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Abstract

Background: Lateral malleolar avulsion fractures (LMAFs) and subfibular ossicles (SFOs) are distinct entities that both present
as small bone fragments near the lateral malleolus in imaging but require different treatment strategies. Clinical and radiological
differentiation is challenging, which can impede timely and precise management. Magnetic resonance imaging (MRI) is the
diagnostic gold standard for differentiating LMAFs from SFOs, whereas radiological differentiation using computed tomography
(CT) alone is challenging in routine practice. Deep convolutional neural networks (DCNNs) have shown promise in musculoskeletal
imaging diagnostics, but robust, multicenter evidence in this specific context is lacking.

Objective: This study aims to evaluate several state-of-the-art DCNNs—including the latest You Only Look Once (YOLO)
v12 algorithm—for detecting and classifying LMAFs and SFOs in CT images, using MRI-based diagnoses as the gold standard
and to compare model performance with radiologists reading CT alone.

Methods: In this retrospective study, 1918 patients (LMAF: n=1253, 65.3%; SFO: n=665, 34.7%) were enrolled from 2 hospitals
in China between 2014 and 2024. MRI served as the gold standard and was independently interpreted by 2 senior musculoskeletal
radiologists. Only CT images were used for model training, validation, and testing. CT images were manually annotated with
bounding boxes. The cohort was randomly split into a training set (n=1092, 56.93%), internal validation set (n=476, 24.82%),
and external test set (n=350, 18.25%). Four deep learning models—faster R-CNN, single shot multibox detector (SSD), RetinaNet,
and YOLOv12—were trained and evaluated using identical procedures. Model performance was assessed using mean average
precision at intersection over union=0.5 (mAP50), area under the receiver operating curve (AUC), accuracy, sensitivity, and
specificity. The external test set was also independently interpreted by 2 musculoskeletal radiologists with 7 and 15 years of
experience, with results compared with the best-performing model. Saliency maps were generated using Shapley values to enhance
interpretability.

Results: Among the evaluated models, YOLOv12 achieved the highest detection and classification performance, with a mAP50
of 92.1% and an AUC of 0.983 on the external test set—significantly outperforming faster R-CNN (mAP50 63.7%; AUC 0.79);
SSD (mAP50 63%; AUC 0.63); and RetinaNet (mAP50 67.0%; AUC 0.73)—all P<.001. When using CT alone, radiologists
performed at a moderate level (accuracy: 75.6% and 69.1%; sensitivity: 75.0% and 65.2%; specificity: 76.0% and 71.1%), whereas
YOLOv12 approached MRI-based reference performance (accuracy: 92.0%; sensitivity: 86.7%; specificity: 82.2%). Saliency
maps corresponded well with expert-identified regions.

Conclusions: While MRI (read by senior radiologists) is the gold standard for distinguishing LMAFs from SFOs, CT-based
differentiation is challenging for radiologists. A CT-only DCNN (YOLOv12) achieved substantially higher performance than
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radiologists interpreting CT alone and approached the MRI-based reference standard, highlighting its potential to augment
CT-based decision-making where MRI is limited or unavailable.

(JMIR Med Inform 2025;13:e79064) doi: 10.2196/79064
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Introduction

Background
The ankle is the most frequently injured joint in the human
body, accounting for nearly 5% of emergency visits and about
40% of sports-related injuries [1,2]. Inversion or blunt trauma
often results in ligament sprains, muscle strains, or fractures
[2]. Acute lateral malleolar avulsion fractures (LMAFs) occur
in about 15% of inversion sprains and, if missed, may lead to
nonunion, chronic instability, and pain, necessitating stricter
immobilization or surgery compared with simple sprains [3,4].
Small bone fragments near the lateral malleolus may also be
subfibular ossicles (SFOs), either as accessory bones (os
subfibulae) or as remnants of nonunion avulsion fractures [5,6].
SFO prevalence ranges from 0.2% to 6.7% and they are usually
asymptomatic but appear in 10% to 38.5% of chronic ankle
instability cases, suggesting a link to chronic dysfunction [7].
Both LMAF and SFO may cause lateral ankle pain and
instability, making treatment selection more relevant than
etiologic differentiation [8,9]. However, diagnosis is difficult
because of overlapping clinical symptoms and ambiguous
history or physical findings [10]. Radiography, the first-line
imaging, has a missed fracture rate of 14% to 85% owing to
small fragments, minimal displacement, suboptimal imaging
angles, low quality, insufficient clinical context, and anatomical
overlaps [11-15]. Although computed tomography (CT)
improves visualization, large-scale validation for LMAF is
lacking. While fragment morphology on CT can aid in
distinguishing LMAF from SFO [16,17], this is complicated by
smooth edges, incomplete separation, or osteophytes [18].
Magnetic resonance imaging (MRI) excels at detecting bone
marrow edema and ligament injuries [19] but is limited by thick
slices, partial volume effects, contraindications, and poor
emergency availability. Thus, reliable and automated
imaging-based diagnosis remains a key clinical need.

