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Abstract

Background: Patients with acute coronary syndrome (ACS) who undergo percutaneous coronary intervention (PCI) remain at
high risk for major adverse cardiovascular events (MACE). Conventional risk scores may not capture dynamic or nonlinear
changes in postdischarge MACE risk, whereas machine learning (ML) approaches can improve predictive performance. However,
few ML models have incorporated time-to-event analysis to reflect changes in MACE risk over time.

Objective: This study aimed to develop a time-to-event ML model for predicting MACE after PCI in patients with ACS and
to identify the risk factors with time-varying contributions.

Methods: We analyzed electronic health records of 3159 patients with ACS who underwent PCI at a tertiary hospital in South
Korea between 2008 and 2020. Six time-to-event ML models were developed using 54 variables. Model performance was
evaluated using the time-dependent concordance index and Brier score. Variable importance was assessed using permutation
importance and visualized with partial dependence plots to identify variables contributing to MACE risk over time.

Results: During a median follow-up of 3.8 years, 626 (19.8%) patients experienced MACE. The best-performing model achieved
a time-dependent concordance index of 0.743 at day 30 and 0.616 at 1 year. Time-dependent Brier scores increased and remained
stable across all ML models. Key predictors included contrast volume, age, medication adherence, coronary artery disease severity,
and glomerular filtration rate. Contrast volume ≥300 mL, age ≥60 years, and medication adherence score ≥30 were associated
with early postdischarge risk, whereas coronary artery disease severity and glomerular filtration rate became more influential
beyond 60 days.

Conclusions: The proposed time-to-event ML model effectively captured dynamic risk patterns after PCI and identified key
predictors with time-varying effects. These findings may support individualized postdischarge management and early intervention
strategies to prevent MACE in high-risk patients.

(JMIR Med Inform 2025;13:e81778) doi: 10.2196/81778
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Introduction

Acute coronary syndrome (ACS) is a critical and sudden
presentation of underlying coronary artery disease (CAD); it
requires timely intervention to reduce the risk of adverse
outcomes and mortality [1-5]. The primary method of
revascularization used in the management of ACS is
percutaneous coronary intervention (PCI) because it promptly
improves coronary blood flow and minimizes myocardial
damage [4,6]. Although timely PCI enhances acute survival,
patients often face challenges such as poor medication
adherence, insufficient lifestyle modification, and residual
psychosocial stress following discharge [7,8]. They also remain
at substantial risk for major adverse cardiovascular events
(MACE), particularly within the first year after PCI [9-12].
MACE are typically defined as the composite outcome of
cardiovascular death, nonfatal myocardial infarction, stroke, or
unplanned revascularization [4,13]. Approximately 14.8% to
34.4% of patients who have ACS and undergo PCI experience
MACE within the first year [14,15]. The MACE risk arises from
the combined influence of multiple contributing factors,
including demographic characteristics, lifestyle-related factors,
comorbidities, and medication-related factors such as
polypharmacy and medication use patterns [2,11].

Several risk stratification tools have been developed to estimate
the MACE risk in patients with ACS; among them, the
Thrombolysis in Myocardial Infarction Risk Score and the
Global Registry of Acute Coronary Events Risk Score are the
most widely used [16]. Although these tools provide valuable
support for initial triage and decision-making, they have several
critical limitations. First, they are based on a limited set of
clinical variables; as such, they fail to capture the multifactorial
nature of the MACE risk [7,16]. Second, they do not reflect
temporal variations in MACE risk after discharge; instead, they
rely on static, single timepoint assessments [1,16]. Additionally,
these traditional models are built on simplified linear statistical
assumptions, which may inadequately reflect the complex,
nonlinear relationships between risk factors [1,16]. Moreover,
when risk stratification scores are used, manual data entry is
required, thereby reducing practicality and limiting routine use
in real-world clinical settings; it also lacks adaptability to
incorporate emerging clinical guidelines [17,18].

