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Abstract

Background: Liver fibrosis is a pathological outcome of chronic liver injury and a hallmark of multiple chronic liver diseases.
Magnetic resonance elastography (MRE) provides a non-invasive modality for evaluating the severity of liver fibrosis.

Objective: This study aimed to develop and evaluate deep learning—based segmentation models for the automated assessment
of liver fibrosis using MRE images, with a focus on comparing the performance of a conventional U-Net model and a
UNet-ResNet50-32 x 4d architecture model.

Methods: A retrospective analysis was conducted on 319 patients enrolled between January 2018 and December 2020. MRE
images were processed and segmented using two U-Net-based models. Model performance was assessed through correlation
coefficients, intersection over union (IoU), and additional segmentation metrics.

Results: The UNet-ResNet50-32 x 4d model demonstrated strong agreement with ground truth annotations, achieving
correlation coefficients of 0.952 in the training phase and 0.943 in the validation phase, along with an Dice score of 85.68%,
confirming its high segmentation accuracy.

Conclusions: The UNet-ResNet50-32 x 4d model exhibited robust performance and may serve as a reliable tool for the
rapid and accurate assessment of liver fibrosis severity. The integration of automated segmentation into MRE analysis has the
potential to improve clinical workflows and support timely decision-making in the management of chronic liver disease.
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encephalopathy, which significantly shorten life expectancy
[1,2]. To better stratify disease severity and guide manage-
ment, fibrosis is commonly staged into five categories (FO—

Introduction

Research Background and Motivations

Liver fibrosis is a progressive process that culminates
in cirrhosis, a condition associated with severe compli-
cations such as ascites, esophageal varices, and hepatic
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F4). FO represents the absence of fibrosis, while F1-F3
correspond to progressive but non-cirrhotic stages of chronic
liver disease, during which timely intervention can slow or
even reverse disease progression. F4 indicates established
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cirrhosis, marking a critical threshold where the risk of
decompensation, hepatocellular carcinoma, and mortality
rises sharply. This staging framework not only provides
prognostic insights but also plays a pivotal role in thera-
peutic decision-making, surveillance strategies, and patient
counseling. The progression of liver fibrosis is slow and takes
years to progress from mild liver fibrosis to cirrhosis. If liver
fibrosis is diagnosed early using quicker and more convenient
tools, there is a chance to prevent further deterioration into
cirrhosis [3]. Currently, there are many tools for diagnosing
liver fibrosis, with liver biopsy being the most accurate.
However, due to the risk of bleeding, it is less commonly
used [4]. There are many non-invasive testing methods, such
as ultrasound elastography and magnetic resonance elastogra-
phy (MRE), which have a high capability for diagnosing liver
fibrosis [5,6]. MRE requires manual circling of images for
interpretative reading, which increases the time for doctors
to interpret reports [7]. Therefore, using image segmentation
technology could help reduce the time for interpreting MRE
for liver fibrosis and improve accuracy.

Artificial intelligence (AI) has been widely investigated
in the medical field, with numerous applications across
disease prediction, diagnosis, and clinical decision support.
For instance, computed tomography (CT) imaging has shown
strong potential in predicting cholangiocarcinoma recurrence
[8], while machine learning—based image analysis methods
have been applied for diabetic foot evaluation [9]. Con-
volutional neural networks (CNNs) have been employed
to predict clinical outcomes in patients with stroke [10],
and a YOLOv8 model has demonstrated a high accuracy
in early lung cancer detection [11]. Similarly, combining
chest X-rays with clinical features has yielded favorable
area under the curve performance in osteoporosis screening
[12]. In health care operations, machine learning models
have also been developed to predict emergency department
patient flow, effectively estimating both hourly and daily visit
volumes [13]. Moreover, clinical decision support systems
have been explored for prenatal abnormality diagnosis and
ultrasound applications, though such studies have yet to
incorporate maternal or fetal data during pregnancy [14].
CNNs have been widely applied in liver tumor classifica-
tion, while diverse architectures such as U-Net, UNet++,
Residual Networks (ResNet), SegNet, and fully convolutional
networks have been employed for semantic segmentation
tasks [6,15-18]. However, despite this progress, only one
previous study has reported the application of CNNs for MRE
measurement [19]. By integrating the strengths of U-Net and
ResNet, our Unet-ResNet model achieved superior segmen-
tation performance and training stability, while maintaining
strong agreement with manual evaluation.