Deep learning and radiomics have achieved impressive results
for the automated detection and classification of musculoskeletal
fractures—including those of the ankle [20], femoral neck [21],
hip [22], knee [23], spine [24], ribs [25], and scapula [26]—by
using various deep convolutional neural network (DCNN)
models, such as You Only Look Once (YOLO) and faster
region-based convolutional neural network (R-CNN). Despite
these advances, most existing studies focus on single-task or
single-model frameworks, leaving performance uncertainties
for tasks requiring differentiation of closely related lesions. To
date, no DCNN-based approaches for automated detection of
LMAF and SFO have been reported. With continuous
architectural innovation, DCNNs are gaining traction for more
complex orthopedic imaging tasks. Early studies focused on

normal anatomy identification or simple diagnoses [27], but
recent work extended to recognizing and classifying a variety
of lesions—including multiple myeloma [28], patellar
dislocation [29,30], osteoarthritis [31], bone age assessment
[32], bone metastasis [33], and lumbar disk herniation [34].
However, automated detection and classification of LMAF and
SFO in CT images remain challenging because of the relatively
simple regional anatomy, diverse injury patterns, overlapping
structures, and frequent imaging artifacts that even experienced
radiologists find difficult. This challenge is more pronounced
in primary hospitals lacking experienced musculoskeletal
imaging specialists, where misdiagnosis rates are higher. Our
study addresses this specific gap and aims to improve diagnostic
accuracy and efficiency for this overlooked region using
DCNNs.

This Study
Studies using multi-model DCNN comparisons for detection
and classification are still scarce. Comparative evaluation of
mainstream architectures is valuable for understanding network
performance and guiding the selection of optimal solutions for
specific clinical tasks. YOLOv12, released by the Ultralytics
team in February 2025, introduces substantial optimizations in
network structure, feature fusion, and inference speed over its
predecessors (eg, YOLOv8 and YOLOv9), achieving a better
balance between accuracy and computational efficiency [35].
In this study, 4 advanced DCNN models—faster R-CNN, single
shot multibox detector (SSD), RetinaNet, and the latest
YOLOv12—were benchmarked for automated detection and
classification of LMAF and SFO in multicenter clinical CT
datasets. The models’ accuracy was quantitatively evaluated
using metrics, such as mean average precision (mAP), and their
diagnostic performance was compared with that of radiologists
to assess clinical utility.

Methods

Ethical Considerations
The authors are accountable for all aspects of the work in
ensuring that questions related to the accuracy or integrity of
any part of the work are appropriately investigated and resolved.
The study was conducted in accordance with the Declaration
of Helsinki (as revised in 2013). This study was approved by
the Institutional Ethics Committee of the Sir Run Run Hospital,
Nanjing Medical University (2025-SRFA-626), and Air Force
Medical Center, Air Force Medical University (2025-11-PJ01).
The institutional ethics committees waived written informed
consent in view of the retrospective nature of the study. All the
procedures performed were part of routine care. All images
were deidentified before use to protect patient privacy.
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Patient Selection
Our study used medical imaging data from 2 hospitals in China.
For the development of the training and internal validation sets,

CT and MRI data were collected from patients with ankle
sprains treated at Air Force Medical Center, Air Force Medical
University, between January 2014 and December 2024 (Textbox
1).

Textbox 1. Inclusion and exclusion criteria for the development of the training and internal validation sets.