Some of these limitations have been addressed by recent
advances in machine learning (ML). For instance, ML models
have improved the ability to capture complex nonlinear
relationships, automate risk prediction without manual data
entry, and facilitate faster updates consistent with evolving
clinical knowledge [19,20]. Despite these improvements, most
ML models developed for predicting MACE in patients with
ACS who undergo PCI continue to rely on a limited set of
clinical variables and fail to incorporate time-to-event
information [21-23]. As a result, they overlook the dynamic
nature of MACE risk over time. Particularly, most existing ML
studies have framed MACE prediction as a binary classification
problem [21-23] and focused solely on whether an event will
occur within a fixed time frame. With this approach,
right-censored patients are often excluded, thereby introducing
a potential risk of bias in the prediction model because of the

underlying covariate shift [24]. Moreover, such models have a
limited ability to estimate the probability of event occurrence
across clinically relevant time intervals [25]. Consequently,
their applications are limited in guiding temporally informed
clinical interventions.

Time-to-event ML models that combine the strengths of survival
analysis and ML offer a compelling solution to overcome the
limitations of traditional methods. They can be used to estimate
event occurrence probabilities over time without requiring the
proportional hazards assumption of traditional Cox models;
consequently, they provide greater flexibility for modeling
complex real-world scenarios [24,25]. Accordingly, we aimed
to develop a time-to-event ML model for predicting MACE in
patients who had ACS and underwent PCI. Our model
incorporated clinical, demographic, and medication-related
variables and used time-to-event information to enable dynamic
risk estimation. Furthermore, we aimed to identify how key risk
factors contributed to MACE at different time intervals by
evaluating the time-varying importance of predictive variables,
thereby supporting personalized and time-sensitive clinical
decision-making.

Methods

Study Design
This retrospective cohort study followed the Transparent
Reporting of a Multivariable Prediction Model for Individual
Prognosis or Diagnosis + Artificial Intelligence (TRIPOD+AI)
checklist to uphold methodological rigor and ensure transparent
reporting of the ML–based predictive model [26]. In addition,
we adhered to the Strengthening the Reporting of Observational
Studies in Epidemiology (STROBE) checklist [27]. Details of
the TRIPOD+AI checklist are provided in Multimedia Appendix
1, and the STROBE reporting items are presented in Multimedia
Appendix 2.

Data Sources and Patients
This study was conducted using electronic medical record
(EMR) data from a single tertiary hospital in Seoul, South
Korea. Patients diagnosed with ACS and subjected to PCI
between January 1, 2008, and December 31, 2020, were
identified. The EMR data included demographic, lifestyle,
clinical, and medication-related information. The extracted data
were fully anonymized to protect patient privacy. PCI
procedures were performed in accordance with current guideline
recommendations [4,6,27].

The patients were eligible for inclusion if they met the following
criteria (1) aged 19 years or older and (2) underwent PCI for
the first time. The exclusion criteria were as follows (1) patients
who experienced MACE during the index hospitalization, (2)
patients without follow-up records after discharge, and (3)
patients with missing or erroneous outcome records for MACE
after discharge.

The required sample size was determined on the basis of the
number of predictors and the incidence of 1-year MACE,
following the established recommendations for prediction model
development [28]. An estimated 1-year MACE incidence
ranging from 14.8% to 34.4% was considered [14,15]. The
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minimum required sample size calculated using the lowest event
rate (14.8%) to ensure adequate statistical power was 3006

patients. The final analytical cohort was composed of 3159
patients who satisfied all eligibility criteria (Figure 1).

Figure 1. Flowchart of the study population. ACS: acute coronary syndrome; MACE: major adverse cardiovascular events; PCI: percutaneous coronary
intervention.

Data Collection
Based on an extensive review of the literature and the clinical
expertise of the cardiology and cardiovascular nursing team
participating in the study, 54 variables were selected as potential
predictors of MACE. These variables covered a broad range of
patient characteristics, including demographic variables,
lifestyle-related variables, comorbidities, PCI-related variables,
laboratory tests, medication status, and medication adherence.
The predictor variables and measurement methods are described
in detail in Multimedia Appendix 3.

Predictors
The final set of predictors included 54 variables classified into
7 categories: demographic variables (eg, age, sex, and insurance
type), lifestyle-related variables (eg, smoking status and alcohol
consumption), comorbidities (eg, presence of hypertension,
renal impairment, or diabetes mellitus), PCI-related variables
(eg, contrast volume, catheterization status, and left ventricular
ejection fraction), laboratory tests (eg, troponin I and glomerular
filtration rate [GFR]), medication status (eg, use of antiplatelets,
statins, and beta blockers), and medication adherence indicators
(eg, medication regimen complexity index [MRCI]).