Image segmentation represents another important domain
of Al applications, whereby algorithms cluster elements of
a similar nature into coherent segments [20]. This technique
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has been increasingly applied in medical imaging, including
ultrasound imaging [21], CT scans [22], magnetic resonance
imaging (MRI) [23], and X-ray imaging [24]. In liver-related
applications, segmentation methods such as real-time liver
ultrasound segmentation [17] can greatly assist physicians
in diagnosis and treatment planning [25], while CT-based
segmentation is useful for localizing liver tumors [26].
Advanced approaches using deep CNNs [27] and 3D deeply
supervised networks [16] have further improved automated
liver segmentation performance. Researchers have compared
U-Net and V-Net architectures to assess their effectiveness in
the segmentation of microcalcifications [28].

Research Objectives

The aim of this study is to use image segmentation technol-
ogy for the computational interpretation of MRE, enabling
Al to automatically segment MRE images, accurately identify
regions of interest, quantify liver fibrosis levels, and apply
this approach to both training and validation cohorts. Early
and reliable assessment of liver fibrosis is essential for timely
clinical decision-making, yet conventional manual labeling
of MRE images is time-consuming, operator-dependent, and
prone to variability. To address these challenges, this study
further investigates whether advanced architectures such as
UNet-ResNet50-32 x 4d can achieve superior predictive
performance compared with the traditional U-Net model.

Methods

Study Overview

An overview of the automated workflow developed in this
study is shown in Figure 1. This study incorporates an
automated process in which patients undergo MRE exami-
nations, and the imaging data are subsequently uploaded to
the picture archiving and communication system. Once the
upload is completed, the segmentation model is automatically
triggered. During the validation phase, pixel values of the
target regions are obtained directly from the Digital Imaging
and Communications in Medicine (DICOM) images in the
picture archiving and communication system, as interpreted
by experienced radiologists. Since there are discrepancies
between pixel values in DICOM format and those converted
to JPEG, this study relies solely on the pixel values displayed
in the original DICOM files for analysis. Due to discrepan-
cies between pixel values in DICOM and JPEG formats,
this study exclusively uses original DICOM pixel values
for analysis. These values are automatically extracted using
medical image processing libraries that read directly from the
DICOM metadata and image matrix. After segmentation, the
predicted masks and corresponding pixel values are overlaid
on the original images and provided to radiologists to support
clinical evaluation and decision.
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Figure 1. Overview of the automated workflow for liver fibrosis assessment using MRE confidence maps, illustrating image preprocessing,
segmentation with the UNet-ResNet50-32x4d model, and quantitative analysis for clinical application. DICOM: Digital Imaging and Communica-
tions in Medicine; MRE: magnetic resonance elastography; PACS: picture archiving and communication system.
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Ethical Considerations

The study was approved by the Institutional Review Board
of Changhua Christian Hospital (approval no.: 210132). The
Institutional Review Board waived the need for informed
consent considering the retrospective nature of data collected.
This study implemented stringent measures to protect the
privacy of all participants by anonymizing all collected data
to remove any personally identifiable information.

Patients

This retrospective study collected patient data from Jan-
uvary 2018 to December 2020. Patients were eligible if
they underwent MRI for clinical indications and MRE was
performed as part of the MRI protocol. Additional inclusion
criteria were age greater than 20 years and the availability
of demographic information (age and gender). Exclusion
criteria consisted of incomplete imaging or missing demo-
graphic data. Based on these criteria, a total of 320 patients
were initially identified, and 1 patient was excluded due to
incomplete data, resulting in a final cohort of 319 patients
included in the analysis. To ensure the broad applicability and
usability of the proposed model, no further stratification was
made according to the presence of chronic liver disease or
fibrosis.