Inclusion criteria

• Age ≥18 years with a history of ankle sprain within the past 3 days

• CT images showing a single free bone fragment adjacent to the lateral malleolus (size ≥1 cm)

• Complete raw CT and MRI data, with both examinations performed within a 1-week interval

• Complete clinical information, including sex and age

Exclusion criteria

• Suspected infection- or tumor-related pathological fractures

• Hereditary skeletal disorders or skeletal dysplasia

• Previous ankle surgery

• Low image quality or artifacts

An independent external test set was collected between January
2024 and December 2024 from Sir Run Run Hospital, Nanjing
Medical University, using the same inclusion and exclusion
criteria (Textbox 1). The detailed case selection process is
illustrated in Figure 1. A total of 1918 patients were included
in this study, comprising 1253 (65.3%) patients with LMAF
and 665 (34.7%) with SFO. Of these, 1568 cases from the Air

Force Medical Center were randomly allocated to a training set
(n=1092, 56.93%) and an internal validation set (n=476,
24.82%) at a 7:3 ratio. The remaining 350 cases from Sir Run
Run Hospital formed an independent external test set. Thus, the
final training, internal validation, and external test sets contained
1092 (56.93%), 476 (24.82%), and 350 (18.25%) cases,
respectively.

Figure 1. Flowchart summarizing patient selection and allocation to the dataset of our study.

CT and MRI Acquisition Protocol
Patient age and sex were obtained from the clinical record
system. Details of CT and MRI acquisition devices and imaging
parameters are provided in Multimedia Appendix 1. For CT
scanning, patients were positioned supine with toes pointing
upward and the ankle in a neutral position. The scan range
included the distal tibia and fibula to the talus and surrounding
bony structures (including the talus, calcaneus, and navicular).
All images were reconstructed using a bone window (window
width: 1500; window level: 500) with a slice thickness and
interval of 1.0 mm. All image processing and analysis in our
study were performed on the bone window of CT images.

Classification
In this study, the initial differentiation between LMAF and SFO
was made on the basis of MRI findings, which served as the
reference standard for diagnosis. LMAF was defined as the
presence of bone marrow edema in the corresponding region
of the distal fibula on MRI, frequently accompanied by soft
tissue swelling or evidence of ligamentous injury [36]. In
contrast, SFO was characterized by the absence of bone marrow
edema and lack of surrounding soft tissue injury, consistent
with a chronic, stable ossicle. The interpretation of MRI images
was independently performed by 2 senior radiologists, each
with more than 20 years of experience in musculoskeletal
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imaging. The evaluation criteria included cortical continuity of
the distal fibula, the margin and morphology of the bone
fragment, and associated soft tissue changes. Any discrepancy
between the 2 radiologists’ interpretations was resolved through
consensus discussion. In cases where consensus could not be
reached, a third experienced musculoskeletal radiologist was
consulted, and the final diagnosis was established on the basis
of a majority opinion.

Evaluation of the Radiologists’Visual Diagnoses Based
on CT Images
For the external test set, each case was independently reviewed
by radiologist 1 (a deputy chief radiologist with 15 years of
musculoskeletal imaging experience) and radiologist 2 (an
attending radiologist with 7 years of musculoskeletal imaging
experience). Neither radiologist had access to the MRI results
or clinical data during image interpretation. All images were
evaluated independently by radiologists 1 and 2. Each radiologist
recorded their classification of LMAF or SFO independently.
For purposes of calculating diagnostic performance metrics, the
diagnostic results of each radiologist were compared against
the reference standard, which was established by MRI findings.
Each radiologist’s performance on the external test set was then
directly compared with that of the YOLOv12 model to evaluate
whether the artificial intelligence (AI) model outperformed
human assessment.

Data Preparation
All CT images were acquired in Digital Imaging and
Communications in Medicine (DICOM) format to ensure high
resolution and rich grayscale information. Data preprocessing,
a critical step in our study, included data selection, image format
conversion, normalization, and data augmentation to meet the

requirements for model development. Metadata, such as
scanning parameters, slice thickness, and window width and
level, were extracted using specialized tools to ensure data
completeness. All images were converted to standardized PNG
format while maintaining original resolution, facilitating
subsequent size unification. To address grayscale distribution
differences resulting from various scanners and settings,
histogram equalization and pixel normalization were applied,
mapping grayscale values to a fixed range. All images were
resized to 640×640 pixels, providing consistent input dimensions
for the models. To further increase data volume and enhance
model robustness, data augmentation techniques such as random
rotation, translation, scaling, and mirroring were used,
generating additional training samples without compromising
medical image integrity. This approach improved the model’s
ability to recognize fracture features from various angles and
positions. The entire preprocessing pipeline ensured uniform
data quality and format, providing high-quality, well-annotated
images for training, thereby improving the accuracy and
robustness of the detection tasks.