The nutrition risk index was used to assess nutritional status,
where low values indicate a high nutritional risk [29]. The
catheterization status was categorized as elective, urgent,
emergent, or salvage procedures based on the clinical context
[30]. The MRCI was used to quantify the complexity of each
patient’s medication regimen; high scores reflected increased
regimen complexity and potentially poor medication adherence
[31,32]. Changes in the MRCI between admission and discharge
(MRCI changed) were evaluated as a dynamic indicator of
medication adjustment during hospitalization. Laboratory test
values were collected on the basis of the most unfavorable
results on the day of admission, reflecting the worst clinical
status likely to influence outcomes. A complete list of all
predictors and their detailed definitions is available in
Multimedia Appendix 3.

Outcome Variable: MACE
The primary outcome of this study was the time to the first
occurrence of MACE after hospital discharge as identified
through EMRs. MACE was defined as a composite outcome
comprising cardiovascular death, myocardial infarction, stroke,
or revascularization according to standardized definitions from
prior consensus guidelines [4,33]. The final date for data
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collection was December 31, 2021, and survival time was
calculated from the date of hospital discharge.

Statistical Analysis
Means and SDs were used to summarize continuous data;
categorical data were reported as counts and percentages. Groups
were statistically compared using 2-tailed t tests and chi-square
tests.

For the time-to-event analysis, patients who did not experience
MACE during follow-up were treated as censored cases, and
MACE occurrence was coded as a binary outcome (1=event,
0=no event). Statistical analyses were performed using SPSS
(version 25.0; IBM Corp), and the time-to-event ML model was
developed in Python (version 3.9.13; Python Software
Foundation). All tests were 2-tailed, and the significance level
was set at P<.05.

Model Development
The valid ranges of all variables were reviewed and confirmed
by the cardiology and cardiovascular nursing team involved in
this study. Missing values were assumed to follow a
missing-at-random pattern and handled using standard
imputation techniques; specifically, the mode was used for
binary and categorical variables, and the mean was used for
continuous variables. Continuous variables were normalized
using minimum–maximum scaling, and categorical variables
were processed using one-hot encoding.

The dataset was stratified by MACE occurrence and randomly
split into a training set (80%) and a test set (20%) to preserve
the event-to-censoring ratio across sets. Five-fold
cross-validation within the training set was applied to evaluate
model discrimination and calibration and to minimize the risk
of overfitting. Among the time-to-event ML models evaluated,
Survival Quilts served as the primary algorithm. Survival Quilts
is an open-source AutoML framework (implemented from
Survival Quilts GitHub [34]) that constructs an ensemble of
baseline time-to-event models and adaptively adjusts their
weights across time horizons to optimize discriminative
performance while maintaining calibration constraints [24].

In total, six time-to-event ML models were developed and
compared: Survival Quilts, ensemble-based survival models
including Random Survival Forest and CoxBoost (implemented
with scikit-survival v0.23.0); parametric accelerated failure time
models including LogNormal and Weibull (implemented with
lifelines v0.30.0), and the Cox proportional hazards model
(implemented with scikit-survival v0.23.0).

Model development was conducted using the training set, with
20% of this training data reserved as a validation subset for
hyperparameter optimization. Hyperparameters were tuned
through an exhaustive grid search. For ensemble models
(Random Survival Forest and CoxBoost), the number of
estimators was varied across (50, 100, 200, 300, 400, 500). For
accelerated failure time models (LogNormal and Weibull) and
the Cox model, 10 regularization coefficients logarithmically
spaced between 10e-3 and 1 were tested. For Survival Quilts,
time horizons were defined as (30, 60, 90, 180, 270, 365), while
all other parameters were set to default values. Random seeds

were fixed (seed=1234) across all analyses to ensure
reproducibility.

Model Performance
The performance of the time-to-event ML models was evaluated
on the basis of discrimination and calibration, which are
essential factors for assessing the clinical use of time-to-event
ML models [24]. Model performance was examined using the
metrics tailored for right-censored data: the time-dependent
concordance index (C-index) for discrimination and the
time-dependent Brier score for overall prediction accuracy. The
time-dependent C-index measures the effectiveness of the model
in distinguishing individual risks at different time points,
particularly in the presence of censored observations [35]. The
time-dependent Brier score assesses the accuracy of predicted
survival probabilities by comparing them with the actual
distribution of observed events across multiple time points [36].