MRE

MRI was performed with a 1.5-Tesla Aera magnet system
by Siemens AG, equipped with a 16-channel phased-array
body coil. The process involved a specialized MRE setup,
integral to which was an acoustic driver system by Resoun-
dant. The technical details of the MRE imaging sequence
were as follows: a repetition time of 50 ms and an echo time
of 22.7 ms, a flip angle of 25 degrees, and a bandwidth of
260 Hz/pixel. Additionally, the sequence settings included a
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hydrogen resonance frequency of 63.5 MHz, an acquisition
matrix of 256 x 64, a section thickness of 5 mm, and a field
of view of 400 x 400 mm?. For each patient, four to five
confidence maps were automatically generated and post-pro-
cessed directly on the MRI scanner workstation using the
integrated MRE software on the Siemens Syngo MR VEI11
system (MAGNETOM Aera, Skyra, and Avantofit; Siemens
Healthineers), demonstrating adequate wave amplitudes in
specific regions. Manual liver stiffness measurements were
performed by an expert, who delineated the regions of interest
on the confidence maps and calculated the stiffness values
[29]. The stage of liver fibrosis was classified into four
categories based on criteria developed at the same institute
as this study [30]. Significant fibrosis was defined as stage F2
according to the METAVIR scoring system, corresponding to
MRE values =2.8 kPa.

MRE Image Labeling

For this study, the model training was conducted using data
from 92 patients, all of whom had confidence maps generated
from MRE. The annotations for these training images were
meticulously created by a gastroenterologist, ensuring the
reliability and precision of the ground truth used in model
development.

Statistical Analysis

The ¢ test was used for comparison of continues variables of
baseline characteristics. Continuous variables were showed as
mean (SD). The Pearson correlation coefficient was per-
formed to measure the correlation of the two MRE meas-
urements by manual and automatic methods. All statistical
analysis were performed on SPSS version 22.0 (IBM Corp.),
with two-tailed P values <.05 indicating statistical signifi-
cance.
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Model Training

The MRE images used in this study were acquired with a
window center of 400 and a window width of 800, with
an original resolution of 256x204 pixels. Since convolu-
tional operations in the U-Net architecture require adequate
spatial information for effective multi-scale feature extrac-
tion, all images were resized to 512x512 pixels using bilinear
interpolation prior to model training. This resizing step
was performed to preserve structural details and improve
segmentation accuracy. For liver fibrosis segmentation, a
hybrid deep learning model was implemented by combin-
ing U-Net with a ResNet50-32 x 4d encoder, leverag-
ing its capacity to extract multi-scale contextual features
while maintaining spatial resolution. Model optimization
aimed to enhance both training efficiency and segmentation

Table 1. Hyperparameter tuning strategy and optimal settings for the model.
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performance through systematic adjustment of key hyperpara-
meters, with a comprehensive tuning strategy applied across
a range of values, as summarized in Table 1. To address the
pixel-level classification task, the model employed the Binary
Cross-Entropy with Logits Loss as shown in equation (1).

N
L=~ 2% [iog(p) + (1= ylog1 = p)] (V)

Where y; denotes the true label of the i-th sample, p;
represents the predicted probability that the sample belongs
to the positive class, and N indicates the total number of
samples.

Hyperparameter Values

Batch size 32

Loss Binary Cross-Entropy with Logits Loss
Optimizer Stochastic Gradient Descent

Learning rate

3x107%-3x102

Weight decay 0-0.01
Momentum 0.80-0.99
Results of .09. The mean (SD) automated measurement values were

Cohort Characteristics

A total of 319 patients were enrolled in the study and divided
into two cohorts, with 91 patients assigned to the training
group and 228 patients allocated to the testing group. The
baseline characteristics of the two cohorts are summarized in
Table 2. The mean (SD) age was 57.2 (12.4) years in the
training group and 52.6 (12.3) years in the testing group.
There were no statistically significant differences in age,
gender distribution, height, weight, or BMI between the two
groups, as all P values were greater than .05. Similarly,
the mean (SD) MRE stiffness values obtained by manual
measurement were 4.51 (2.85) kPa in the training group
and 3.69 (2.26) kPa in the testing group, with a P value

4.04 (1.93) kPa in the training group and 3.69 (2.28) kPa
in the testing group with a P value of 41, also showing
no significant difference. In contrast, a significant difference
was observed in the proportion of patients with clinically
significant fibrosis stage equal to or greater than F2. Based
on manual MRE assessment, 76% (69/91) of patients in the
training group had fibrosis stage F2 or higher compared
with 52% (118/228) in the testing group, with a P value
of less than .001. Automated MRE analysis identified 75%
(68/91) of patients in the training group and 50% (114/228)
in the testing group with fibrosis stage F2 or higher, also
with a P value of less than .001. These findings confirm the
consistency between manual and automated staging, while
indicating that the prevalence of significant fibrosis was
higher in the training cohort.

Table 2. The baseline characteristics of the training group and testing group.