The annotation stage was performed independently by
radiologists 1 and 2. Each lesion was labeled with a tight
bounding box (Figure 2) using the Visual Geometry Group
Image Annotator (VGG Image Annotator, University of Oxford).
The fracture regions were manually outlined, and all annotations
underwent cross-validation and quality control to ensure that
each bounding box accurately represented the clinical lesion.
To meet the input requirements of the detection models, we
further processed the bounding boxes and cropped the images,
ensuring that both the annotated regions and surrounding
contextual information were consistently retained. This provided
the models with sufficient and high-quality training samples.

Figure 2. The lesions are labeled by drawing a tight bounding box. (A) An example of lateral malleolar avulsion fracture (LMAF). (B) An example of
subfibular ossicle (SFO).
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LMAF and SFO Detection Networks
In our study, 4 types of state-of-the-art object detection networks

for LMAF and SFO detection on CT images were used (Figure
3).

Figure 3. Schematic diagram of deep learning approaches for detection of lateral malleolar avulsion fracture (LMAF) and subfibular ossicle (SFO) on
computed tomography (CT) images. R-CNN: region-based convolutional neural network; SSD: single shot multibox detector; YOLO: You Only Look
Once.

In this study, we used the YOLOv12 architecture, which was
recently introduced on February 19, 2025, as the core detection
network for LMAF and SFO identification (Figure 4). YOLOv12
advances previous one-stage detectors through a series of
architectural innovations that balance high detection accuracy
and efficient inference, which is critical in clinical and real-time
applications. YOLOv12 is built upon a fully convolutional
network backbone, eliminating fully connected layers to enhance
both computational efficiency and spatial information retention.
The network starts with a series of stacked convolutional and
pooling layers in the front end, enabling progressive extraction
of low-level features such as edges, textures, and local
structures. This early feature extraction facilitates the precise
localization of subtle abnormalities frequently present in medical

images. Subsequently, multiple residual blocks capture
higher-level semantic features, ensuring a comprehensive
representation of features at different scales. YOLOv12 also
incorporates a multi-scale feature fusion module, which
integrates deep and shallow features via cross-layer connections,
enabling precise localization in fine regions, such as fracture
sites. In addition, an adaptive anchor box mechanism and
multi-scale prediction strategy enable the model to achieve high
performance in both classification and localization tasks. Finally,
the introduction of a lightweight attention mechanism enhances
the model’s focus on fracture edges and subtle structural
features, improving detection accuracy and robustness while
maintaining real-time inference capability.
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Figure 4. The model architecture of YOLOv12.

To further boost localization reliability, YOLOv12 uses an
adaptive anchor box mechanism. Anchor box sizes are
dynamically learned from the training data distributions,
optimizing the detection of objects with varying shapes and
scales. In addition, a multi-scale prediction head enables
simultaneous detection at 3 distinct spatial resolutions, allowing
the model to maintain high precision when dealing with objects
of different sizes. A notable architectural advancement is the
integration of a lightweight attention mechanism based on
coordinate attention modules. This enables the network to
adaptively recalibrate feature responses, directing more focus
toward critical areas—such as fracture boundaries or subtle
morphological cues—while suppressing irrelevant background
information. This not only improves detection performance,
especially for challenging cases, but also preserves the real-time
inference speed required in clinical workflows. All experiments
were performed using the PyTorch 2.3 framework (Meta
Platforms) on an NVIDIA RTX 4090 GPU (NVIDIA
Corporation). The above hyperparameter choices were optimized
by grid search to maximize the mAP on the validation subset.
The main hyperparameter configurations were as follows: input
image size: 640×640 pixels; batch size: 32; learning rate:
initialized at 0.01 with cosine annealing schedule; optimizer:
stochastic gradient descent with momentum 0.937 and weight

decay 0.0005; anchor box generation: k-means clustering on
the training data set; confidence threshold: 0.01; nonmaximum
suppression intersection over union (IoU) threshold: 0.5;
attention module: coordinate attention with a reduction ratio of
32; augmentation: mosaic, mix-up, and random affine
transformations.

