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Abstract

Background: Missing data are a common challenge in electronic health record (EHR)-based prediction modeling. Traditional
imputation methods may not suit prediction or machine learning models, and real-world use requires workflows that are
implementable for both model development and real-time prediction.

Objective: We evaluated methods for handling missing data when using EHR data to build clinical prediction models for
patients admitted to the pediatric intensive care unit (PICU).

Methods: Using EHR data containing missing values from an academic medical center PICU, we generated a synthetic
complete dataset. From this, we created 300 datasets with missing data under varying mechanisms and proportions of
missingness for the outcomes of (1) successful extubation (binary) and (2) blood pressure (continuous). We assessed strategies
to address missing data including simple methods (eg, last observation carried forward [LOCF]), complex methods (eg,
random forest multiple imputation), and native support for missing values in outcome prediction models.

Results: Across 886 patients and 1220 intubation events, 18.2% of original data were missing. LOCF had the lowest
imputation error, followed by random forest imputation (average mean squared error [MSE] improvement over mean
imputation: 0.41 [range: 0.30, 0.50] and 0.33 [0.21, 0.43], respectively). LOCF generally outperformed other imputation
methods across outcome metrics and models (mean improvement: 1.28% [range: —0.07%, 7.2%]). Imputation methods showed
more performance variability for the binary outcome (balanced accuracy coefficient of variation: 0.042) than the continuous
outcome (mean squared error coefficient of variation: 0.001).

Conclusions: Traditional imputation methods for inferential statistics, such as multiple imputation, may not be optimal for
prediction models. The amount of missingness influenced performance more than the missingness mechanism. In datasets with
frequent measurements, LOCF and native support for missing values in machine learning models offer reasonable performance
for handling missingness at minimal computational cost in predictive analyses.
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Introduction

Background and Significance

Addressing missing data is necessary for developing a clinical
prediction model. Electronic health record (EHR) data are a
rich data source but present particular challenges. Missing
data may result from lack of documentation or measurement
[1]. EHR data are generated via clinical care, with values
measured at irregular intervals.

Raw EHR data are often transformed into an analytic
dataset by binning variables by time. Missing data arise
if a variable is not measured within a time window [2].
Measurement frequency (and resultant missingness) is often
linked to how abnormal the value is or is expected to be,
such that missingness itself may be informative. Given many
algorithms require complete data, a principled approach to
address missingness is required.

Techniques for handling missing data for inferential
models that seek to describe or causally explain are well
established. Missingness is traditionally categorized into three
mechanisms [3 4]:

1. Missing completely at random (MCAR)—probability of
missingness does not depend on variables in the dataset
or depends only on observed values of covariates
included in the model; for example, a laboratory
technician forgets to record results for a patient,
unrelated to any characteristics of that patient or their
health [5].

2. Missing at random (MAR)—probability of missingness
depends on observed values in the data, including the
outcome; for example, height is not recorded for a
patient but is related to weight and sex of the patient,
which are present in the EHR.

3. Missing not at random (MNAR)—probability of
missingness depends on unobserved values; for
example, no lactate is measured on a patient because
the clinician expects it to be normal.

Bias from MNAR can be intractable for inferential mod-
els [4]. Given EHR data are likely MNAR, this could
be problematic if also true for clinical prediction models.
For inferential models, simple strategies, such as complete
case analysis, mean imputation, and last observation carried
forward, are known to produce biased results [6,7]. Preferred
strategies, such as multiple imputation, incorporate uncer-
tainty into imputed values, thereby accurately characterizing
uncertainty in parameter estimates.

Literature on handling missing data in prediction modeling
is less developed. Unlike inferential models, which focus on
bias and precision in parameter estimates, prediction models
prioritize improving predictive accuracy and interpretability
[4]. Classic statistical imputation methods may be complex
to implement for prediction models [8] or less relevant,
particularly as medicine advances toward ever more complex
machine learning algorithms [4,9,10]. There is little guid-
ance on best practices to address missing data for clinical
prediction models [11]. Methods for handling missing data
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are rarely reported, and complete case analysis is the most
common approach [11,12]. This may not only result in bias
but also risk significant loss of data in high-dimensional
EHR datasets [9]. Machine learning is increasingly being
used to address missing data, both as imputation models
(eg, random forests) [13] and by natively handling missing
data in prediction models themselves, bypassing the need for
imputation altogether. Tree-based methods [14] are particu-
larly suited for this task [9]. Yet, few studies have compared
classic imputation methods with such built-in strategies in
EHR data [9,12].

Real-world application of clinical prediction models
presents additional challenges. Many risk models currently in
practice require complete data or use imputation methods that
may be overly simplistic, limiting their usefulness [15,16].
Implementing models prospectively requires data workflows
that can be applied in the same way to both retrospective
data to build the model and new data for real-time predic-
tion for individuals [4,10,11,15]. There are no established
techniques for managing missing data post-model develop-
ment. Studies assessing methods for handling missing data
in prospective applications on individual patients often used
datasets containing only a few predictors [16,17]. These
findings may not translate to datasets with more variables
because some imputation methods may struggle to handle
large numbers of correlated features and binary variables are
more likely to be perfectly predicted, leading to overfitting.
Furthermore, outcome prediction models after addressing
missing data were often standard statistical methods such as
logistic regression [15,17] or Cox proportional hazard models
[16], when different methods for addressing missingness may
be preferable for predictive machine learning models.

Objective

We used EHR data from a live use case (predicting extu-
bation readiness of children in the pediatric intensive care
unit [PICU]) to generate a synthetic complete dataset to
evaluate multiple methods for imputation and their effects
on predictive performance. We included methods that learn
from training data and apply to new data. As the relative
performance of methods varies by type of missingness (MAR,
MCAR, and MNAR) and proportion of missing values [18],
we varied both in our assessment.

Methods
Study Population

The study population was patients aged >30 days and <18
years old from the PICU at the University of California,
San Francisco (UCSF) Benioff Children’s Hospital intuba-
ted between January 1, 2013, and March 31, 2023. Patient
encounters were eligible for the sample if the child was
intubated for more than 24 hours. We excluded patients
intubated for less than 24 hours as they were likely intubated
for surgeries, procedures, or other indications and extuba-
ted quickly without complications. Children with repeated
intubations were eligible for inclusion for each intubation
event.
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Data

We used EHR data extracted from the UCSF Clinical Data
Warehouse (updated daily from the real-time EHR). Based on
expert opinion, peer-reviewed literature, and group consensus
of the UCSF Pediatric Critical Care Research Group, we
selected a broad range of clinical, physiologic, and laboratory
variables in the EHR that could be relevant to extubation
readiness including: vital signs, ventilator settings, labora-
tory values, medications, neurological status, fluid balance,
and other patient characteristics (Table S1 in Multimedia
Appendix 1). Raw data were collapsed into 4-hour time
windows [1] containing the mean of each numeric or binary
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variable and mode of each multi-level categorical variable,
resulting in 99 variables. Collapsing variables into time
windows made imputation more tractable as it increased the
probability of at least 1 nonmissing value per time window
and more computationally feasible by decreasing the number
of observations on which we needed to impute. In practice,
nursing assessments are completed at least every 4 hours
(with some assessments in the ICU performed hourly); thus,
the 4-hour interval is clinically meaningful. The first time
window included in the model ended 12 hours after intubation
(Figure 1).

Figure 1. Example patient timeline and resultant data. The example patient timeline depicts 4-hour time windows beginning at intubation and ending
at extubation. The table in the figure demonstrates the data resulting from this patient that would be included in the model. This patient was intubated
at 17:27 on 5/6/2018 and extubated at 08:45 on 5/8/2018. The first time window included as an observation in the model ended 12 hours after
intubation at 05:27 on 5/7/2018. Time-varying data from the prior 2 time windows were included for each observation as lagged variables to capture
the trajectory of the patient. The final time window included in the model for this patient is from 17:27 to 21:27 on 5/7/2018. The extubation outcome
for each time window was the status 12 hours (or 3 time windows) later. The blood pressure outcome for each time window was the value 4 hours (or

1 time window) later.