Characteristics Training group (n=91) Testing group (n=228) P value
Age, years, mean (SD) 57.2(12.4) 52.6 (12.3) 77
Gender, male (%) 48 (53) 137 (60) 23
Height, m, mean (SD) 1.62 (0.08) 1.65 (0.08) 97
Weight, kg, mean (SD) 65.8 (13.2) 67 (12.5) .89
BMI, kg/m2, mean (SD) 25.1(4.2) 24.6 (3.7) 21
MRE? (manual), kPa, mean (SD) 451 (2.85) 3.69 (2.26) 09
MRE (automatic), kPa, mean (SD) 4.04 (1.93) 3.69 (2.28) Al
Fibrosis stage (= F2b) (manual), n (%) 69 (76) 118 (52) <.001
Fibrosis stage (= F2°) (automatic), n (%) 68 (75) 114 (50) <.001

®MRE: magnetic resonance elastography.

bLiver fibrosis severity was determined using MRE, with stage F2 defined as MRE =2.8 kPa [30].
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Automatic Labeling Process

Figure 2 illustrates the template for the auto-labeling process
generated by the UNet-ResNet50-32 x 4d algorithm, a
widely validated and robust architecture for medical image
segmentation deep learning architecture specifically designed

Su et al

for semantic segmentation tasks. The auto-labeling template
demonstrates the effectiveness of the model in accurately
identifying and segmenting key regions of interest within
the MRE confidence maps, aligning closely with expert
annotations.

Figure 2. Overall architecture of the proposed UNet-ResNet50-32x4d model for automated liver segmentation and fibrosis staging using MRE

confidence maps. MRE: magnetic resonance elastography.
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Experimental Environment

All experiments in this study were conducted on a high-per-
formance workstation equipped with an NVIDIA RTX 4090
GPU, an Intel Core i9-13900K CPU, and 128 GB of RAM.
The deep learning models were implemented using PyTorch
with CUDA 11.8 (torch 2.1.0+ cull8), enabling accelerated
training and inference.

Table 3. Optimal hyperparameters derived from model training.

Parameters Setting

Table 3 presents the optimal parameter values identified in
this study through training with the UNet-ResNet50-32 x 4d
algorithm, which include a learning rate of 0.005, momentum
of 0.982, and weight decay of 4.457e-06.

Parameters Value
Epoch 32
Learning rate 0.005
Momentum 0.982
Weight decay 4.457e-06

Performance Evaluation

A comparison of the two models using the optimal parameters
obtained from Table 2 indicate that the UNet-ResNet50-32 x
4d model achieved better predictive performance on the test
dataset, whereas the standard U-Net model failed to pro-
duce any meaningful predictions. The average Dice coeffi-
cient, intersection over union (IoU), and Fl-score for the
UNet-ResNet50-32 x 4d model were 85.68%, 75.80%, and
85.68%, respectively; the corresponding values for the U-Net
model were 82.59%, 75.92%, and 82.59%, respectively.
The slightly lower IoU may be attributed to the presence
of outliers during pixel-wise evaluation, which could have

https://medinform.jmir.org/2025/1/e80351

affected the overall segmentation accuracy. The segmenta-
tion performance was quantitatively assessed using the Dice
coefficient, IoU, and F1-score, as shown in equations (2)—(4)

Dice=2VPNGV —=——— 2
|IP|+ GV @
IOU:PnGVm (3)

F1 — score — 2.+ Precision * Recall @)

Precision + Recall
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Figure 3 illustrates the segmentation results for liver segmentation of liver fibrosis imaging and its potential
fibrosis imaging. Overall, the figure underscores the clinical applicability.
enhanced performance of the proposed model in automated

Figure 3. Comparative segmentation performance of conventional U-Net and UNet-ResNet50-32x4d architectures on MRE confidence maps for
liver fibrosis assessment. Panel (A) shows the original MRE confidence map, while panel (B) presents the segmentation outcome generated by the
conventional U-Net model, which delineates the major hepatic region but demonstrates limitations in boundary refinement and structural detail.
In contrast, panel (C) depicts the result obtained using the UNet-ResNet50-32x4d model, which more accurately captures hepatic contours and
structural features, highlighting its superior capability in feature extraction and region identification. MRE: magnetic resonance elastography.