To comprehensively compare the performance of different
models in the detection of LMAF and SFO, in addition to
YOLOv12, we also implemented 3 other object detection
models: faster R-CNN, SSD, and RetinaNet. Faster R-CNN, a
representative 2-stage detection model, generates region
proposals through a region proposal network, followed by
refined classification and bounding box regression, providing
a strong benchmark for localization accuracy. The SSD model
uses a single-stage detection strategy, enabling high-speed
detection while supporting multi-scale object detection.
RetinaNet introduces the focal loss function to effectively
address class imbalance and enhance the detection of small
targets and subtle structures. All models were trained and tested
using the same data preprocessing and augmentation strategies
to ensure experimental comparability. In addition, specific
hyperparameter tuning strategies were designed for each model.

JMIR Med Inform 2025 | vol. 13 | e79064 | p. 6https://medinform.jmir.org/2025/1/e79064
(page number not for citation purposes)

Liu et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Training Setup
The detection networks were trained for 50 epochs with a batch
size of 8. Data augmentation techniques applied during training
included rotation (angle range −30° to 30°), width and height
translation (horizontal and vertical axes: −20% to 20%), and
scaling (range 0% to 20%). The networks were optimized using
the AdamW optimizer with β1=0.9 and β2=0.999. The initial
learning rate was set to 1×10 ³ and reduced to 1×10   if the
validation loss plateaued after 25 epochs. All deep learning
models were implemented in Python 3 using the PyTorch
framework (Meta Platforms) and trained on a workstation
equipped with an Intel i9–7900X CPU (Intel Corporation; 3.3
GHz), 128 GB RAM, and 2 NVIDIA TITAN RTX GPU
(NVIDIA Corporation). All models were trained and tested
under identical computational conditions, using the same data
augmentation pipeline and 3 consistent hyperparameters,
ensuring an unbiased comparison across models.

Evaluation Metrics and Vision Transformer Shapley
Saliency Maps
An end-to-end training architecture was adopted throughout the
network design, with joint optimization of module parameters
achieved via error backpropagation. To evaluate the detection
performance for LMAF and SFO, we used the following metrics:
mAP, average precision (AP), precision, recall, and F1- score.
AP was determined by the area under the precision-recall (PR)
curve, which was constructed based on the maximum overlap
(IoU) between detected and ground-truth bounding boxes. The
PR curve is a key tool for assessing the performance of
classifiers or object detection models, especially in the context
of class imbalance, by visualizing the trade-off between
precision and recall across different decision thresholds.
Detection time was also measured for a comprehensive
performance comparison, aiming to provide multidimensional
insights for the clinical application of automated LMAF and
SFO detection.

The mAP measures the model’s AP across different classes and
IoU thresholds, and we calculated the AP at an IoU threshold
of 0.5 (ie, mAP50). Please refer to Multimedia Appendix 2 for
the calculation method. To further interpret the model’s decision
process, saliency maps were generated using Shapley techniques
[37]. Receiver operating characteristic curves and the AUC
were plotted and calculated to assess model performance, and
the DeLong test was used to compare AUCs between models.
Calibration curves and decision curve analysis were computed
and plotted using the RMS and rmda packages in R software
(version 4.0.2), and the Hosmer-Lemeshow test was used to
evaluate calibration. For radiologists 1 and 2, diagnostic
performance metrics—including sensitivity, specificity,
accuracy, and AUC—were calculated for LMAF and SFO
diagnosis, and the DeLong test was used to determine whether
differences in AUC were significant. A P value <.05 was
considered statistically significant. The statistical analyses were
carried out using our internally developed PixelMedAI platform.
This platform was programmed in Python version 3.8 and
primarily used libraries, such as PyTorch, NumPy, and SciPy.
This approach ensures a robust evaluation of both AI models
and human experts, facilitating a comprehensive understanding
of the effectiveness of saliency maps in enhancing diagnostic
accuracy in clinical settings.