Permutation-based variable importance scores were calculated
to assess the contribution of individual predictors to model
performance. Through this method, the decrease in model
performance is quantified when the values of a specific variable
are randomly permuted, thereby disrupting its relationship with
the outcome [37]. The greater the reduction in model
performance, the greater the importance of that variable. The
time-dependent C-index was used as the reference metric for
assessing the effect of each permutation; a large drop indicated
a strong influence on the model’s discriminative power.

Partial dependence plots were used to show the effect of changes
in each predictor on the model’s predicted risk. For continuous
variables, predictor values varied from minimum to maximum,
and the corresponding changes in the predicted risk were plotted
[25]. For binary variables, predictions were compared between
0 and 1. For categorical variables, predictions were calculated
for each category.

Ethical Considerations
The study was conducted in accordance with the ethical
principles outlined in the Declaration of Helsinki. This study
was approved by the institutional review board of Seoul
Metropolitan Government-Seoul National University Boramae
Medical Center, Seoul, Korea (IRB No 30-2024-31).

Results

Baseline Characteristics
The baseline characteristics of the study participants are
summarized in Multimedia Appendix 4. The median follow-up
duration for the total cohort (N=3159) was 3.8 (IQR 1.6-6.7)
years; during follow-up, 626 (19.8%) patients experienced
MACE. The mean age of the total patient population was 66.8
years, and 2084 (66%) patients were male. The MACE group
was significantly older than the censored group (68.33, SD
11.29 vs 66.42, SD 11.77 years; P<.001).

Comorbidities were more common in the MACE group than in
the censored group. The prevalence of hypertension was
significantly higher in the MACE group (420/626, 67.1%) than
in the censored group (1573/2533, 62.1%; P=.02). Similarly,
higher proportions were observed for peripheral artery disease
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(23/626, 3.7% vs 41/2533, 1.6%; P=.002), atrial fibrillation
(39/626, 6.2% vs 90/2533, 3.6%; P=.004), heart failure (50/626,
8% vs 81/2533, 3.2%; P<.001), chronic kidney disease (63/626,
10.1% vs 126/2533 5.0%; P<.001), and dialysis-dependent renal
failure (32/626, 5.1% vs 49/2533, 1.9%; P<.001). The
prevalence of diabetes mellitus differed significantly between
the MACE and censored groups (χ²3=39.7, P<.001). Patients
without diabetes were less common in the MACE group
(361/626, 57.7%) than in the censored group (1718/2533,
67.8%).

Unstable angina was the most frequent ACS subtype
(1703/3159, 53.9%) among patients who underwent PCI, and
50.4% (1592/3159) were admitted via the emergency
department. Overall, 40.5% (1281/3159) of patients had
three-vessel disease, and 7.3% (230/3159) had left main disease.
The MACE group received a significantly larger contrast volume
during PCI than the censored group (300.66, SD 140.38 mL vs
256.10, SD 125.98 mL; P<.001). The severity of CAD was also
greater in the MACE group, with three-vessel disease observed

in 53.7% (336/626) patients compared with 37.3% (945/2533)
patients in the censored group (P<.001).

In general, patients who experienced MACE had lower lipid
profiles and higher C-reactive protein levels than those without
MACE. GFR was also lower in the MACE group (70.68, SD
28.73 mL/min/1.73 m² vs 77.25, SD 26.26 mL/min/1.73 m²;
P<.001). Among baseline medications, the most frequently
prescribed were antiplatelets (2932/3159, 92.8%), followed by
nitrates (1992/3159, 63.1%) and statins (1706/3159, 54%).
MRCI at discharge was significantly higher in the MACE group
(26.14, SD 12.68 vs 24.91, SD 11.20; P=.03).

Figure 2 shows the Kaplan–Meier curve of the cumulative
MACE rate after hospital discharge. The main graph presents
the 1-year survival curve. Within 1 year, the incidence of MACE
increased gradually over time; after approximately 270 days, it
increased more sharply. The cumulative MACE rates were 0.8%,
3.6%, and 11.1% after 30 days, 180 days, and 1 year,
respectively. Our analysis primarily focused on the first year
following discharge because most MACE occur, and early
intervention is likely to be the most effective during this period.

Figure 2. Incidence of major adverse cardiac events (MACE) after percutaneous coronary intervention (PCI) in patients with acute coronary syndrome
ACS.