Patient timeline

5/6/2018  5/6/2018 5/7/2018  5/7/2018 5/7/2018  5/7/2018 5/7/2018  5/7/2018  5/8/2018 5/8/2018 5/8/2018
17:27 21:27 01:27 05:27 09:27 13:27 17:27 21:27 01:27 05:27 08:45
i
time 1 [ 2 [ 3 [ a | 5 | 6 | 7] 8] 9 [
window ‘ |
intubation first time window last time window extubation
included in data included in data
Patient data

1 5/6/201801:27 5/6/201805:27 3 land2 6 4 5/7/2018 17:27
2 5/6/201805:27 5/7/201809:27 4 2and 3 7 5 5/7/2018 21:27
3 5/7/201809:27 5/7/201813:27 5 3and 4 8 6 5/8/2018 01:27
4 5/7/201813:27 5/7/201817:27 6 4and5 9 7 5/8/2018 05:27
5 5/7/201817:27 5/7/2018 21:27 7 Sand 6 10 8 5/8/2018 08:45

The binary outcome of successful extubation was defined
as extubation that did not result in reintubation within 48
hours. The extubation outcome assigned to each time window
indicated status 12 hours after the end of the time window
(Figure 1; Multimedia Appendix 1), as we aimed to predict
successful extubation prior to clinician actions indicating
they already decided to extubate a patient. A secondary
outcome of age-adjusted systolic blood pressure percentile
[19] was added to ascertain whether findings were similar for
a continuous outcome. The blood pressure outcome assigned
to each time window was the value 4 hours after the end of
the time window.

To generate a synthetic dataset with no missing values
(Figure 2), we filled in missing numeric values with linear
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interpolation between last value observed and next value
observed [20]. We filled in all remaining missing values with
the nearest nonmissing value. For never observed variables
(14% of cells), we made reasonable assumptions (eg, we
used the standard endotracheal tube [ETT] size formula [age
in years/4+4] for pediatrics to fill in missing ETT sizes
[21]) and then filled in remaining missingness using the
missRanger package [22], which implements random forest
imputation with predictive mean matching and is optimized
for speed and memory efficiency. Analyses were conducted
in R version 4.3.2 [23].
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Figure 2. Experimental methods flowchart. EHR: electronic health record.
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Missingness Mechanisms

We induced missingness in the complete, synthetic dataset to
simulate 5 missing data mechanisms:

1. MCAR

2. MAR

3. weak MNAR (twice as much weight given to
observed compared with missing variables to determine
missingness)
moderate MNAR (equal weight given to observed
compared with missing variables to determine
missingness)
strong MNAR (missingness solely based on missing
variables)

For each, we created 3 scenarios varying the amount of
missingness: approximately 0.5x, 1x, and 2x the percentage
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of missing cells in the original data, generating 15 total
missingness scenarios. We divided variables into 5 groups
(Table S1 in Multimedia Appendix 1) to create patterns
of missing data. The outcome was allowed to influence
missingness in MAR and MNAR scenarios (Multimedia
Appendix 1). Using the ampute command in the mice package
[24], we induced missingness in 20 unique datasets (enough
to have a distribution of results, but not exceed our computing
power) for each of the 15 scenarios, resulting in 300 datasets
per outcome. All datasets for both outcomes contained the
same predictor variables.

Imputation Methods

To incorporate temporal patterns in the predictors, we added
values of time-varying variables from the prior 2 lagged time
windows to each row for a total of 265 features. These data
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were structured in wide format, such that each row inclu-
ded the current value and its 2 lags as separate variables.
This allowed the imputation models to use all 3 time points
to inform each other’s missing values. For simplicity, we
treated these repeated measurements as distinct variables in
imputation models (rather than using a multilevel model).
While some studies suggest this approach yields compara-
ble performance [25], others have reported advantages of
multilevel models [26]. Data were split into training (75%
of intubations) and test (25% of intubations) sets ordered by
date, with earlier intubations included in training and later
ones in test. We ensured each patient was only in either the
training or test set.

To simulate a real-time prediction workflow, imputation
models were built using only training data and excluded
the outcome [15]. In total, 6 methods to handle missingness
were applied to each amputed dataset (Table 1, Multimedia
Appendix 1):

1. Mean: Mean imputation is frequently used in practice
[27]. We imputed test set values using the unconditional
mean (numeric and binary) or mode (factor) in the
training set.

2. Last observation carried forward (LOCF): This simple
approach is recommended for imputation in time series
data where data are available only before the miss-
ing value [20] (true in prospective implementation of
clinical decision support). We allowed values to be
carried forward indefinitely across time windows.

3. Random forest: Traditional statistical imputation relies
on parametric assumptions. However, nonparametric

Table 1. Methods for handling missing data.
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methods, such as this, have been shown to outper-

form established methods (especially in settings with
complex interactions and nonlinear relationships) [28].
Mice [29] imputes missing values by building a random
forest for each variable, identifying observations in the
same terminal node, and sampling a donor value from
one of these observations.

. Bayesian imputation under the normal linear model

with predictive mean matching (Bayesian/PMM): PMM
is a hot deck method where missing values are imputed
from cases with observed values matched according

to predictions of the imputation model (here, Bayesian
imputation under the normal linear model in mice [29]).
PMM is robust against model misspecification and
ensures imputed values are constrained to the range of
observed data [7].

. Least absolute shrinkage and selection operator

(LASSO): Regularized models, such as LASSO, are
beneficial to handle multicollinearity and prevent
overfitting in high-dimensional data. We used mice [29]
to fit LASSO-penalized regression models on bootstrap
samples of observed data and drew imputed values
from the resulting distributions.

6. Native support for missing data in prediction model (no

imputation required): Some machine learning algo-
rithms can handle missing values directly, without
dropping cases or requiring separate imputation. We
used gradient boosted trees for our primary prediction
model [30]. The LightGBM package [31] allocates
missing values to the bins that optimally minimize loss.

Method Assumptions

Computational complexity

Limitations Benefits

Mean imputation

Last observation carried
forward

Random forest

Bayesian imputation
under the normal linear
model with predictive

¢ Assumes missing

values are similar to

the mean

¢ Assumes stability
over time

« MCAR® or MAR?

¢ MCAR or MAR

Negligible

Negligible

High computational cost

High computational cost

Artificially reduces
variance

Disturbs relationships
between variables

Data remain missing
if no prior
measurement exists
May not reflect true
patient progression
Can introduce bias if
trends are not stable
over time

Requires significant
computational
resources

May not perform
well in small datasets
Dearth of packages
that allow models to
impute on new data
Works best with

large samples

Simple to implement
Constant imputation
creates patterns that
machine learning can
exploit

Simple to implement
Reflects how clinicians
practice for many
variables (assume no
changes or re-measure if
important)

Nonparametric method
handles complex
interactions and
nonlinear relationships
well

Works with mixed data
types (categorical and
continuous)

Robust against model
misspecification
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Method Assumptions Computational complexity Limitations Benefits

mean matching (Bayesian/ ¢ Assumes normality ¢ Dearth of packages * Ensures imputed values

PMM) for underlying that allow models to are within the range of

distribution impute on new data observed data

Least absolute shrinkage ¢ MCAR or MAR High computational cost * May not o Handles

?Eigeslgc)ﬁon operator capture nonlinear multicollinearity well
relationships well ¢ Prevents overfitting in

¢ Dearth of packages high-dimensional data

that allow models to
impute on new data

Native support for missing ¢ Varies by model None for imputation ¢ This capability is ¢ No need for explicit

data i dicti del
ata m prediction modets e Methods [12] include

surrogate splits and
allocating missing
values to bins that
optimally minimize

loss

not available in imputation
all machine learning
algorithms
¢ Performance depends
on algorithm’s
internal handling of

missing values

®MCAR: missing completely at random.
PMAR: missing at random.

We used available software for imputation to avoid the
need to develop custom software and enable our findings
to be more readily applicable to practitioners. We did not
include deep-learning methods in our experiment as they
were impractical with our relatively small sample size. We
generated 30 imputations per dataset using the mice package
[29] for methods 3-5. Models built with the training data were
then used to impute on the test set. We tested the impu-
tations 2 ways. Mice purposefully incorporates uncertainty
into imputations because it is advantageous for inferential
analysis. First, we averaged the imputations to get a more
stable estimate of each missing value to use in a single
outcome model. Second, we implemented multiple imputation
by estimating 30 outcome models and averaging the predicted
probabilities for a final prediction.

Prediction Model

For the outcome prediction model, we used gradient boosted
trees [30]. It is one of the best-performing algorithms in
structured data in general and within biomedical datasets [32]
and uses all cases in training data, even if they are incom-
plete. To assess whether imputation method performance
was consistent across outcome models, we also compared
a LASSO outcome model. However, linear models like
LASSO cannot accommodate missing values, so this was
only performed on imputed datasets. Outcome models were
implemented using the rtemis package [33] with LightGBM
[34] and glmnet [35]. We used 5-fold cross-validation in the
training set to tune hyperparameters and inverse frequency
weighting to upweight the minority class given the data were
unbalanced.