Results

Clinical Features of the Studied Patients
A total of 1918 patients met the inclusion criteria, comprising
1253 (65.3%) cases of LMAF and 665 (34.7%) cases of SFO.
The patients ranged in age from 18 to 70 years, with a mean
age of 33.52 (SD 12.83) years. There were 1463 male patients
(76.3%) and 355 female patients (23.7%). The training set,
internal validation set, and external test set included 1092
(56.93%) cases (LMAF: 728, SFO: 364), 476 (24.82%) cases
(LMAF: 315, SFO: 161), and 350 (18.25%) cases (LMAF: 210,
SFO: 140), respectively. The demographic characteristics of
each data set are summarized in Table 1.

Table 1. Baseline characteristics of patients in the training set, internal validation set and external test set.

External test set (n=350)Internal validation set (n=476)Training set (n=1092)Characteristics

34.94 (13.03)32.19 (11.68)31.47 (11.57)Age (years), mean (SD)

Sex, n (%)

252 (72)364 (76.4)847 (77.6)Male

98 (28)112 (23.6)245 (22.4)Female

Performance of DCNNs
A comparative analysis of the detection performance of the 4
DCNNs models was conducted. Figure 5 and Multimedia
Appendix 3 show the PR curves and receiver operating
characteristic (ROC) curves for each model, respectively. The
mAP values were compared to evaluate the performance of each
DCNN in detecting LMAF and SFO on CT images. In the test
set, the mAP50 scores for faster R-CNN, SSD, RetinaNet, and
YOLOv12 were 63.7%, 63.0%, 67.0%, and 92.1%, respectively.
The AUC values for these models were 0.79 (faster R-CNN),
0.63 (SSD), 0.73 (RetinaNet), and 0.98 (YOLOv12). Pairwise

comparisons using the DeLong test indicated that the differences
were all statistically significant (P<.001). These results
demonstrate that YOLOv12 achieved the highest performance
in LMAF and SFO detection. The calibration curves for the
detection performance of the 4 DCNNs on CT images are shown
in Multimedia Appendix 4. The calibration curves demonstrated
that the predicted probabilities closely matched the actual
probabilities for the training, internal validation, and external

test sets (Hosmer-Lemeshow test: χ2=8.2, χ2=2.6, χ2=22.7,
respectively; P=.21, P=.46, P=.13, respectively). Decision curve

JMIR Med Inform 2025 | vol. 13 | e79064 | p. 7https://medinform.jmir.org/2025/1/e79064
(page number not for citation purposes)

Liu et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


analysis results indicate that YOLOv12 may serve as an effective tool for detecting LMAF and SFO (Multimedia Appendix 5).

Figure 5. Precision and recall curves of the 4 deep convolutional neural networks are displayed in different colors, with the performance of each model
shown. YOLOv12 achieved the highest performance, as demonstrated in its precision and recall curve. (A) Training set. (B) Internal validation set. (C)
External test set. R-CNN: region-based convolutional neural network; SSD: single shot multibox detector; YOLO: You Only Look Once.

Performance Between the YOLOv12 Model and
Radiologists’ Readings
Table 2 shows the AUC, sensitivity, specificity, and accuracy
of YOLOv12 and radiologists 1 and 2 in detecting LMAF and
SFO. The AUCs for YOLOv12, radiologist 1, and radiologist

2 were 0.983, 0.755, and 0.682, respectively. Pairwise
comparisons using the DeLong test revealed statistically
significant between radiologist 1, radiologist 2, and YOLOv12
(P=.004, P<.001), indicating that YOLOv12 outperformed both
radiologists.

Table 2. Comparison of AUC, accuracy, sensitivity, and specificity between the YOLOv12 model and radiologists’ readings.

