; and (G-1) receiver
operating characteristic curvesin the temporal validation cohort. Lasso: |east absol ute shrinkage and selection operator; PFS: progression-free survival;
RFS: random survival forest; ROC: receiver operating characteristic; SVM: support vector machine; X GBoost: extreme gradient boosting.
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To assess the accuracy of the predictive models for PFS rates,
we generated calibration curves. The x-axis represents the
predicted PFS values, while the y-axis shows the actual PFS.
The calibration curves for the training, internal validation, and
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temporal validation cohorts were all close to the idea line,
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demonstrating that all 4 models are well-calibrated and that
thereis strong concordance between the predicted and observed
outcomes. This further supports the predictive accuracy of the
RSF model (Figures 5A-5I).
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Figure 5. Calibration curves for the 4 models. (A-C) Calibration curves for the training cohort; (D-F) calibration curves for the internal validation
cohort; and (G-I) calibration curves for the temporal validation cohort. LASSO: least absolute shrinkage and selection operator; PFS: progression-free
survival; RFS: random survival forest; SVM: support vector machine; X GBoost: extreme gradient boosting.
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Furthermore, the continuous AUC curves for the RSF model at
different time pointswere consistently higher, further confirming
its excellent and long-term discriminatory power in both the
internal validation and temporal validation cohorts (Multimedia
Appendix 7).

DCA, which evaluates the clinical utility of models by
calculating net benefits across various threshold probabilities,
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demonstrated that higher net benefits correspond to greater
clinical decision-making value. The DCA curves of the 4 models
reveal ed that the RSF model exhibited consistently superior net
benefits compared with the other 3 models in all datasets,
including the training set, internal validation set, and temporal
validation cohort (Figure 6A-1).
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Figure6. Decision curve analysesfor the 4 models. (A-C) Calibration curvesfor the training cohort; (D-F) calibration curvesfor theinternal validation
cohort; and (G-I) calibration curves for the temporal validation cohort. DCA: decision curve analysis, LASSO: least absolute shrinkage and selection
operator; PFS: progression-free survival; RFS: random survival forest; SVM: support vector machine; XGBoost: extreme gradient boosting.
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Based on comprehensive comparisons of the 4 models in  determined as55.42. Subsequent stratification revealed distinct
discrimination, calibration, consistency, and clinical net benefit, survival outcomes, asillustrated by risk score distribution plots
our findingsindicate that the RSF model demonstratessuperior and KM survival curves. The KM analysis demonstrated
predictive performance compared with the other 3 models. significantly higher survival rates in the low-risk group
Patient risk stratification constitutes a critical component in  compared with the high-risk group across both interna
guiding clinical management decisions. Using risk scores validation and temporal validation cohorts (Figure 7). These
calculated by the RSF model, the optimal cutoff value for findingswere statistically consistent regardless of the evaluation
stratifying the cohort into high-risk and low-risk groups was time frame.
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Figure 7. Kaplan-Meier survival curves of the high and low risk groupsininternal validation cohort (P=.02) and temporal validation cohort (P<.001).
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Feature Importance Analysis

To elucidate the decision-making rationale of the RSF model
in predicting PFS for patients with AGC receiving first-line
immunochemotherapy, interpretability analysis was performed
using SHAP. Figure 8 displays the feature importance bar plot
and SHAP value bee swarm plot for the RSF model. The
analysis revedled that features including age, histological
subtype, pretreatment proportion of CD19 B cells, pretreatment
proportion of CD16 CD56 NK cells, and presence of liver
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metastasis exhibited broad value ranges and substantial positive
and negative effectsin SHAP distributions, identifying them as
pivotal predictors of PFS. Subsequent KM analysis of these 5
key predictors demonstrated that patients aged <63 years, those
with signet ring cell carcinoma histology, elevated pretreatment
proportion of CD19 B cells, reduced pretreatment proportion
of CD16 CD56 NK cells, or presence of liver metastasis
experienced significantly worse prognosis (Multimedia
Appendix 8).

Figure 8. Feature importance ranking bar plot and Shapley Additive Explanations beeswarm plot of the random survival forest model. AFP:
alpha-fetoprotein; HER2: human epidermal growth factor receptor 2; NK: natural killer; PD-L1: programmed death-ligand 1; TMB: tumor mutation

burden.
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Discussion

Principal Results

In this study, we devel oped and compared 4 prognostic models
using a comprehensive set of baseline parameters to predict
PFS in patients with AGC receiving first-line
immunochemotherapy. Our principal finding is that an ML
model based on the RSF algorithm exhibited superior predictive
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performance over the LASSO-Cox, XGBoost, and

survival-SVM models. Specifically, the RSF model exhibited
the highest discriminatory power (as measured by C-index and
AUC) and the greatest clinical utility (as determined by DCA)
across both interna and temporal validation cohorts.
Furthermore, the RSF-derived risk dtratification system
effectively stratified patients into distinct high- and low-risk
prognostic groups, underscoring its potential utility in guiding
individualized therapeutic decisions. Interpretability analysis
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subsequently identified 5 key predictors driving the model’'s
performance: age, histological subtype, pretreatment proportion
of CD19 B cells, pretreatment proportion of CD16 CD56 NK
cells, and the presence of liver metastasis. Collectively, these
findings establish a robust and clinically applicable tool for
personalized prognostic assessment in this patient population.