Analysis of Imputation Accuracy

It is established that in imputation for statistical inference,
focusing on improving accuracy of the imputations at the
cost of correctly incorporating true uncertainty leads to biased
and invalid results [7]. However, the relationship between
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imputation accuracy and prediction model performance is less
well-studied. We compared the accuracy of imputations by
calculating mean squared error (MSE) for numeric variables
and classification error for categorical variables in each
dataset and creating box plots. Before calculating MSE,
we standardized the variables by dividing by their standard
deviations in the complete dataset. To calculate MSE for
random forest, Bayesian/PMM, and LASSO, we compared
the average of the 30 imputations to the true value. We also
assessed whether temporal autocorrelation of each varia-
ble was associated with imputation performance across all
methods descriptively using scatterplots and quantified using
correlation coefficients (Multimedia Appendix 1). In addition,
we conducted a sensitivity analysis stratifying imputation
error by whether a variable’s values had been missing in the
original data (and filled in to create the synthetic complete
dataset) versus not originally missing, to evaluate whether
this initial filling step influenced the apparent performance of
the imputation methods.

To assess the accuracy of imputation for different
categories of variables, we built linear models for MSE
and classification error. Each observation’s outcome was the
error value for a given variable in a given dataset. Each
model included imputation type, missingness type, proportion
missing data (0.5x, 1x, and 2x original), and variable group
(Multimedia Appendix 1). We included all 3-way and 2-way
interactions and completed a backward stepwise elimination
procedure based on P values (included P<.05) to determine
the final models.

Analysis of Outcome Model Performance

We assessed the performance of outcome prediction models
for extubation with 2 primary metrics: balanced accuracy [36]
and area under the receiver operating characteristic curve
(AUC) [37]. We present secondary results for sensitivity,
specificity, positive predictive value, negative predictive
value, and F1 [38]. We assessed the performance of the
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outcome prediction models for blood pressure with the
primary metric of MSE. Secondary results are presented for
mean absolute error, root MSE, and R? [39]. We compared
these graphically to the performance of a model built with the
complete data and calculated the coefficient of variation (CV)
to assess variability.

Ethical Considerations

We received ethical approval from the University of
California, San Francisco Institutional Review Board (study
#17-23751), which granted a waiver of informed consent.
No financial incentives were provided to patients. Patient
privacy and confidentiality were protected through secure

Table 2. Description of sample®.

Digitale et al
data storage, restricted access to authorized study personnel,

and compliance with institutional and regulatory require-
ments.

Results

Data

The data contained 886 patients and 1220 intubations, 929
(76.1%) of which ended in successful extubation (Table 2).
The median duration of intubation in the PICU was 4.4 (IQR
2.2-8.5) days, leading to 50,187 four-hour time windows in
the analytic dataset.

Variable Value
Patients

Total, n 886

Female patients, n (%) 405 (45.7)
Race or ethnicity, n (%)

Asian 117 (13.9)

Black 67 (8)

Latinx 340 (40.4)

Other 88 (10.5)

White 229 (27.2)
Intubations

Total, n 1220

Age at intubation (years), median (IQR) 43 (1-12.1)
Outcome, n (%)

Extubation success 929 (76.1)

Extubation failure 100 (8.2)

Death 96 (7.9)

Tracheostomy 36 (3)

Transfer to another unit 25(2)

ETTP change 34 (2.8)
Duration of intubation (days), median (IQR) 44(22-85)

@Patients intubated multiple times during the study period may have multiple intubation events included in the sample. The binary outcome of
successful extubation for the model collapsed all other outcome categories. Here, extubation failure is defined as reintubation within 48 hours, death
is death before or within 48 hours of extubation, and ETT change is an extubation that was immediately and purposefully replaced by another ETT

(eg, to change the size).
PETT: endotracheal tube.

Missingness for each variable in the original data (col-
lapsed into 4 h time windows) varied from 0% (0/56,287;
eg, sex, age) to 77% (43,077/56,287; white blood cells)
(Table 3; Table S2 in Multimedia Appendix 1). Overall,
182% of cells (1,012,668/5,561,767) were missing (Table

https://medinform.jmir.org/2025/1/e79307

S3 in Multimedia Appendix 1). After simulating missingness,
datasets approximating 0.5x, 1x, and 2x missingness of the
original data averaged 9.6%, 18.1%, and 35.9% missing cells,
respectively.
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Table 3. Missingness in original data®.
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Number of 4-hour time windows missing

Percent of 4-hour time windows missing

Variable variable variable
Age at time of intubation (in days) 0 0.0
Medication: total oral morphine equivalents (mg kg™') 0 0.0
Sex 0 0.0
Intake or output total milliliter over the prior 12 hours 167 03
kg’1

Pulse 420 0.7
Respiratory rate (recorded in vital signs) 1179 2.1
ETT’ size 6179 11.0
Respiratory pattern: tachypneic 7290 13.0
PEEP! 8975 159
Exhaled tidal volume kg™! 10,274 18.3
State behavioral scale 15,888 28.2
Secretion amount (categories: none, scant, small, 16,325 29.0
moderate, large, copious)

Glasgow coma scale score 25,751 45.7
pH 25,804 458
Upper extremity motor response 28,839 512
Cough: present 35,254 62.6
White blood cell count 43,077 76.5

#Example variables display the range of proportion of missingness in the original data (N=56,287 4-h time windows; these data include more time
windows than the final analytic dataset because they were compiled before excluding time windows that were constructed solely for creating lagged
variables). Detailed data for all variables are available in Table S2 in Multimedia Appendix 1.

YEET: endotracheal tube.
°PEEP: positive end-expiratory pressure.

Imputation Performance

imputed. Figure 3 presents MSE for datasets for the outcome

of extubation.

Across 300 datasets with induced missingness per outcome,
the same 176 numeric and 6 categorical variables were

https://medinform.jmir.org/2025/1/e79307
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Figure 3. Imputation test performance metrics (extubation): mean squared error. Each point represents mean squared error calculated for 176 numeric
variables for 1 of 300 datasets created for the outcome of extubation. There are 20 datasets per missingness scenario and imputation type represented
in each box plot. AV: average (average of 30 imputations); Bayesian/PMM: Bayesian imputation under the normal linear model with predictive
mean matching; LASSO: least absolute shrinkage and selection operator; LOCF: last observation carried forward; MAR: missing at random; MCAR:

missing completely at random; MNAR: missing not at random.
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The results for the outcome of blood pressure (which imputed
the same variables) were virtually identical (Multimedia
Appendix 2). Performance in the test sets showed that LOCF
had the lowest MSE on average in all missingness scenar-
ios for numeric variables (average improvement of MSE
compared with mean imputation was 0.41 for the outcome
of extubation [range: 0.30, 0.50]). Random forest imputation
was consistently second best (0.33 [0.21, 0.43]), followed
by LASSO (0.26 [0.15, 0.35]), Bayesian/PMM (0.22 [0.07,
0.34]), and finally, mean imputation (Reference). Perform-
ance overall degraded as the proportion of missing data
increased, with proportion missing having a greater effect
than missingness mechanism. Classification error displayed
similar patterns overall for categorical variables (Multimedia
Appendix 3). While LOCF and mean imputation did not
generally overfit in the training data compared with the test
set, all model-based imputation methods overfit the training
data, with random forest doing so the least (Multimedia
Appendices 4 and 5). Temporal autocorrelation was nega-
tively associated with imputation error for all methods except
mean imputation, which showed little association (r=—0.13;
Multimedia Appendix 6). The association was strongest for
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LOCF (r=-0.92), followed by random forest (r=—0.74). For
these, error decreased almost monotonically with increasing
autocorrelation, indicating substantially better accuracy for
more temporally stable variables.

In a sensitivity analysis, we examined whether the initial
filling of originally missing values influenced subsequent
comparisons of imputation performance. Overall, MSE was
lower for values that were missing in the original data and
filled in to create the synthetic complete dataset, especially
for LOCF and random forest imputation (2 methods used to
fill in the original missingness). Still, both LOCF and random
forest continued to achieve the best performance when
imputing values not missing in the original data (Multimedia
Appendix 7).

In models for mean squared error, a significant 3-way
interaction existed between imputation method, proportion
missing, and variable group (Tables S4 and S5 in Multi-
media Appendix 1) due to the fact that (1) all methods
except mean imputation degraded with increased missingness
and (2) variables with a response of “select all that apply”
were more poorly predicted (Multimedia Appendix 8). There
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was no interaction between missingness mechanism and (1)
imputation method or (2) variable group.

Prediction Model Performance
Gradient Boosted Models

Extubation: Balanced accuracy

For the outcome of extubation using gradient boosted models,
balanced accuracy was the highest for LOCF (Figure 4).