P valueSpecificitySensitivityAccuracyAUC

–0.8220.8670.9200.983YOLOv12

.0040.7600.7500.7560.755Radiologist 1

<.0010.7110.6520.6910.682Radiologist 2

Evaluation of Saliency Maps
Saliency maps generated using the Shapley technique were used
to highlight the region’s most influential for predicting LMAF
(Figure 6) and SFO (Figure 7), with red pixels indicating areas
with the greatest impact on the model’s predictions. As shown

in Figure 6D, YOLOv12 assigned a relatively high probability
(0.93) to LMAF, and the saliency map correspondingly
highlights the LMAF region. In Figure 7D, YOLOv12 assigned
a relatively low probability (0.32) to LMAF, indicating a higher
probability for SFO, and the saliency map highlights the SFO
region accordingly.
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Figure 6. Case of lateral malleolar avulsion fracture. By using the ViT Shapley technique, we generated a saliency map where the red highlighted areas
roughly correspond to the lateral malleolar avulsion fracture seen in the magnetic resonance imaging image. (A) Faster region-based convolutional
neural network. (B) Single shot multibox detector. (C) RetinaNet. (D) YOLOv12. (E) Sagittal PDWI-weighted magnetic resonance imaging image of
the ankle.

Figure 7. Case of subfibular ossicle. By using the ViT Shapley technique, we generated a saliency map where the red highlighted areas roughly
correspond to the subfibular ossicle seen in the magnetic resonance imaging image. (A) Faster region-based convolutional neural network. (B) Single
shot multibox detector. (C) RetinaNet. (D) YOLOv12. (E) Sagittal PDWI-weighted magnetic resonance imaging image of the ankle.

Discussion

Principal Findings
Our study is the first to systematically evaluate and compare
multiple mainstream DCNNs for the automatic detection and
classification of LMAF and SFO on ankle CT images. Among
the models tested, YOLOv12 demonstrated the highest detection
accuracy and efficiency, with mAP50 of 92.1% and AUC of
0.98 on the external validation cohort. When compared with
radiologists 1 and 2 with different experience levels, YOLOv12
surpassed human performance in accuracy, sensitivity, and
specificity, highlighting the powerful potential of deep learning
for recognizing subtle and complex anatomical structures.

Quantitative analysis further confirmed the model’s high
reproducibility and stability, effectively addressing limitations
of human interpretation, such as inconsistency and time
consumption. Most errors were associated with confusing
anatomical variations and inaccurate localization of lesion
boundaries, but overall, the model met the practical needs for
clinical auxiliary diagnosis and provided a solid technical
foundation for intelligent diagnosis in orthopedics. In keeping
with real-world clinical workflows—where LMAF and SFO
may coexist and readers are expected to detect all relevant
abnormalities within a single study—our primary evaluation
focused on performance in the combined data set.
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Comparison to Prior Work
Prior work using object detection networks—such as faster
R-CNN, RetinaNet, or earlier YOLO versions (eg, YOLOv3 to
YOLOv8)—has achieved promising results for fracture
localization in radiographs, but performance often declined in
cases involving small, subtle lesions or overlapping anatomical
structures [26,38,39]. Furthermore, these studies were typically
limited by homogeneous datasets, single-center validation, or
a lack of rigorous comparison to clinical radiologist
interpretation. Our study addresses these gaps by introducing
a comprehensive, multicenter evaluation of several
state-of-the-art DCNN architectures, including the newly
released YOLOv12 model. Notably, YOLOv12 incorporates
advanced multiscale feature fusion and optimized attention
mechanisms, resulting in substantial improvements in both
detection accuracy and computational efficiency over previous
frameworks [40]. Compared with earlier works, our
head-to-head benchmarking on large-scale, well-annotated
multicenter CT data sets demonstrates that YOLOv12
outperformed established models, such as faster R-CNN, SSD,
and RetinaNet in terms of mAP, AUC, sensitivity, and
specificity. Moreover, unlike most previous research—which
reported model performance in isolation—our study directly
compares the diagnostic capability of deep learning models with
radiologists of differing clinical experience. YOLOv12
demonstrated superior accuracy (92% vs 75.6% and 69.1%)
and AUC (0.98 vs 0.76 and 0.68) over 2 musculoskeletal
imaging specialists, underscoring its clinical potential for
assisting or augmenting human diagnosis, particularly in settings
where radiological expertise may be limited.