In-depth analysis of these predictors revealed that
tumor-infiltrating lymphocytes and liver metastasis status
significantly influenced prognosis. Our study observed that
patients with an elevated pretreatment proportion of CD19 B
cells exhibited poorer outcomes. Analysis of the cohort
demonstrated a mPFS of 7.4 (95% Cl 6.67-8.9) monthsin the
high CD19 B cells subgroup compared with 15.9 (95% ClI
10.9-upper limit not reached) monthsin the low CD19 B cells
subgroup. The function of B cells in cancer is highly
heterogeneous, with distinct subsets capable of exerting either
protumorigenic or antitumorigenic effects [33,34]. While the
presence of B cells organized in tertiary lymphoid structure is
often correlated with improved clinical outcomes and response
to immunotherapy in many cancers [35], a substantial body of
evidence also points to a protumorigenic B cell function. This
negative role is frequently mediated by regulatory B cells
(Bregs), which suppress antitumor immunity through the
secretion of inhibitory cytokineslike IL-10, IL-35, and TGF-3
[36,37]. Our observation is consistent with studies specifically
in GC, which have identified intratumoral Bregs (eg,

CD19'CD24"CD38" or CD19'CD24"CD27") that produce
IL-10 [38]. Furthermore, IL-35-secreting B cells have been
found to be elevated in patients with AGC and correlate with
an accumulation of other immunosuppressive popul ations, such
asregulatory T cells[39]. Therefore, it isplausible that the high

CD19" B cell populationidentified in our poor-prognosis cohort
represents a dominance of these immunosuppressive Breg
subsets, which dampen T cell effector function and contribute
to therapeutic resistance. Conversely, other B cell subsets in
the tumour microenvironment (TME) function as potent
antigen-presenting cellsto prime T cell responses or differentiate
into plasma cells that produce tumor-specific antibodies [40].
The continued development and application of advanced
analytical approaches, such assingle-cell and spatial omics, are
essential for comprehensively dissecting B cell heterogeneity
and elucidating the precise mechanisms by which B cells
modulate the immune responsein GC.

NK cells are cytotoxic innate-like lymphocytes essentia for
tumor immunosurveillance, hardwired to recognize and kill
stressed or malignant cells [41]. Evidence from mouse models
confirmsthis, aslong-term NK cell depletion resultsin increased
tumor incidence and severity, demonstrating their fundamental
role in suppressing tumor development [42]. NK cells deploy
multiple antitumor mechanisms. Their activity is often
perforin-dependent, highlighting the importance of direct
cytotoxicity. Furthermore, NK cells express activating receptors
like the high-affinity Fc receptor CD16, enabling them to
mediate antibody-dependent cell-mediated cytotoxicity [43].
This function, critical for many antibody-based therapies,
triggersthekilling of antibody-coated cellsand cytokinerelease.
Beyond direct killing, recent work reveals a crucial “sentinel”
function: NK cells detect nascent tumors and recruit dendritic
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cells to the TME, thereby mobilizing the adaptive immune
response [44,45]. Clinically, numerous studiesfrom The Cancer
Genome Atlas correlate high NK cell infiltration with improved
OS outcomes in diverse cancers, including melanoma, breast
cancer, and GC [46-48].

Additionally, liver metastasis emerged as an independent
adverse prognostic factor for the efficacy of first-line
immunochemotherapy in AGC. KM curve analysis confirmed
that patients with liver metastasis responded poorly to
immunochemotherapy compared with those with distant
metastases in other organs. Mechanistically, this is attributed
to the formation of a highly immunosuppressive TME within
the liver [49]. Numerous studies support this, revealing an

increased presence of cancer-associated fibroblasts,
myeloid-derived  suppressor  cell-like  macrophages,

tumor-associated macrophage-like macrophages, and naive T
cells in liver metastasis. Conversely, conventional dendritic

cells and effector CD8" T cells were diminished [50,51]. This
aligns with existing literature. Liver metastasis is known to
upregulate immune checkpoint moleculeslike PD-1 or PD-L 1,

which can induce systemic exhaustion of tumor-specific CD8"
T cells and attenuate immunotherapy efficacy [52].

