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Abstract
Background: Severe tubular atrophy/interstitial fibrosis are critical pathological features associated with poor prognosis in
IgA nephropathy (IgAN). The early identification of patients at high risk for severe tubular damage could guide clinical
management and improve outcomes.
Objective: This study aimed to construct and validate a predictive model for assessing the risk of severe tubular atrophy and
interstitial fibrosis in patients diagnosed with IgAN.
Methods: A total of 3276 patients from the Hankou branch of Tongji Hospital were retrospectively enrolled for model
development. A predictive model for severe tubular atrophy/interstitial fibrosis was constructed based on independent
predictors identified through univariate analysis, least absolute shrinkage and selection operator regression, and stepwise
logistic regression. Furthermore, the model underwent internal and external validation using an independent dataset (n=1062),
and performance evaluation using six machine learning algorithms: random forest, generalized linear model, decision tree,
gradient boosting decision tree, extreme gradient boosting, and support vector machine.
Results: In this study, 8 variables were identified as independent predictors and used to construct a predictive
model for severe tubular atrophy/interstitial fibrosis: Logit (P)=0.011×age (years)+0.324×hypertension history–0.302×educa-
tion+.111×coefficient of variation of red cell distribution width–0.152×direct bilirubin (μmol/L)+0.003×uric acid (μmol/L)–
0.021×estimated glomerular filtration rate (ml/min/1.73m²)+1.151×ln(24 h urine microalbumin) (mg/24h). The AUC for the
predictive model was 0.860 (95% CI 0.847‐0.873). The AUCs (95% CI) of the six machine learning algorithms ranged from
0.793 (0.765‐0.822) to 0.880 (0.859‐0.902) in internal validation and from 0.785 (0.756‐0.814) to 0.862 (0.839‐0.885) in
external validation.
Conclusions: We developed a concise and clinically useful model for predicting severe tubular atrophy/interstitial fibrosis in
IgA nephropathy. It offers a non-invasive tool for risk assessment when biopsy is not feasible, aiding personalized treatment
decisions.
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Introduction
Immunoglobulin A nephropathy (IgAN) is the most common
form of primary glomerulonephritis worldwide, particularly
in China [1,2]. As IgAN progresses, the glomerular filtra-
tion rate gradually declines, and approximately 30%‐40%
of patients develop end-stage renal disease (ESRD) within
20 to 30 years after the onset of clinical symptoms, impos-
ing a substantial burden on both individuals and health care
systems [3,4].

The hallmark pathological feature of IgAN is the
deposition of IgA in the glomerular mesangium, and renal
biopsy remains the gold standard for diagnosis. According to
the current Oxford classification guidelines [5], the pathologi-
cal lesions in IgAN include mesangial hypercellularity (M),
endocapillary hypercellularity (E), segmental glomeruloscle-
rosis (S), tubular atrophy/interstitial fibrosis (T), and cellular
or fibrocellular crescents (C), that is, MEST-C. Among
these, tubular atrophy and interstitial fibrosis (T lesions)
are considered key prognostic indicators [6]. The Oxford
derivation and North American validation studies, along
with the VALIGA study, with a median follow-up of 5.6
years, demonstrated that severe tubular atrophy and intersti-
tial fibrosis were significantly associated with an increased
risk of renal function decline or progression to ESRD [7].
Similarly, a multicenter retrospective cohort study from China
involving 2047 patients with IgAN confirmed that severe
tubular atrophy and interstitial fibrosis markedly elevated
the risk of renal function deterioration or ESRD [8]. These
findings indicated that severe tubular atrophy and interstitial
fibrosis might lead to poor prognosis over long-term follow-
up. However, renal biopsy is an invasive procedure that
requires technical expertise, is costly, and is poorly accep-
ted by patients, making it difficult to perform repeatedly.
These limitations hinder its broad application in the long-term
management of chronic kidney disease (CKD).

Predictive models are increasingly recognized as valua-
ble tools for early risk stratification, particularly when
renal biopsy is infeasible or repeat biopsy is not practical
due to clinical or ethical concerns. Such models can facil-
itate precision medicine by informing treatment decisions,
follow-up scheduling, and lifestyle modifications, thereby
improving disease management while reducing unnecessary
hospitalizations and health care expenditures. However,
existing predictive models [8-10] for tubular atrophy and
interstitial fibrosis in IgAN are often limited by small
sample sizes, lack of validation, and limited feasibility in
clinical practice. Therefore, developing a simple, practical,
and reliable model to predict tubular atrophy and interstitial
fibrosis in patients with IgAN is of great clinical and social
importance.

In this study, we aimed to construct a predictive model
for tubular atrophy and interstitial fibrosis in IgAN by
integrating multidimensional data from hospitalized patients

who underwent renal biopsy at the Department of Nephrol-
ogy, Tongji Hospital. The model was developed using least
absolute shrinkage and selection operator (LASSO) regres-
sion and logistic regression, and was internally and externally
validated using six different machine learning algorithms.