0

200

Table 4 presents the performance of the proposed UNet- suggest that while the model demonstrates robust segmenta-
ResNet50-32x4d model further evaluated across differ- tion across fibrosis stages, challenges remain in capturing
ent fibrosis stages. The segmentation accuracy remained complex tissue patterns in stage F3.

consistently high in the early stages FO-F1, with Dice scores
exceeding 87% and IoU values around 78%. Performance
was slightly reduced in the intermediate stage F2 and more
prominently in stage F3, where Dice and IoU decreased
to 80.54% and 70.49%, respectively. This decline may
reflect the increased heterogeneity and irregularity of fibrosis
distribution in advanced disease. Notably, the model regained
relatively stable performance in stage F4, with Dice and IoU
values of 84.00% and 73.14%, respectively. These findings

Figure 4 presents the correlation between MRE values
obtained from the automated segmentation model and those
measured manually by an expert gastroenterologist in the
testing cohort. The analysis demonstrated a Pearson correla-
tion coefficient of 0.943, confirming a strong positive linear
relationship between the two approaches, even when applied
to unseen data.

Table 4. Segmentation performance of the UNet-ResNet50-32x4d model across different fibrosis stages.

Fibrosis stage Dice (%) Intersection over union (%) Fl-score (%)

FO 8747 78.26 8747

F1 87.98 78.74 87.98

F2 84.11 73.85 84.11

F3 80.54 70.49 80.54

F4 84.00 73.14 84.00
https://medinform.jmir.org/2025/1/e80351 JMIR Med Inform2025 | vol. 13 1e80351 I p. 6
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Figure 4. Correlation between automated segmentation—derived MRE values and manual expert measurements in the testing group. MRE: magnetic

resonance electrography.
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Discussion where the Dice score was 80.54% and IoU was 70.49%. This
likely reflects the increased heterogeneity and irregularity of
.. T fibrosis distribution in advanced disease. Interestingly, the
Principal Findings &y

Automated segmentation using the Al-based model for MRE
measurement proved to be both reliable and effective when
compared with manual segmentation. The strong correlation
and reproducibility observed between the automated and
manual approaches highlight the potential of this tool as a
valuable aid in clinical practice. In this study, we further
evaluated and compared the performance of a standard U-Net
with a UNet-ResNet50-32 x 4d architecture for medical
image segmentation. The findings clearly demonstrated that
the UNet-ResNet50-32 x 4d model substantially outper-
formed the conventional U-Net in segmentation accuracy.
Specifically, while the conventional U-Net achieved a Dice
coefficient of 82.59% and an IoU of 72.92% on the
test dataset, the proposed model further improved perform-
ance, reaching an average Dice coefficient of 85.68%, IoU
of 75.80%, and Fl-score of 85.68%. The slightly lower
IoU relative to the Dice coefficient may be attributed to
the penalization of pixel-level outliers in the union-based
evaluation, which tends to disproportionately impact cases
with small lesion boundaries or heterogeneous textures.

When evaluated across fibrosis stages, the model
demonstrated stable performance in the early stages, with
Dice scores of 87.47% and 87.98% for FO and F1, respec-
tively, and corresponding IoU values close to 78%. A modest
decline was observed in F2 with a Dice score of 84.11%
and IoU of 73.85%, with the lowest performance in F3
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model recovered performance in F4, achieving a Dice score
of 84.00% and IoU of 73.14%, suggesting that once cirrho-
sis is established, the fibrotic patterns may become more
homogeneous and therefore easier for the model to delineate.

Comparison to Prior Work

MRE is a highly effective non-invasive tool for evaluat-
ing liver fibrosis and serves as a valuable alternative to
liver biopsy. Clinicians typically assess regions of interest
using elastograms with overlaid confidence maps generated
following MRI scans [31]. A previous study has investigated
automated approaches for MRE measurement [32]. An early
method applied intensity membership functions combined
with random walker segmentation to differentiate liver tissue
from surrounding structures, achieving a correlation of 0.981
with manual measurements [32]. Another study introduced
volumetric segmentation using semi-automated proprietary
software to evaluate liver stiffness. Their findings revealed
significant differences between region of interest-based and
volumetric analyses, suggesting that volumetric methods may
provide better detection of heterogeneous fibrosis [33]. More
recently, a CNN-based framework was applied to MRE,
reporting an intraclass correlation coefficient of 0.99 between
automated and manual assessments in clinical patients [19].
In this study, we applied the Unet-ResNet50 model to
segment the liver on MRE confidence maps and measure
liver stiffness. Our approach yielded a strong correlation
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of 0.943 with manual expert measurements, supporting its
potential utility in clinical practice. To the best of our
knowledge, this is the first study to implement a Unet-ResNet
hybrid architecture for MRE segmentation and measurement.
A previous study conducted in healthy volunteers reported
excellent consistency and segmentation performance, with
liver Dice scores reaching 0.95 [34]. This study focused on
automated liver fibrosis staging (FO-F4) and extraction of
MRE-derived stiffness values in kilopascals. Unlike studies
limited to healthy subjects, our cohort consisted of clinical
patients, in whom imaging data inherently exhibit greater
heterogeneity.