Digitale et al

Mean imputation and no imputation (native support for
missing values) performed almost as well. Random forest
(both averaged and multiple imputation) also performed well
at 0.5x and 1x missingness, but its performance degraded
at 2x missingness. The amount of missingness was more
influential than the missingness mechanism (Table S6 in
Multimedia Appendix 1).

Figure 4. Gradient boosted model test performance (extubation): balanced accuracy. Each point represents balanced accuracy for 1 dataset. There
are 20 datasets per missingness scenario and imputation type represented in each box plot. Balanced accuracy in the complete dataset is represented
by a dashed line. AV, average (average of 30 imputations); Bayesian/PMM: Bayesian imputation under the normal linear model with predictive
mean matching; LASSO: least absolute shrinkage and selection operator; LOCF: last observation carried forward; MAR, missing at random; MCAR:
missing completely at random; MI: multiple imputation; MNAR: missing not at random.
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Extubation: AUC averaged, mean imputation, and no imputation had reasonable

Random forest multiple imputation had the highest AUC for
gradient boosted models for 0.5x and 1x missingness, while
LOCF did for 2x missingness (Figure 5). Random forest
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performance but degraded at 2x missingness. The amount of
missingness continued to have a greater effect on perform-
ance than the missingness mechanism.
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Figure 5. Gradient boosted model test performance (extubation): AUC. Each point represents AUC for 1 dataset. There are 20 datasets per
missingness scenario and imputation type represented in each box plot. AUC in the complete dataset is represented by a dashed line. Other
performance outcome metrics (sensitivity, specificity, positive predictive value [PPV], negative predictive value [NPV], and F1) are presented
in Multimedia Appendix 9. AV, average (average of 30 imputations); Bayesian/PMM: Bayesian imputation under the normal linear model with
predictive mean matching; LASSO: least absolute shrinkage and selection operator; LOCF: last observation carried forward; MAR, missing at
random; MCAR: missing completely at random; MI: multiple imputation; MNAR: missing not at random.
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LOCF had the lowest overall MSE (Figure 6). Random
forest (both averaged and multiple imputation) generally had
the next lowest MSE. Unlike in extubation models, mean
imputation and no imputation did not perform substantially
better than other methods. Performance was again more
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sensitive to amount of missingness than to missingness
mechanism; overall, MSE increased in a stepwise fashion
as missingness increased. However, there was less overall
variability (CV=0.001) between models than for balanced
accuracy (CV=0.042) and AUC (CV=0.012).
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Figure 6. Gradient boosted model test performance (blood pressure): mean squared error (MSE). Each point represents MSE for 1 dataset. There
are 20 datasets per missingness scenario and imputation type represented in each box plot. MSE in the complete dataset is represented by a dashed
line. Other performance outcome metrics (mean absolute error [MAE], root MSE, and R?) are presented in Multimedia Appendix 10. AV, average
(average of 30 imputations); Bayesian/PMM: Bayesian imputation under the normal linear model with predictive mean matching; LASSO: least
absolute shrinkage and selection operator; LOCF: last observation carried forward; MAR, missing at random; MCAR: missing completely at random;

MI: multiple imputation; MNAR: missing not at random.

MCAR: 0.5x MCAR: 1x

0.0278-

- ]

0.0276-= atzhebae® ek

0.0274-
MAR: 0.5x MAR: 1x
0.0278-
. . . ® L
[ o
0.0276-—" dmsie st L= O o TawsT-—- "_"
0.0274-
MNAR (weak): 0.5x MNAR (weak): 1x
o 0.0278- i
= ! & [ s ol 1
S joo7e-dmmzartegy TateTTINR
0.0274-
MNAR (moderate): 0.5x MNAR (moderate): 1x
0.0278-

0.027 6~ a2 iy - 5 - ¥ t“":‘:"_“‘_"

0.0274-
MNAR (strong): 0.5x MNAR (strong): 1x
0.0278- { 1
L]
002761 e = s m TarsTrIy
0.0274-
Imputation
LASSO Models

Extubation: Balanced Accuracy

For the LASSO outcome model, performance and patterns
were similar to the gradient boosted model for balanced
accuracy, with LOCF demonstrating top performance (Table
S7 in Multimedia Appendix 1; Multimedia Appendix 11).
Mean imputation did not perform as well in LASSO
models. Interestingly, imputation methods that performed
worst—Bayesian/PMM and LASSO—yielded better results
in LASSO models than in gradient boosted models, with less
variation in performance across methods (CV=0.029).

Extubation: AUC

AUC followed similar patterns to balanced accuracy for
LASSO. LOCF had the best performance. Mean imputa-
tion again performed worse comparatively, and there was
a smaller performance gap between the best and worst
imputation methods relative to gradient boosted models
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(CV=0.011; Table S7 in Multimedia Appendix 1; Multimedia
Appendix 11).

Blood Pressure: MSE

LOCF had the lowest overall MSE (Multimedia Appendix
12). MSE again increased as missingness increased. MSE
of LASSO models for all imputation methods was higher
than gradient boosted models, although LASSO MSE was
consistently closer to the MSE for complete data. The range
between the best and worst imputation methods was narrower
than for gradient boosted models (CV=0.0008).

Overfitting to training data: Both models

Extubation: Balanced Accuracy and AUC

Overfitting to the training data (Multimedia Appendices 13
and 14) increased as proportion of missingness increased. It
was greatest for the worst-performing imputation methods
(Bayesian/PMM and LASSO) in both gradient-boosted and
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LASSO outcome models. It was higher overall for gradient
boosted models than for LASSO outcome models.

Blood Pressure: MSE

Gradient boosted models exhibited more overfitting overall
and higher variability in overfitting than LASSO models
(Multimedia Appendices 15 and 16).

Discussion

Overview

EHR data present challenges in how to handle missing data
when developing clinical prediction models. It is critical to
use methods that are transferable to new data when generat-
ing real-time predictions for use cases like clinical decision
support tools. In a realistic EHR dataset, we compared
imputation methods based on (1) imputation accuracy and (2)
outcome prediction.

Imputation Performance

LOCF and random forest multiple imputation consistently
had the lowest MSE and classification error. LOCF has
performed well in health survey and cohort datasets [18,20].
In our data, per-variable LOCF imputation error decreased
monotonically with first-order autocorrelation, indicating
better performance for more temporally stable variables.
Random forest, while not explicitly designed for longitudinal
data, was informed by lagged variables in our implementation
and therefore also showed some gains for more temporally
stable variables, though the association was weaker than for
LOCF. By contrast, mean imputation does not account for
correlation across repeated measures, and accordingly showed
no relationship between autocorrelation and error. In the
PICU, where many measurements are recorded frequently and
less frequent measurements often indicate presumed stability
over time, LOCF may be particularly suitable, while random
forest may provide added value when temporal patterns are
weaker.

As expected, imputation performance degraded as the
proportion of missingness increased. Jiager et al [13] also
found imputation performance generally worsened when
difficulty (eg, higher missingness fraction and MNAR)
increased. We found that missingness proportion affec-
ted imputation quality more than missingness mechanism.
Although the imputation methods we employed are only
theoretically valid in MCAR and MAR settings, perform-
ance in MNAR data was fairly similar, possibly due to the
availability of repeated measurements over time, which may
have captured underlying patterns. This is fortunate, given
that EHR data are often likely MNAR [9].

Prediction Model Performance

Many studies do not report imputation performance [9,15,
16], focusing instead on prediction performance. In our
experiment, LOCF generally yielded the highest prediction
performance across outcome types and models. We evaluated
whether LOCF’s strong performance was influenced by how
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we constructed the synthetic, complete dataset. Although
it may have been somewhat inflated, sensitivity analyses
confirmed that LOCF remained a top performer. Its accuracy
was greatest for variables with higher first-order autocorrela-
tion, which may help explain its strong performance in this
setting. While criticized in inferential statistics for causing
bias and low standard errors [6,40], here it outperformed
many multiple imputation methods.

Random forest multiple imputation was the best perform-
ing multiple imputation model. Jaeger et al [27] also found
it led to the best predictive performance across 12 imputa-
tion strategies with 2 different outcome models in a registry
dataset. Perez-Lebel et al [9] attributed multiple imputation’s
improved performance to ensembling (averaging multiple
predictors) rather than accurately capturing the distribution
of the missing values (the theoretical basis for its use in
inferential statistics).

Native support for missing values (no imputation) yielded
high balanced accuracy for gradient boosted models and
reasonable performance for other metrics. Perez-Lebel et al
[9] concluded that it had the best predictive performance in
real-world EHR data, with the lowest computational cost.
LOCEF (which they did not test) also has very little computa-
tional cost but may be less broadly applicable.