Model Performance
We evaluated the predictive performance of the models for
MACE by using the time-dependent C-index and the
time-dependent Brier score (Figure 3). Figure 3A presents the
time-dependent C-index of multiple models, including Survival
Quilts, CoxBoost, Random Survival Forest, LogNormal,
Weibull, and Cox proportional hazards model. We compared
the model performance on days 30, 60, 90, 180, 270, and 365.

Although the time-dependent C-index values decreased over
time across all models, the Survival Quilts model consistently
demonstrated the highest discriminative performance at each
time point. It also showed the highest C-index of 0.743 on day
30, but this index gradually declined to 0.616 on day 365. Figure
3B displays the time-dependent Brier scores for the same
models. Overall, the Brier scores increased over time. All
models demonstrated comparable and stable Brier scores in the
observed time points.
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Figure 3. Comparison of the time-dependent model performance for major adverse cardiac events (MACE) prediction. (A) Time-dependent concordance
index (C-index) from 30 days to 365 days. (B) Time-dependent Brier scores from 30 days to 365 days. AFT: accelerated failure time; CoxPH: Cox
proportional hazards model; RSF: Random Survival Forest.

Among the 6 time-to-event ML models compared, Survival
Quilts exhibited the best overall performance based on the
time-dependent C-index and Brier score. Therefore, Survival
Quilts was defined as the best model in this study, and
subsequent analyses, including predictor importance and
time-varying risk contribution, were conducted using this model.
A web-based demonstrator of the best-performing model is
available at Streamlit [38], where individualized MACE risk
predictions based on the Survival Quilts algorithm can be
interactively explored.

Variable Importance in the Best Model
Table 1 presents the permutation-based variable importance of
the best model at different time points. At 30 days post
discharge, contrast volume emerged as the strongest predictor,
followed by age and the MRCI at discharge. On day 60, the
most important predictor was CAD severity, followed by GFR.
Conversely, the importance of age and MRCI at discharge
decreased. After day 60, CAD severity and GFR remained the
most important predictors throughout the follow-up.

Table 1. Top 10 predictor variables for major adverse cardiovascular events (MACE) over time in the best machine learning model.

365 days270 days180 days90 days60 days30 daysRank

CAD severityCAD severityCAD severityCAD severityCADa severityContrast volume1

GFRGFRCRPcGFRGFRbAge2

Uric acidIABPe usedGFRUric acidCRPMRCId on discharge3

IABP usedAtrial fibrillationUric acidAgeUric acidLVEFf4

CreatinineUric acidContrast volumeCRPLDLLDLg5

LVEFLVEFIABP usedAtrial fibrillationCreatinineSeverity CAD6

Total cholesterolInsurance typeAtrial fibrillationLVEFLVEFUric acid7

DialysisContrast volumeLVEFIABP usedAgeFluoro duration8

Fluoro durationDialysisHbA1cInsurance typeDialysisCRP9

Insurance typeHemoglobinInsurance typeCreatinineMRCI on dischargeHemoglobin10

aCAD: coronary artery disease.
bGFR: glomerular filtration rate.
cCRP: C-reactive protein.
dMRCI: medication regimen complexity index.
eIABP: intra-aortic balloon pump.
fLVEF: left ventricular ejection fraction.
gLDL: low density lipoprotein.
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Figure 4 shows the partial dependence plots of the top predictors
in the best model: contrast volume, age, MRCI at discharge,
CAD severity, and GFR. An increase in contrast volume was
associated with a high risk of MACE occurrence, particularly
when the contrast volume exceeded 300 mL (Figure 4A). Age
showed similar predicted risks of MACE occurrence among
patients aged 40-49 years and 60-69 years; however, the risk
increased sharply in patients aged >60 years (Figure 4B). The
MRCI at discharge minimally influenced the MACE occurrence

risk up to a score of 20, but the risk progressively increased
above this threshold; it showed a steep rise beyond 30 points
(Figure 4C). The MACE occurrence risk of patients with
three-vessel disease was higher than that of patients with single-
or two-vessel disease (Figure 4D). A high GFR was associated
with a low MACE occurrence risk, while the risk increased

sharply in patients with GFR below 80 mL/min/1.73 m2 (Figure
4E).