Limitations

This study has several limitations. Only gray-scale elasto-
grams with 95% confidence maps were used for segmen-
tation, which may have inadvertently included non-hepatic
tissues such as the gallbladder fossa and large blood vessels.
Despite this, the correlation between manual and automa-
ted methods remained strong. Further refinement of the
segmentation process is needed to achieve more accurate
anatomical delineation of the liver using the UNet-ResNet
model. Key clinical data related to liver disease, such as
iron levels, steatosis, and viral markers, were not collected.
Severe steatosis and iron overload may interfere with MRE
measurements and could not be adequately accounted for
in this analysis. Histological fibrosis scores were unavaila-
ble for most participants, as liver biopsy was not routinely
performed. The absence of biopsy confirmation limits the
accuracy of staging, since MRE values alone may not
fully capture the histopathological spectrum of fibrosis. This
introduces a potential risk of mislabeling fibrosis severity,
particularly in borderline cases or in patients with overlap-
ping liver conditions. This study is subject to data imbal-
ance, as the distribution of patients across different disease
severities was uneven, which may affect the generalizability
and stability of the proposed model. Although the dataset
was partitioned to ensure fairness in training and testing, the
uneven distribution of disease severity remains a potential
source of bias. In particular, when the model is trained
on patients with more advanced disease, its application to
cohorts with milder disease may result in an overestimation
of fibrosis severity and diminished sensitivity to early-stage
changes. Conversely, if a model is optimized for mild cases, it
may underperform in advanced disease populations, resulting
in systematic misclassification. These imbalances highlight
the need for future studies that incorporate paired biopsy and
imaging data, along with balanced cohorts across different

Su et al

severities, to validate the robustness and clinical applicability
of automated MRE-based staging.

Future Directions

Future investigations will need to progress beyond algorith-
mic refinement and incorporate the expansion of patient
cohorts, thereby increasing statistical power and enhancing
the robustness of predictive models. Validation through
multi-center studies will establish reproducibility across
institutions, imaging protocols, and heterogeneous patient
demographics. In parallel, the integration of multimodal
information, including complementary imaging techniques,
clinical parameters, and biomarker profiles, will strengthen
both predictive accuracy and clinical relevance. The inclusion
of expert annotations from multiple specialists, encompassing
hepatologists, radiologists, pathologists, and other domain
experts, will reduce inter-observer variability and further
reinforce the clinical validity of model outputs. These efforts
will enable broader generalizability across diverse popula-
tions and disease severities, ultimately supporting translation
into routine clinical practice.

Conclusions

Early and accurate assessment of liver fibrosis is essential
for enabling timely diagnosis and intervention. In this study,
we developed a U-Net-ResNet50-32 x 4d model to predict
the severity of liver fibrosis. The model achieved correla-
tion coefficients above 0.9 in both training and validation
cohorts and reached an Dice score of 85.68%, demonstrat-
ing strong potential to support accurate fibrosis staging in
clinical practice. Importantly, liver fibrosis staging currently
lacks a universally accepted gold standard. While histol-
ogy remains the traditional reference, it is invasive, limited
by sampling error, and not always available. Our findings
suggest that automated MRE-based methods may provide
a reliable non-invasive alternative, although the absence
of biopsy confirmation introduces potential uncertainties in
staging accuracy.

The strong performance of our model highlights its
practical value and potential to improve efficiency in clinical
decision-making. Future research should validate these
results in larger, multi-center cohorts, integrate complemen-
tary imaging modalities and clinical biomarkers to further
strengthen predictive power, and explore real-time deploy-
ment within radiology workflows to maximize clinical
applicability.
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