As with imputation performance, missingness mechanism
had less impact on prediction performance than proportion of
missingness. Performance degraded substantially as missing-
ness fraction increased, consistent with prior findings [13].
Interestingly, performance was similar across MAR, MCAR,
and MNAR scenarios. Some studies suggest explicitly adding
indicator variables for missingness to outcome models
improves prediction in MNAR settings [9,10,41]. However,
others argue against them because they are fragile to
operational and practice changes and may not generalize
well to other settings [11,12,42]. We therefore did not
include such indicators, and performance in MNAR scenar-
ios was comparable to MAR and MCAR scenarios. Machine
learning models with native support for missing data may
exploit missingness patterns for prediction. If no imputation is
employed, missingness patterns should be closely monitored
for drift and its effect on predictive performance [42].

Variability between imputation methods differed by model
type and performance metric. LASSO outcome models
showed less variability than gradient boosted models. In our
experiment, imputation method appeared to have a greater
impact on the binary outcome than the continuous out-
come. Balanced accuracy had the highest variability between
methods, followed by AUC; MSE exhibited substantially less
variability than either. All imputation methods had lower
MSE for gradient boosted models than LASSO models,
indicating choice of outcome model mattered more than
choice of imputation method.

Relationship Between Imputation and
Prediction Performance

The best performing methods for imputation—LOCF and
random forest multiple imputation—also performed well
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in prediction. Thus, our main results for imputation and
prediction performance were largely concordant. Mean
imputation had the worst MSE but performed relatively
well in gradient boosted models, possibly because constant
imputation creates patterns that machine learning can exploit
[9.43]. Its performance dropped in LASSO models. Oth-
ers have noted that more accurate imputation methods do
not always yield better predictions [9,27], especially when
features are weakly correlated [9].

Overfitting in imputation models reduced imputation
accuracy, which subsequently impacted the accuracy of
outcome models. Outcome metrics that overfit more (eg,
balanced accuracy in gradient boosted models) also showed
greater variability between imputation methods in patterns
that reflected differences in imputation accuracy.

Imputation and Interpretability

For clinical decision support, it is important to assess
how missing data handling affects interpretability. The full
promise of artificial intelligence will not be realized if it is
not deemed trustworthy and transparent by humans [4445].
Mean imputation, the most common method of imputation in
machine learning clinical prediction models [12], may reduce
interpretability for clinicians trying to understand predictions
for individual patients, as the mean is not meaningful at the
individual level. Native support by algorithms may improve
interpretability by relying only on recorded values. LOCF
is simple to implement and aligns with clinical reasoning—
if a measurement is expected to change and that change
is important, it will be remeasured if possible. Finally, if
complex methods like random forests (while less interpret-
able themselves) generate accurate imputations that reflect
a biological or clinical relationship between the predictor
and outcome, this could lead to more interpretable outcome
models that are also more robust over time and across
populations [9].

Limitations

The primary limitation of this experiment is its reliance on
both a single dataset and a single method for generating the
complete dataset on which the analysis is based. However,
a key strength is the high fidelity of the data, with detailed,
frequent measurements typical of the intensive care unit. This
contrasts with EHR data from settings like primary care,
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where visits may be months or years apart. Although we
predicted both a binary and continuous outcome, our dataset
was limited to a single PICU at one academic medical center.
Raw data were transformed into a structured format with time
windows and summary variables, a common approach for
EHR data [2,46]. Thus, our findings may not generalize to
other settings or data structures.

We restricted imputation methods in our experiment to
those with readily available packages in R that allowed
model training on 1 dataset and subsequent imputation in
new data. Deep learning methods were not included, nor were
novel approaches [47-49] that may outperform tested methods
but are more complex to implement for applied practition-
ers. Performance could also theoretically be improved by
combining imputation approaches (eg, a SuperLearner [50]).

Most existing imputation packages do not allow users to
save model parameters to apply on new data, limiting the
methods available [15]. Some have proposed workarounds,
such as stacking data from a new patient with all training data
and rerunning multiple imputation models [15,17]. However,
this was computationally infeasible in a dataset of our size.
Privacy concerns may also prevent access to training data
in deployment. Even packages like mice that allow imputa-
tion on single new cases have limitations—each call refits
an iteration of the model, making real-time imputation for
new patients infeasible due to speed. The lack of scalable
imputation tools remains a barrier to progress to deploying
real-time clinical prediction models.

Conclusion

When using EHR data with frequent measurements to build a
prediction model, LOCF offers reasonable performance with
simple implementation. Native support for missing data in
machine learning models, such as gradient boosted trees,
is the least computationally intensive approach, with decent
performance and potentially broader applicability than LOCF.
While multiple imputation is the gold standard for inferential
models, it is extremely computationally intensive, may not be
optimal for prediction models, and may not be feasible in real
time. As clinical prediction models continue to integrate into
real-time patient care, addressing missing data appropriately
remains essential.
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Multimedia Appendix 1

Supplementary methods and tables.
[PDF File (Adobe File), 728 KB-Multimedia Appendix 1]

Multimedia Appendix 2

Imputation test performance metrics (blood pressure): mean squared error. Each point represents mean squared error calculated
for 176 numeric variables for 1 of 300 datasets created for the outcome of blood pressure. There are 20 datasets per missing-
ness scenario and imputation type represented in each box plot. AV: average (average of 30 imputations); Bayesian/PMM:
Bayesian imputation under the normal linear model with predictive mean matching; LASSO: least absolute shrinkage and
selection operator; LOCEF: last observation carried forward.

[PDF File (Adobe File), 126 KB-Multimedia Appendix 2]

Multimedia Appendix 3

Imputation test performance metrics (extubation and blood pressure): classification error. Each point represents classification
error calculated for 6 categorical variables for 1 dataset (of 300 created for the outcome of extubation and 300 created for
the outcome of blood pressure). There are 20 datasets per missingness scenario and imputation type represented in each
box plot. The mice implementation of LASSO cannot accommodate multiclass categorical outcomes; thus, we used a simple
classification tree. AV: average (average of 30 imputations); Bayesian/PMM: Bayesian imputation under the normal linear
model with predictive mean matching; LASSO: least absolute shrinkage and selection operator; LOCF: last observation carried
forward.

[PDF File (Adobe File), 249 KB-Multimedia Appendix 3]

Multimedia Appendix 4

Imputation performance difference between train and test (extubation and blood pressure): mean squared error. Each point
represents the difference in mean squared error between training and test sets calculated for 176 numeric variables for 1
dataset (of 300 created for the outcome of extubation and 300 created for the outcome of blood pressure). There are 20
datasets per missingness scenario and imputation type represented in each box plot. AV: average (average of 30 imputations);
Bayesian/PMM: Bayesian imputation under the normal linear model with predictive mean matching; LASSO: least absolute
shrinkage and selection operator; LOCEF: last observation carried forward.

[PDF File (Adobe File), 257 KB-Multimedia Appendix 4]

Multimedia Appendix 5

Imputation performance difference between train and test (extubation and blood pressure): classification error. Each point
represents the difference in mean squared error between training and test sets calculated for 6 categorical variables for 1
dataset (of 300 created for the outcome of extubation and 300 created for the outcome of blood pressure). There are 20
datasets per missingness scenario and imputation type represented in each box plot. The mice implementation of LASSO
cannot accommodate multiclass categorical outcomes; thus, we used a simple classification tree. AV: average (average of 30
imputations); Bayesian/PMM: Bayesian imputation under the normal linear model with predictive mean matching; LASSO:
least absolute shrinkage and selection operator; LOCEF: last observation carried forward.

[PDF File (Adobe File), 256 KB-Multimedia Appendix 5]

Multimedia Appendix 6

Autocorrelation versus imputation error by method (extubation). Scatterplot of per-variable temporal autocorrelation (AR(1)
coefficient, x-axis) versus imputation error (y-axis; mean squared error (MSE) for numeric variables, classification error for
categorical) using 4-hour windows. Each point represents 1 predictor; higher persistence corresponds to lower error for last
observation carried forward (LOCF).

[PDF File (Adobe File), 23 KB-Multimedia Appendix 6]
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Multimedia Appendix 7

Imputation test performance metrics by missingness in original data (extubation and blood pressure): mean squared error. Each
point represents mean squared error calculated for 176 numeric variables for 1 dataset stratified by whether the value was
missing in the original data (of 300 created for the outcome of extubation and 300 created for the outcome of blood pressure).
There are 20 datasets per missingness scenario and imputation type represented in each box plot. AV: average (average of 30
imputations); Bayesian/PMM: Bayesian imputation under the normal linear model with predictive mean matching; LASSO:
least absolute shrinkage and selection operator; LOCF: last observation carried forward.