Figure 4. Partial dependence plots of key predictors of major adverse cardiovascular events (MACE) based on the best machine learning (ML) model.
(A) Contrast volume and predicted risk of MACE. (B) Age and predicted risk of MACE. (C) The medication regimen complexity index (MRCI) at
discharge and predicted risk of MACE. (D) Severity of coronary artery disease (CAD) and predicted MACE. (E) The glomerular filtration rate (GFR)
and predicted risk of MACE. VD: vessel disease.

Figure 5 illustrates the time-varying patterns of variable
importance for the key predictors based on permutation analysis.
Contrast volume, age, and MRCI at discharge showed the
highest importance on day 30, but they gradually declined over

time. Conversely, CAD severity and GFR became more
important after day 60 and maintained high importance
throughout the follow-up.

Figure 5. Temporal variation in the importance of key variables in the best machine learning (ML) model. CAD: coronary artery disease; GFR:
glomerular filtration rate; MRCI: medication regimen complexity index.
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Discussion

Overview
We identified 5 key predictors, namely, contrast volume, age,
medication adherence (measured by MRCI at discharge),
severity of CAD, and GFR, which showed time-varying
importance in predicting MACE after PCI in patients with ACS.
The risk of MACE occurrence exhibited nonlinear patterns;
specifically, abrupt changes were observed at specific thresholds
rather than a steady increase or decrease. Furthermore, the
temporal patterns of predictor importance revealed 2 distinct
trends. First, contrast volume, age, and medication adherence
were the most influential predictors within the first 30 days after
hospital discharge; however, their importance diminished over
time. Our findings highlighted the importance of optimizing
care during the early postdischarge period to prevent early
adverse events. Second, CAD severity and renal function
emerged as the dominant predictors after 60 days and remained
consistently important throughout the follow-up. These insights
were obtained through the application of a time-to-event ML
framework. This framework could be used to identify nonlinear
risk patterns and temporal changes in predictor importance,
which are difficult to achieve using traditional statistical
methods. By focusing on the first year after discharge, the period
of the highest clinical vulnerability could be determined. Thus,
actionable insights into timely intervention could be provided.

Early Hospital Discharge Period: Within 30 Days
In this study, the risk of MACE increased sharply when the
contrast volume exceeded 300 mL. Contrast volume was
identified as the most important variable in the early hospital
discharge period, particularly within the first 30 days. The sharp
increase in MACE risk above the 300 mL threshold suggests a
nonlinear relationship; thus, contrast volume was an important
early determinant of MACE after PCI. This finding highlighted
the relevance of minimizing contrast exposure during the
procedure to reduce MACE early after hospital discharge.

Our results were consistent with previous studies reporting the
association between a higher contrast volume and the increased
risk of contrast-induced nephropathy and MACE [39,40]. Saito
and Kobayashi [41] examined patients with ACS who received
PCI and found that those treated for multivessel disease received
a higher average contrast volume (295 mL) than those with
single-vessel disease (180 mL); they also exhibited a
significantly increased MACE incidence. Similarly, Yao et al
[40] reported that contrast volumes exceeding 300 mL are a
strong independent risk factor for kidney injury, which in turn
increases MACE incidence. Notably, Ng et al [39] showed that
contrast-induced nephropathy is associated with an
approximately 82% increase in MACE risk within the first 30
days after discharge; however, they also demonstrated that this
risk decreased to 13% between 30 days and 1 year and was no
longer statistically significant beyond 12 months.

This time-varying importance of contrast volume may be
explained by the transient effect of contrast-induced renal injury
occurring in the early post-PCI period. The early increase in
MACE risk is attributed to the occurrence of acute kidney injury
shortly after PCI; however, its effect decreases as renal function

stabilizes over time [42]. Therefore, targeted efforts to minimize
contrast use are crucial, particularly in the periprocedural and
early period after hospital discharge.

From a clinical perspective, the health care team should work
collaboratively to reduce contrast use during PCI. After PCI,
information regarding contrast volume should be clearly
communicated to the ward team to facilitate ongoing monitoring
of renal function, particularly in patients who receive more than
300 mL of contrast and may require closer follow-up. Previous
quality improvement initiatives established that interdisciplinary
collaboration could reduce the incidence of contrast-induced
renal impairment by up to 21% [43]. In patients who had ACS
treated with PCI and received a large contrast volume, outcome
improvement may depend on effective interdisciplinary
communication and coordinated care efforts. In addition,
emerging technologies such as the dynamic coronary roadmap,
which provides real-time vascular guidance without the need
for repeated contrast injections, show potential for applications
in further reducing contrast volume during PCI [44]. The
adoption of such innovations in clinical practice may help
prevent contrast-related complications and reduce the incidence
of MACE following PCI.