Performance Interpretation
In this study, the YOLOv12-based object detection model
achieved a mAP of 92.1% at an IoU threshold of 0.5 (mAP50)
on the test set, indicating that the model was able to accurately
detect 92.1% of actual lesion regions when the IoU threshold
was set to 0.5. Specifically, this metric reflects the proportion
of predicted bounding boxes whose overlap with the
ground-truth annotated lesion regions reached or exceeded 50%.
Although this result demonstrates the model’s strong
performance in localizing lesion targets, some differences
remained between the predicted and actual regions in terms of
size and shape, mainly because of the relatively lenient IoU
threshold. Such discrepancies are common in practical
applications; nevertheless, the model is largely capable of
accurately capturing key lesion information to meet the
requirements of subsequent diagnostic assistance. The automatic
detection and classification capabilities of YOLOv12 exhibited
high reproducibility and stability, effectively compensating for
the limitations of manual interpretation in terms of repeatability
and efficiency, thereby providing more reliable technical support
for clinical diagnosis. YOLOv12 incorporates advanced attention
mechanisms and a multi-branch feature fusion structure,
enabling it to efficiently capture object information at different
scales and under complex scenarios [41]. Furthermore, its
optimized network architecture and lightweight design
significantly reduced the number of model parameters and
computational load while maintaining high detection
performance, balancing inference speed with resource use

efficiency. This makes it suitable for edge deployment and
large-scale real-time detection tasks in actual applications.

Detection Errors and Challenges
In our study, the first main error observed with the YOLOv12
model was the misclassification of SFO as LMAF, resulting in
false positives. This misjudgment was primarily caused by
confusion with normal anatomical structures or adjacent soft
tissue shadows, as some anatomical variants or features of the
fibula could easily be mistaken for pathological findings by the
network [42]. These misleading regions also pose a considerable
challenge for human readers, reflecting the DCNN’s sensitivity
to areas with “clear boundaries and interrupted bone continuity”
during the learning process [43], which closely mirrors the
clinical approach used by physicians. Therefore, many of the
model’s false positives overlapped with the subtle or ambiguous
cases that even experienced clinicians might misinterpret.

The second error type involved correct detection of the presence
of abnormal structures, but imprecise localization of the region
of interest. In these instances, the model could identify that a
loose fragment or abnormal bone structure existed, yet failed
to delineate the precise borders or classify the fragment
correctly, particularly regarding its exact size, avulsion site, or
associated ligament anatomy. Further analysis revealed that
while DCNNs are generally adept at capturing the spatial
relationship between fractures, joints, and adjacent bone
structures, they remain less effective in distinguishing finer
anatomical details [44]. Cases with subtle displacement,
overlapping structures, or minimal contrast differences
contributed to these localization issues. Future improvements
could be achieved by integrating detection networks with
training datasets that include enhanced annotation of normal
anatomical variations, thereby reducing both false-positive and
false-negative rates through a more nuanced understanding of
the relevant anatomical context [45].

Limitations and Future Directions
Our study still has some limitations. First, when comparing the
performance of the YOLOv12 with that of radiologists for
automatic detection and classification of LMAF and SFO on
CT images, the experimental design required informing the
radiologists in advance about the specific lesion types and
regions of interest. This likely improved the diagnostic accuracy
of the radiologists and resulted in an optimistically biased
representation of manual interpretation. In real clinical practice,
some lesions are easily missed or misdiagnosed, so this
“prompt” provided a considerable advantage to the physicians.
Second, this study did not include complex cases with multiple
coexisting lesions, which reduced the amount of data available
for model training. Future studies should incorporate such
complex or multifocal cases to better evaluate the accuracy of
DCNNs in clinical scenarios that more closely resemble
real-world situations. Third, all imaging data in this study were
collected from only 2 medical institutions. Although multiple
scanners and extensive data augmentation were used to minimize
bias, this may still affect the generalizability of the model to
other institutions and populations. To further improve the
model’s applicability and robustness, future work should involve
validation with multicenter, multi-scanner, and multisource
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datasets [46]. Fourth, while our design enhances clinical realism,
it limits the granularity of class-specific assessment; we did not
perform separate training or testing on LMAF-only and
SFO-only datasets or report per-class mAP. As our dataset
expands, we plan to conduct category-specific experiments and
provide detailed per-class detection metrics to further delineate
class-dependent performance and error modes.

Conclusions
Our study developed a DCNN-based method for automatic
detection and classification of LMAF and SFO in CT images.
The results showed that the YOLOv12 network outperformed
mainstream models such as faster R-CNN, SSD, and RetinaNet
in both detection and classification tasks. In addition, the
YOLOv12 model achieved higher classification accuracy than
radiologists.
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