[PDEF File (Adobe File), 769 KB-Multimedia Appendix 7]

Multimedia Appendix 8

Marginal means for interaction between imputation method, proportion missing, and variable group (extubation and blood
pressure). We calculated marginal means for interaction from linear models of mean squared error comparing imputed values
to complete dataset (for each outcome: 1 observation [n=264,000] per 176 variables per 300 datasets per 5 imputation
methods). We calculated marginal means for interaction from linear models of classification error comparing imputed values
to complete dataset (for each outcome: 1 observation [n=9000] per 6 variables per 300 datasets per 5 imputation methods)
with random intercepts for each of the 1500 datasets. We included all 3-way and 2-way interactions and completed a backward
stepwise elimination procedure (included P<.05) to determine the final model. Variable group 4, unlike other variable groups,
included mostly indicator variables constructed from “select all that apply” responses in the electronic health record (EHR)
(see Table S1). Bayesian/PMM: Bayesian imputation under the normal linear model with predictive mean matching; LASSO:
least absolute shrinkage and selection operator; LOCF: last observation carried forward.

[PDF File (Adobe File), 77 KB-Multimedia Appendix 8]

Multimedia Appendix 9

Gradient-boosted model test performance (extubation): other metrics. Each point represents performance for 1 dataset. There
are 20 datasets per missingness scenario and imputation type represented in each box plot. Performance in the complete dataset
is represented by a dashed line. AV: average (average of 30 imputations); Bayesian/PMM: Bayesian imputation under the
normal linear model with predictive mean matching; LASSO: least absolute shrinkage and selection operator; LOCF: last
observation carried forward; MI: multiple imputation; NPV: negative predictive value; PPV: positive predictive value.

[PDF File (Adobe File), 1011 KB-Multimedia Appendix 9]

Multimedia Appendix 10

Gradient boosted model test performance (blood pressure): other metrics. Each point represents performance for 1 dataset.
There are 20 datasets per missingness scenario and imputation type represented in each box plot. Performance in the complete
dataset is represented by a dashed line. AV: average (average of 30 imputations); Bayesian/PMM: Bayesian imputation under
the normal linear model with predictive mean matching; LASSO: least absolute shrinkage and selection operator; LOCF:
last observation carried forward; MAE: mean absolute error; MI: multiple imputation; NPV: negative predictive value; PPV:
positive predictive value; RMSE: root mean squared error.
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Multimedia Appendix 11

LASSO test performance (extubation): all metrics. Each point represents performance for 1 dataset. There are 20 datasets per
missingness scenario and imputation type represented in each box plot. Performance in the complete dataset is represented
by a dashed line. AV: average (average of 30 imputations); Bayesian/PMM: Bayesian imputation under the normal linear
model with predictive mean matching; LASSO: least absolute shrinkage and selection operator; LOCF: last observation carried
forward; MAE: mean absolute error; MI: multiple imputation; NPV: negative predictive value; PPV: positive predictive value;
RMSE: root mean squared error.

[PDF File (Adobe File), 1232 KB-Multimedia Appendix 11]

Multimedia Appendix 12

LASSO test performance (blood pressure): all metrics. Each point represents performance for 1 dataset. There are 20 datasets
per missingness scenario and imputation type represented in each box plot. Performance in the complete dataset is represented
by a dashed line. AV: average (average of 30 imputations); Bayesian/PMM: Bayesian imputation under the normal linear
model with predictive mean matching; LASSO: least absolute shrinkage and selection operator; LOCF: last observation carried
forward; MAE: mean absolute error; MI: multiple imputation; MSE: mean squared error; NPV: negative predictive value;
PPV: positive predictive value; RMSE: root mean squared error.
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Multimedia Appendix 13
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Gradient-boosted model difference between train and test (extubation): All performance metrics. Each point represents a
difference in performance between train and test sets for 1 dataset. There are 20 datasets per missingness scenario and
imputation type represented in each box plot. The difference in the complete dataset is represented by a dashed line. AV:
average (average of 30 imputations); Bayesian/PMM: Bayesian imputation under the normal linear model with predictive
mean matching; LASSO: least absolute shrinkage and selection operator; LOCF: last observation carried forward; MAE: mean
absolute error; MI: multiple imputation; MSE: mean squared error; NPV: negative predictive value; PPV: positive predictive
value; RMSE: root mean squared error.
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Multimedia Appendix 14

LASSO model difference between train and test (extubation): all performance metrics. Each point represents a difference in
performance between train and test sets for 1 dataset. There are 20 datasets per missingness scenario and imputation type
represented in each box plot. The difference in the complete dataset is represented by a dashed line. AUC: area under the
receiver operating characteristic curve; AV: average (average of 30 imputations); Bayesian/PMM: Bayesian imputation under
the normal linear model with predictive mean matching; LASSO: least absolute shrinkage and selection operator; LOCF: last
observation carried forward; MAE: mean absolute error; MI: multiple imputation; MSE: mean squared error; NPV: negative
predictive value; PPV: positive predictive value; RMSE: root mean squared error.

[PDF File (Adobe File), 1248 KB-Multimedia Appendix 14]

Multimedia Appendix 15

Gradient boosted model difference between train and test (blood pressure): all performance metrics. Each point represents
a difference in performance between train and test sets for 1 dataset. There are 20 datasets per missingness scenario and
imputation type represented in each box plot. The difference in the complete dataset is represented by a dashed line. AV:
average (average of 30 imputations); Bayesian/PMM: Bayesian imputation under the normal linear model with predictive
mean matching; LASSO: least absolute shrinkage and selection operator; LOCF: last observation carried forward; MAE: mean
absolute error; MI: multiple imputation; MSE: mean squared error; NPV: negative predictive value; PPV: positive predictive
value; RMSE: root mean squared error.
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Multimedia Appendix 16

LASSO model difference between train and test (blood pressure): all performance metrics. Each point represents a difference
in performance between train and test sets for 1 dataset. There are 20 datasets per missingness scenario and imputation type
represented in each box plot. The difference in the complete dataset is represented by a dashed line. AV: average (average of
30 imputations); Bayesian/PMM: Bayesian imputation under the normal linear model with predictive mean matching; LASSO:
least absolute shrinkage and selection operator; LOCEF: last observation carried forward; MAE: mean absolute error; MI:
multiple imputation; MSE: mean squared error; NPV: negative predictive value; PPV: positive predictive value; RMSE: root
mean squared error.

[PDF File (Adobe File), 712 KB-Multimedia Appendix 16]

References

1. Wells BJ, Chagin KM, Li L, Hu B, Yu C, Kattan MW. Using the landmark method for creating prediction models in
large datasets derived from electronic health records. Health Care Manag Sci. Mar 2015;18(1):86-92. [doi: 10.1007/
$10729-014-9281-3] [Medline: 24752545]

2. Tang S, Davarmanesh P, Song Y, Koutra D, Sjoding MW, Wiens J. Democratizing EHR analyses with FIDDLE: a
flexible data-driven preprocessing pipeline for structured clinical data. ] Am Med Inform Assoc. Dec 9,
2020;27(12):1921-1934. [doi: 10.1093/jamia/ocaal39] [Medline: 33040151]

3. Rubin DB. Inference and missing data. Biometrika. 1976;63(3):581-592. [doi: 10.1093/biomet/63.3.581]

Sperrin M, Martin GP, Sisk R, Peek N. Missing data should be handled differently for prediction than for description or
causal explanation. J Clin Epidemiol. Sep 2020;125:183-187. [doi: 10.1016/j.jclinepi.2020.03.028] [Medline: 32540389]

5.  Getzen E, Ungar L, Mowery D, Jiang X, Long Q. Mining for equitable health: assessing the impact of missing data in
electronic health records. J] Biomed Inform. Mar 2023;139:104269. [doi: 10.1016/1.1bi.2022.104269] [Medline:
36621750]

6.  Lachin JM. Fallacies of last observation carried forward analyses. Clin Trials. Apr 2016;13(2):161-168. [doi: 10.1177/
1740774515602688]