In this study, age was identified as an important predictor of
MACE, particularly in the early period after hospital discharge.
The risk of MACE remained relatively stable among patients
aged 40-60 years but increased sharply in those older than 60
years. The importance of age as a predictor was highest at 30
days after discharge and decreased over time. This finding
suggested that older patients are at a greater risk of early MACE
following PCI and may benefit from closer monitoring during
this period. These results were consistent with prior evidence
suggesting that age is a recognized contributor to an increased
MACE risk [45-47]. The increased vulnerability associated with
advancing age may be explained by the cumulative effects of
vascular degeneration, increased prevalence of comorbidities,
and reduced medication adherence [45,47]. Helber et al [48]
reported that patients aged 75 years and older who underwent
PCI for ST-elevation myocardial infarction (STEMI) have higher
risks of in-hospital complications, including bleeding,
cardiogenic shock, and mortality, than younger patients.
However, Chen et al [49] found that MACE incidence does not
significantly differ between older and younger groups at 6
months post-PCI. This result supports the interpretation that the
influence of age on MACE risk diminishes over time as the
effect of acute complications decreases. These findings indicate
that management immediately after the hospital discharge of
older patients with ACS subjected to PCI may help reduce the
risk of early MACE through enhanced surveillance and tailored
interventions.

A key finding of this study is that lower medication adherence,
as reflected by higher MRCI at discharge, was notably related
to a higher likelihood of MACE occurrence, particularly during
the early period after hospital discharge. In our cohort, the mean
MRCI score at discharge was approximately 25, which typically
indicated that patients were prescribed 2 or more additional
medications beyond standard PCI-related medications because
of comorbid conditions.
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Further subgroup analysis based on MRCI component scores,
namely, dosage forms, dosing frequency, and additional user
instructions, revealed that the patients with MRCI scores of 20,
25, and 30 exhibited a progressively higher MACE risk
(Multimedia Appendix 5). Differences in dosage forms were
significant only between the lowest (20) and highest (30) score
groups; conversely, dosing frequency and additional user
instructions significantly differed across all 3 groups. These
findings indicated that all components of medication
adherence—namely, dosage forms, dosing frequency, and
additional user instructions—play a meaningful role in
influencing MACE risk; therefore, comprehensive strategies
should be developed to simplify medication regimens. This
finding is consistent with earlier research, which indicated that
the increased regimen complexity reduces medication adherence
and consequently raises MACE risk [50,51]. In this study, the
predictive importance of medication adherence was also the
highest within the first 30 days during the early period after
hospital discharge and declined thereafter. Therefore, early
intervention strategies should be developed to simplify
medication regimens and improve adherence, particularly during
the early period after hospital discharge, to reduce the risk of
MACE.

Later Hospital Discharge Period: From 60 Days to 1
Year
In this study, CAD severity and renal function, measured by
GFR, emerged as the most important predictors of MACE during
the later period after hospital discharge, particularly beyond 60
days. Patients with more severe CAD, especially those with
three-vessel disease, showed a consistently higher risk of MACE
over time. Similarly, reduced GFR was related to an increased
risk of MACE, independent of acute kidney injury related to
contrast exposure.

These findings were consistent with prior research, which
demonstrated that the extent of CAD reflects the burden of
atherosclerosis, which increases the likelihood of new lesion
development or restenosis over time [52]. Three-vessel disease
has been well established as a predictor of long-term MACE
because of factors such as persistent myocardial ischemia,
plaque instability, and progression of atherosclerosis [4,45,47].
Regarding renal function, our findings highlight that lower GFR
remained a significant independent risk factor for MACE even
beyond the early period of PCI. This finding was consistent
with previous studies showing that reduced GFR, reflecting
chronic kidney dysfunction, independently contributes to
increased MACE regardless of contrast-induced acute kidney
injury [53]. Decreased GFR reflects the progression of chronic
kidney disease, which is closely associated with the increased
long-term MACE incidence [54].