In summary, this study is the first to develop and rigorously
validate an ML -based prognostic model specifically for patients
with AGC receiving first-line immunochemotherapy. A key
advantage of this modél is its foundation on readily available,
baseline clinical variables, offering a cost-effective and easily
implementable prognostic tool in contrast to more complex
omics-based assays. We demonstrated that the RSF model
provides superior predictive performance and clinical utility,
effectively stratifying patients into distinct high- and low-risk
groups. Thismodel isdriven by key predictorsidentified in our
analysis, including baseline immune cell proportions (CD19"

B cells and CD16°CD56" NK cells) and the presence of liver
metastasis. Consequently, the RSF model represents a robust
tool that offers quantifiable decision support, holding significant
potential for guiding individualized therapeutic strategies and
enhancing clinical decision-making in this setting.

Limitations and Future Work

Despite successful validation of the RSF model’s performance
in predicting outcomesfor patientswith AGC receiving first-line
immunochemotherapy via internal and tempora validation
cohorts, several limitationswarrant acknowledgment. First, the
single-center, retrospective design is a primary constraint that
may introduce selection bias. Our cohorts were derived from a
single institution with specific patient demographics, referral
patterns, and clinical management protocols. Consequently, the
model may be overfit to these local characteristics, and its
external validity remains to be determined. Second, the high
prevalence of missing valuesfor established biomarkers, notably
PD-L1, MSl status, and TMB, presented asignificant limitation.
This data sparsity precluded a direct comparative anaysis of
the prognostic accuracy of our RSF model against these
established biologically based predictors. Furthermore, it
inhibited our ability to investigate whether the integration of
these potent biomarkers could have further augmented the
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model’s predictive performance. Third, our findings are based
on amultipleimputation approach, which assumesthat dataare
missing at random, a potential source of bias if violated.
However, the robustness of our main conclusionswas confirmed
by a sensitivity analysis, mitigating this concern.

Future research will focus on a multistage approach designed
to rigorously validate, enhance, and ultimately trandate our
RSF model into clinical practice. The most immediate priority
is to address the current limitation of generalizability. This
requires rigorously testing the model’s performance and
robustnessin independent, prospective, and multicenter cohorts
to definitively establish its external validity. Following
successful validation, the next phase will involve enhancing the
model’s predictive power by incorporating broader multiomics
data, such as genomic, transcriptomic, or proteomic profiles.
Thisintegration not only promisesto refine prognostic accuracy
but may also uncover deeper biological insights into the
mechanisms of immunochemotherapy response. Contingent
upon thisrobust validation and enhancement, thefinal objective
is the trandation of the optimized model into an accessible
clinical decision support tool. We envision the development of
a user-friendly platform, such as a web-based calculator or a
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simplified score system. This would provide clinicians with a
practical meansto generate real-time, individualized predictions
for prognosis and recurrence risk, thereby advancing
personalized treatment strategies for patients with AGC.

Conclusions

In conclusion, this study draws the following findings. First, 4
prognostic models were developed in this study, with
comparative analyses demonstrating that the RSF model
outperformed others in discriminative ability, calibration, and
clinical utility. Second, SHAP analysis of the RSF model
identified age, liver metastasis, histological subtype, and
tumor-infiltrating lymphocytes as critical prognostic predictors
for patients with  AGC  undergoing  first-line
immunochemotherapy. Third, this study is the first to use ML
to construct aprognostic model for assessing treatment efficacy
in patientswith AGC receiving first-line immunochemotherapy.
The results underscore the model’s significant clinical valuein
prognostic evaluation and therapeutic decision-making. This
study provides methodological innovation and evidence-based
medical rationale for advancing precision therapy in AGC,
offering substantial potential for clinical translation.
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AGC: advanced gastric cancer

AUC: areaunder the curve

Breg: regulatory B cell

C-index: concordance index

DCA: decision curveanalysis

DT: decision tree

GC: gastric cancer

HER2: human epidermal growth factor receptor 2
ICl: immune checkpoint inhibitor

KM: Kaplan-Meier

KS: Kolmogorov-Smirnov

LASSO: theleast absolute shrinkage and selection operator
ML: machinelearning

MPFS: median progression-free survival

MSI: microsatellite instability

mut/Mb: mutations per megabase

NK: natura killer

OS: overdl surviva

PD-1: programmed cell death protein 1

PD-L1: programmed death-ligand 1

PFS: progression-free survival

RECIST: Response Evaluation Criteriain Solid Tumors
ROC: receiver operating characteristic

RSF: random survival forest

SHAP: Shapley additive explanations

SVM: support vector machine

TMB: tumor mutation burden

TME: tumour microenvironment

XGBoost: extreme gradient boosting
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