7. BuurenS. Flexible Imputation of Missing Data. 2nd ed. CRC Press; 2018. URL: https://stefvanbuuren.name/fimd/sec-
pmm.html [Accessed 2022-11-04]

https://medinform.jmir.org/2025/1/e79307 JMIR Med Inform2025 | vol. 13 1e79307 | p. 17
(page number not for citation purposes)


https://jmir.org/api/download?alt_name=medinform_v13i1e79307_app13.pdf
https://jmir.org/api/download?alt_name=medinform_v13i1e79307_app13.pdf
https://jmir.org/api/download?alt_name=medinform_v13i1e79307_app14.pdf
https://jmir.org/api/download?alt_name=medinform_v13i1e79307_app14.pdf
https://jmir.org/api/download?alt_name=medinform_v13i1e79307_app15.pdf
https://jmir.org/api/download?alt_name=medinform_v13i1e79307_app15.pdf
https://jmir.org/api/download?alt_name=medinform_v13i1e79307_app16.pdf
https://jmir.org/api/download?alt_name=medinform_v13i1e79307_app16.pdf
https://doi.org/10.1007/s10729-014-9281-3
https://doi.org/10.1007/s10729-014-9281-3
http://www.ncbi.nlm.nih.gov/pubmed/24752545
https://doi.org/10.1093/jamia/ocaa139
http://www.ncbi.nlm.nih.gov/pubmed/33040151
https://doi.org/10.1093/biomet/63.3.581
https://doi.org/10.1016/j.jclinepi.2020.03.028
http://www.ncbi.nlm.nih.gov/pubmed/32540389
https://doi.org/10.1016/j.jbi.2022.104269
http://www.ncbi.nlm.nih.gov/pubmed/36621750
https://doi.org/10.1177/1740774515602688
https://doi.org/10.1177/1740774515602688
https://stefvanbuuren.name/fimd/sec-pmm.html
https://stefvanbuuren.name/fimd/sec-pmm.html
https://medinform.jmir.org/2025/1/e79307

JMIR MEDICAL INFORMATICS Digitale et al

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

217.

28.

29.

Wood AM, Royston P, White IR. The estimation and use of predictions for the assessment of model performance using
large samples with multiply imputed data. Biom J. Jul 2015;57(4):614-632. [doi: 10.1002/bimj.201400004] [Medline:
25630926]

Perez-Lebel A, Varoquaux G, Le Morvan M, Josse J, Poline JB. Benchmarking missing-values approaches for predictive
models on health databases. GigaScience. Apr 15,2022;11:giac013. [doi: 10.1093/gigascience/giac013] [Medline:
35426912]

Sisk R, Sperrin M, Peek N, van Smeden M, Martin GP. Imputation and missing indicators for handling missing data in
the development and deployment of clinical prediction models: a simulation study. Stat Methods Med Res. Aug
2023;32(8):1461-1477. [doi: 10.1177/09622802231165001]

Tsvetanova A, Sperrin M, Peek N, Buchan I, Hyland S, Martin GP. Missing data was handled inconsistently in UK
prediction models: a review of method used. J Clin Epidemiol. Dec 2021;140:149-158. [doi: 10.1016/].jclinepi.2021.09.
008] [Medline: 34520847]

Nijman S, Leeuwenberg AM, Beekers I, et al. Missing data is poorly handled and reported in prediction model studies
using machine learning: a literature review. J Clin Epidemiol. Feb 2022;142:218-229. [doi: 10.1016/j.jclinepi.2021.11.
023] [Medline: 34798287]

Jager S, Allhorn A, BieBmann F. A benchmark for data imputation methods. Front Big Data. 2021;4:693674. [doi: 10.
3389/fdata.2021.693674] [Medline: 34308343]

Breiman L, Friedman J, Stone C, Olshen R. Classification and Regression Trees. Wadsworth & Brooks; 1984. URL:
https://www taylorfrancis.com/books/mono/10.1201/9781315139470/classification-regression-trees-leo-breiman-jerome-
friedman-olshen-charles-stone [Accessed 2025-11-10] ISBN: 9781315139470

Hoogland J, van Barreveld M, Debray TPA, et al. Handling missing predictor values when validating and applying a
prediction model to new patients. Stat Med. Nov 10, 2020;39(25):3591-3607. [doi: 10.1002/sim.8682] [Medline:
32687233]

Nijman SWJ, Hoogland J, Groenhof TKJ, et al. On behalf of the UCC-CVRM and UCC-SMART study groups. Real-
time imputation of missing predictor values in clinical practice. Eur Heart J - Digit Health. Mar 1, 2021;2(1):154-164.
[doi: 10.1093/ehjdh/ztaa016]

Janssen KJM, Vergouwe Y, Donders ART, et al. Dealing with missing predictor values when applying clinical
prediction models. Clin Chem. May 2009;55(5):994-1001. [doi: 10.1373/clinchem.2008.115345] [Medline: 19282357]
Ribeiro C, Freitas AA. A data-driven missing value imputation approach for longitudinal datasets. Artif Intell Rev. Dec
2021;54(8):6277-6307. [doi: 10.1007/s10462-021-09963-5]

Rosner B, Cook N, Portman R, Daniels S, Falkner B. Determination of blood pressure percentiles in normal-weight
children: some methodological issues. Am J Epidemiol. Mar 15, 2008;167(6):653-666. [doi: 10.1093/aje/kwm348]
[Medline: 18230679]

Engels JM, Diehr P. Imputation of missing longitudinal data: a comparison of methods. J Clin Epidemiol. Oct
2003;56(10):968-976. [doi: 10.1016/s0895-4356(03)00170-7] [Medline: 14568628]

Ahmed RA, Tube B. Endotracheal Tube. StatPearls Publishing; 2023. [Medline: 30969569]

Mayer M. missRanger: fast imputation of missing values. 2023. URL: https://CRAN.R-project.org/package=missRanger
[Accessed 2025-10-25]

A language and environment for statistical computing. R Core Team. URL: https://www.R-project.org [Accessed
2025-11-04]

Schouten RM, Lugtig P, Vink G. Generating missing values for simulation purposes: a multivariate amputation
procedure. J Stat Comput Simul. Oct 13, 2018;88(15):2909-2930. [doi: 10.1080/00949655.2018.1491577]

Huque MH, Carlin JB, Simpson JA, Lee KJ. A comparison of multiple imputation methods for missing data in
longitudinal studies. BMC Med Res Methodol. Dec 12,2018;18(1):168. [doi: 10.1186/s12874-018-0615-6] [Medline:
30541455]

LiJ, Yan XS, Chaudhary D, et al. Imputation of missing values for electronic health record laboratory data. NPJ Digit
Med. Oct 11,2021;4(1):1-14. [doi: 10.1038/s41746-021-00518-0]

Jaeger BC, Cantor R, Sthanam V, Xie R, Kirklin JK, Rudraraju R. Improving outcome predictions for patients receiving
mechanical circulatory support by optimizing imputation of missing values. Circ Cardiovasc Qual Outcomes. Sep
2021;14(9):e007071. [doi: 10.1161/CIRCOUTCOMES.120.007071] [Medline: 34517728]

Shah AD, Bartlett JW, Carpenter J, Nicholas O, Hemingway H. Comparison of random forest and parametric imputation
models for imputing missing data using MICE: a CALIBER study. Am J Epidemiol. Mar 15, 2014;179(6):764-774. [doi:
10.1093/aje/kwt312] [Medline: 24589914]

Buuren SV, Groothuis-Oudshoorn K. mice: multivariate imputation by chained equations in R. J Stat Softw. 2011;45(3).
[doi: 10.18637/js5.v045.i103]

https://medinform.jmir.org/2025/1/e79307 JMIR Med Inform2025 | vol. 13 1e79307 | p. 18

(page number not for citation purposes)


https://doi.org/10.1002/bimj.201400004
http://www.ncbi.nlm.nih.gov/pubmed/25630926
https://doi.org/10.1093/gigascience/giac013
http://www.ncbi.nlm.nih.gov/pubmed/35426912
https://doi.org/10.1177/09622802231165001
https://doi.org/10.1016/j.jclinepi.2021.09.008
https://doi.org/10.1016/j.jclinepi.2021.09.008
http://www.ncbi.nlm.nih.gov/pubmed/34520847
https://doi.org/10.1016/j.jclinepi.2021.11.023
https://doi.org/10.1016/j.jclinepi.2021.11.023
http://www.ncbi.nlm.nih.gov/pubmed/34798287
https://doi.org/10.3389/fdata.2021.693674
https://doi.org/10.3389/fdata.2021.693674
http://www.ncbi.nlm.nih.gov/pubmed/34308343
https://www.taylorfrancis.com/books/mono/10.1201/9781315139470/classification-regression-trees-leo-breiman-jerome-friedman-olshen-charles-stone
https://www.taylorfrancis.com/books/mono/10.1201/9781315139470/classification-regression-trees-leo-breiman-jerome-friedman-olshen-charles-stone
https://doi.org/10.1002/sim.8682
http://www.ncbi.nlm.nih.gov/pubmed/32687233
https://doi.org/10.1093/ehjdh/ztaa016
https://doi.org/10.1373/clinchem.2008.115345
http://www.ncbi.nlm.nih.gov/pubmed/19282357
https://doi.org/10.1007/s10462-021-09963-5
https://doi.org/10.1093/aje/kwm348
http://www.ncbi.nlm.nih.gov/pubmed/18230679
https://doi.org/10.1016/s0895-4356(03)00170-7
http://www.ncbi.nlm.nih.gov/pubmed/14568628
http://www.ncbi.nlm.nih.gov/pubmed/30969569
https://CRAN.R-project.org/package=missRanger
https://www.R-project.org
https://doi.org/10.1080/00949655.2018.1491577
https://doi.org/10.1186/s12874-018-0615-6
http://www.ncbi.nlm.nih.gov/pubmed/30541455
https://doi.org/10.1038/s41746-021-00518-0
https://doi.org/10.1161/CIRCOUTCOMES.120.007071
http://www.ncbi.nlm.nih.gov/pubmed/34517728
https://doi.org/10.1093/aje/kwt312
http://www.ncbi.nlm.nih.gov/pubmed/24589914
https://doi.org/10.18637/jss.v045.i03
https://medinform.jmir.org/2025/1/e79307