Time-to-Event ML for Risk Prediction
The application of a time-to-event ML framework enabled the
identification of time-varying predictor importance and
nonlinear risk patterns for MACE following PCI in patients
with ACS. Through this approach, risk estimation can be
performed to reflect the changes over time at different hospital
discharge periods, which is difficult to achieve using traditional
statistical models, such as the Cox proportional hazards model.

These findings were consistent with previous studies that
demonstrated the utility of time-to-event ML models in various
clinical contexts. For example, Choi et al [25] applied a
time-to-event ML approach to patients who experienced cardiac
arrest and showed that temporal changes in predictor importance
can guide the optimal timing of reperfusion therapies. Similarly,
Lee et al [24] highlighted that incorporating time-to-event ML
improves prediction accuracy and supports more informed
clinical decision-making.

The ability of time-to-event ML models to determine changes
in risk over time and nonlinear relationships provides
meaningful advantages in long-term risk prediction. In patients
with ACS undergoing PCI, this approach offers the potential to
inform the timing of tailored interventions based on changes in
risk over time. Future studies are warranted to validate these
methods in larger and more diverse patient populations and to
explore their integration into real-time clinical decision support
systems.

Strengths and Implications
This study has several key strengths. First, we developed a ML
model specifically for patients with ACS undergoing PCI; thus,
MACE could be more accurately predicted by incorporating
time-to-event information. Second, we identified nonlinear risk
patterns and specific thresholds for key predictors using
permutation-based variable importance and partial dependence
plots, providing deeper insights into risk dynamics. Third, our
approach could estimate how risk changes over time, which can
support the planning of tailored interventions at different time
points after hospital discharge.

Limitations
This study is subject to several limitations. First, because the
model was developed and internally validated using data from
a single center, there remains a potential risk of overfitting and
optimistic performance estimates despite the use of 5-fold
cross-validation. External validation using multicenter data is
required to confirm generalizability. Second, missing values
were handled under a missing-at-random assumption using
simple imputation. However, this approach may underestimate
variability and does not fully capture the uncertainty associated
with missing data. More advanced strategies, such as multiple
imputation or the k-fold cross validation, could be explored in
future work to reduce potential bias. Third, as this study relied
on EMR data, the available predictors were limited; some
potential risk factors, such as psychosocial variables including
stress, were also not considered. Fourth, all patient data were
collected prior to PCI, and laboratory values were represented
using either maximum values or averaged results from multiple
measurements. Thus, temporal changes in patient condition
after PCI were not reflected in the model. Fifth, medication
adherence was indirectly assessed using the MRCI, which
measures regimen complexity rather than actual adherence
behavior. Although MRCI demonstrated good reliability in this
population, future studies should incorporate the direct measures
of medication adherence to improve predictive accuracy. Sixth,
although the study identified a nonlinear relationship between
contrast volume and MACE risk, particularly beyond 300 mL,
factors such as body weight and renal function ratio were not

JMIR Med Inform 2025 | vol. 13 | e81778 | p. 9https://medinform.jmir.org/2025/1/e81778
(page number not for citation purposes)

Choi et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


considered; results should be carefully interpreted, and further
investigation should be performed. Finally, because of the nature
of secondary data analysis, there may have been data entry errors
or missing values, which could have influenced the results.
Despite these limitations, this study provides meaningful
contributions by demonstrating the utility of time-to-event ML
in predicting MACE in patients with ACS undergoing PCI and
by identifying key risk factors that may inform clinical practice.

Conclusions
We developed a time-to-event ML model to predict MACE in
patients with ACS undergoing PCI. This model incorporated
time-dependent risk estimation during the entire follow-up;
thus, nonlinear risk patterns and temporal changes in predictor

importance could be identified, thereby enhancing
interpretability and clinical applicability. Notably, contrast
volume, age, and medication adherence exhibited the greatest
influence within the first 30 days after hospital discharge;
conversely, the severity of CAD and GFR became more
influential in the later period, particularly beyond 60 days.
Although the model was trained using full follow-up data, our
findings highlighted that the first year after discharge was a
critical window for intervention. During this period, targeted
strategies, such as minimizing contrast use, closely monitoring
renal function, and improving medication adherence, might
provide the most clinical benefit. These insights might help
health care providers implement time-informed, personalized
strategies to improve patient outcomes.
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