JMIR MEDICAL INFORMATICS Digitale et al

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Statist. 2001;29(5):1180-1232. [doi: 10.
1214/a0s/1013203451]

Shi Y, Ke G, Soukhavong D, et al. Lightgbm: light gradient boosting machine. 2023. URL: https://CRAN.R-project.org/
package=lightgbm [Accessed 2025-10-25]

Olson RS, Cava WL, Mustahsan Z, Varik A, Moore JH. Data-driven advice for applying machine learning to
bioinformatics problems. In: Biocomput 2018 World Scientific. 2018:192-203. [doi: 10.1142/9789813235533 0018]
ISBN: 978-981-323-552-6

Gennatas ED. Towards precision psychiatry: gray matter development and cognition in adolescence. University of
Pennsylvania; 2017. URL: https://repository.upenn.edu/entities/person/8f68097c-4130-40bd-9e6d-453632bbfele
[Accessed 2025-11-04]

Ke G, Meng Q, Finley T, et al. LightGBM: a highly efficient gradient boosting decision tree. Adv Neural Inf Process
Syst Curran Associates, Inc; 2017. URL: https://papers.nips.cc/paper_files/paper/2017/hash/
6449f44a102fde848669bdd9eb6b76fa-Abstract.html [Accessed 2023-12-22]

Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat
Softw. 2010;33(1):1-22. [Medline: 20808728]

Brodersen KH, Ong CS, Stephan KE, Buhmann JM. The balanced accuracy and its posterior distribution. Presented at:
2010 20th Int Conf Pattern Recognit. 3121-3124; 2010.[doi: 10.1109/ICPR.2010.764]

Binuya MAE, Engelhardt EG, Schats W, Schmidt MK, Steyerberg EW. Methodological guidance for the evaluation and
updating of clinical prediction models: a systematic review. BMC Med Res Methodol. Dec 12, 2022;22(1):316. [doi: 10.
1186/s12874-022-01801-8] [Medline: 36510134]

Hicks SA, Striimke I, Thambawita V, et al. On evaluation metrics for medical applications of artificial intelligence. Sci
Rep. Aug 2022;12(1):5979. [doi: 10.1038/s41598-022-09954-8]

Efthimiou O, Seo M, Chalkou K, Debray T, Egger M, Salanti G. Developing clinical prediction models: a step-by-step
guide. BMJ. Sep 3, 2024:e078276. [doi: 10.1136/bmj-2023-078276]

Little RJ, D’ Agostino R, Cohen ML, et al. The prevention and treatment of missing data in clinical trials. N Engl J Med.
Oct 4,2012;367(14):1355-1360. [doi: 10.1056/NEJMsr1203730] [Medline: 23034025]

Sharafoddini A, Dubin JA, Maslove DM, Lee J. A new insight into missing data in intensive care unit patient profiles:
observational study. JIMIR Med Inform. Jan 8, 2019;7(1):e11605. [doi: 10.2196/11605] [Medline: 30622091]

van Smeden M, Groenwold RHH, Moons KG. A cautionary note on the use of the missing indicator method for handling
missing data in prediction research. J Clin Epidemiol. Sep 2020;125:188-190. [doi: 10.1016/j.jclinepi.2020.06.007]
[Medline: 32565213]

Josse J, Prost N, Scornet E, Varoquaux G. On the consistency of supervised learning with missing values. arXiv. Preprint
posted online on 2020. [doi: 10.48550/arXiv.1902.06931]

Payrovnaziri SN, Chen Z, Rengifo-Moreno P, et al. Explainable artificial intelligence models using real-world electronic
health record data: a systematic scoping review. ] Am Med Inform Assoc. Jul 1, 2020;27(7):1173-1185. [doi: 10.1093/
Jamia/ocaa053] [Medline: 32417928]

Shortliffe EH, Sepuilveda MJ. Clinical decision support in the era of artificial intelligence. JAMA. Dec 4,
2018;320(21):2199-2200. [doi: 10.1001/jama.2018.17163] [Medline: 30398550]

Gupta M, Gallamoza B, Cutrona N, Dhakal P, Poulain R, Beheshti R. An extensive data processing pipeline for MIMIC-
IV. Proc Mach Learn Res. Nov 2022;193:311-325. [Medline: 36686986]

Luo Y. Evaluating the state of the art in missing data imputation for clinical data. Brief Bioinform. Jan 17,
2022;23(1):bbab489. [doi: 10.1093/bib/bbab489] [Medline: 34882223 ]

Kazijevs M, Samad MD. Deep imputation of missing values in time series health data: a review with benchmarking. J
Biomed Inform. Aug 2023;144:104440. [doi: 10.1016/].jbi.2023.104440] [Medline: 37429511]

Liu M, Li S, Yuan H, et al. Handling missing values in healthcare data: a systematic review of deep learning-based
imputation techniques. Artif Intell Med. Aug 2023;142:102587. [doi: 10.1016/j.artmed.2023.102587]

van der Laan MJ, Polley EC, Hubbard AE. Super learner. Stat Appl Genet Mol Biol. 2007;6(1). [doi: 10.2202/1544-
6115.1309]

Abbreviations

AUC: area under the receiver operating characteristic curve
CV: coefficient of variation

EHR: electronic health record

ETT: endotracheal tube

LASSO: least absolute shrinkage and selection operator
LOCEF: last observation carried forward

https://medinform.jmir.org/2025/1/e79307 JMIR Med Inform2025 | vol. 13 1e79307 | p. 19

(page number not for citation purposes)


https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
https://CRAN.R-project.org/package=lightgbm
https://CRAN.R-project.org/package=lightgbm
https://doi.org/10.1142/9789813235533_0018
https://repository.upenn.edu/entities/person/8f68097c-4130-40bd-9e6d-453632bbfe1e
https://papers.nips.cc/paper_files/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
http://www.ncbi.nlm.nih.gov/pubmed/20808728
https://doi.org/10.1109/ICPR.2010.764
https://doi.org/10.1186/s12874-022-01801-8
https://doi.org/10.1186/s12874-022-01801-8
http://www.ncbi.nlm.nih.gov/pubmed/36510134
https://doi.org/10.1038/s41598-022-09954-8
https://doi.org/10.1136/bmj-2023-078276
https://doi.org/10.1056/NEJMsr1203730
http://www.ncbi.nlm.nih.gov/pubmed/23034025
https://doi.org/10.2196/11605
http://www.ncbi.nlm.nih.gov/pubmed/30622091
https://doi.org/10.1016/j.jclinepi.2020.06.007
http://www.ncbi.nlm.nih.gov/pubmed/32565213
https://doi.org/10.48550/arXiv.1902.06931
https://doi.org/10.1093/jamia/ocaa053
https://doi.org/10.1093/jamia/ocaa053
http://www.ncbi.nlm.nih.gov/pubmed/32417928
https://doi.org/10.1001/jama.2018.17163
http://www.ncbi.nlm.nih.gov/pubmed/30398550
http://www.ncbi.nlm.nih.gov/pubmed/36686986
https://doi.org/10.1093/bib/bbab489
http://www.ncbi.nlm.nih.gov/pubmed/34882223
https://doi.org/10.1016/j.jbi.2023.104440
http://www.ncbi.nlm.nih.gov/pubmed/37429511
https://doi.org/10.1016/j.artmed.2023.102587
https://doi.org/10.2202/1544-6115.1309
https://doi.org/10.2202/1544-6115.1309
https://medinform.jmir.org/2025/1/e79307

JMIR MEDICAL INFORMATICS Digitale et al

MAR: missing at random

MCAR: missing completely at random
MI: multiple imputation

MNAR: missing not at random

MSE: mean squared error

PICU: pediatric intensive care unit
PMM: predictive mean matching
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