Methods
Study Population
Participants were recruited from three medical centers
located in Wuhan, China, including Tongji Hospital Hankou
branch (Qiaokou District), the Tongji Hospital Optics
Valley branch (Donghu High-Tech Development Zone), and
the Tongji Hospital Sino-French New City branch (Cai-
dian District). Demographic characteristics, lifestyle factors,
medical history, and laboratory test results were extracted
from the electronic medical record system. Specifically, we
retrospectively enrolled 3970 patients who were hospitalized
in the Department of Nephrology at the Tongji Hospital
Hankou branch between 2004 and 2023 and who underwent
renal biopsy during hospitalization. The following exclusion
criteria were applied: (1) age ≤18 years (n=98); (2) number
of glomeruli <8 in the biopsy specimen (n=32); (3) history
of tumor or transplantation (n=103); (4) variables with more
than 20% missing values were excluded, that is, 66 variables
were included; participants with more than 20% missing data
among these 66 variables were further excluded (n=461).
Finally, 3276 patients were included as the population for
model development. The study design flowchart is presented
in Figure S1 in Multimedia Appendix 1. An independent
validation sample consisting of 1062 patients was enrolled
from the Nephrology Divisions of Tongji Hospital’s Sino-
French New City and Optics Valley branches, who underwent
renal biopsy between 2015 and 2023. Detailed exclusion
criteria for the validation population are provided in Figure
S2 in Multimedia Appendix 1.
Data Collection
With the support of the Big Data Center of Tongji Hos-
pital, data on demographic characteristics (age, sex, educa-
tion level, height, and weight), lifestyle factors (smoking
and alcohol consumption), medical history (hypertension and
diabetes), and laboratory test results (blood and urine tests)
were extracted from the electronic medical record system.
Educational attainment was categorized as “middle school or
below” and “high school or above.” The BMI was calcu-
lated as weight in kilograms divided by height in meters
squared. Within 24 hours of hospital admission, fresh whole
blood samples were collected from each patient for routine
blood tests and assessments of liver function, renal function,
lipid profile, and fasting blood glucose levels. In addition,
morning urine and 24-hour urine samples were collected
during hospitalization for routine urinalysis and 24-hour urine
biochemical tests, including urinary protein and renal function
markers. All blood and urine examinations were conducted
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by trained technicians in the clinical laboratory of Tongji
Hospital, following uniform testing protocols. To reduce
skewness, natural logarithmic transformation was applied to
the following variables: urinary creatinine, urine albumin-to-
creatinine ratio, urinary micro total protein, urinary microal-
bumin, 24-hour urine total microprotein, and 24-hour urine
microalbumin.
Renal Biopsy Evaluation
All study participants underwent renal biopsy. Each biopsy
specimen was subjected to light microscopy, immunofluor-
escence staining, and electron microscopy examination. For
light microscopy analysis, slides were stained with hematox-
ylin and eosin, periodic acid–Schiff, Masson’s trichrome,
and silver staining, following standardized protocols. All
renal pathology assessments were performed by experienced
renal pathologists and classified according to the Oxford
MEST-C scoring system for IgAN. Light microscopic
findings of IgA nephropathy range from mild mesangial
hypercellularity to diffuse mesangial proliferation, which
may be accompanied by segmental sclerosis, glomerular
adhesions, and/or crescent formation. Immunofluorescence
predominantly showed mesangial staining of IgA. Electron
microscopy revealed mesangial deposits along with mesangial
matrix expansion (Figure S3 in Multimedia Appendix 1).
In the MEST-C score, the T component refers to tubular
atrophy and interstitial fibrosis: T0 corresponds to ≤25%, T1
to 26%‐50%, and T2 to >50%. In this study, renal biopsy
specimens classified as T0 were defined as mild tubular
atrophy/interstitial fibrosis, whereas T1 and T2 were grouped
as severe tubular atrophy/interstitial fibrosis (Figure S4 in
Multimedia Appendix 1).
Statistical Analysis
Data are presented as median (Q1–Q3) for continuous
variables and number (%) for categorical variables. The
Shapiro-Wilk test was used to assess the normality of all
continuous variables. For variables that followed a normal
distribution, between-group differences were assessed using
the independent samples t test; for non-normally distributed
variables, the Mann-Whitney U test was employed. Vari-
ables showing significant between-group differences were
further analyzed using least absolute shrinkage and selec-
tion operator (LASSO) regression to identify predictors
of severe tubular atrophy/interstitial fibrosis. To address
multicollinearity and enhance model stability, variables with
a variance inflation factor greater than 5 were excluded.
Subsequently, stepwise backward logistic regression was
performed on the LASSO-selected candidate predictors to
determine independent influencing factor for the severity of
tubular atrophy/interstitial fibrosis. Model parameters were
estimated, and the prediction model was constructed as
follows: Logit (P=β0+Variable1 × β1+Variable2 × β2 +…
+VariableX×βX). The effects of the predictors on tubular
atrophy/interstitial fibrosis severity were visualized using
a forest plot. A nomogram was developed to provide a

graphical representation of the IgAN tubular atrophy/intersti-
tial fibrosis prediction model. The predictive performance and
calibration of the model were evaluated by receiver operating
characteristic (ROC) curves, calibration curves, and decision
curve analysis (DCA). To evaluate the overall accuracy of
the predictive model, we calculated the Brier score, which
measures the mean squared difference between the predicted
probabilities and the observed outcomes. In addition, the
Youden index was used to determine the optimal cutoff value
for classification by maximizing the sum of sensitivity and
specificity. For internal validation, the development popula-
tion was randomly split into training and testing sets at a
ratio of 7:3. An external validation cohort consisting of 1062
patients hospitalized at the Sino-French New City and Optics
Valley branches of Tongji Hospital between 2015 and 2023,
who underwent renal biopsy, was used to validate the model’s
performance.

During both internal and external validations, five-
fold cross-validation was conducted combined with six
machine learning algorithms—random forest, generalized
linear model, decision tree, gradient boosting decision tree,
extreme gradient boosting, and support vector machine.
Model performance and discriminative ability were assessed
using accuracy, precision, recall, F1-score, area under the
ROC curve (AUC), and precision-recall curves. All statistical
analyses were performed using R software (version 4.4.1; R
Foundation for Statistical Computing). A two-sided P value
<.05 was considered statistically significant.

Ethical Considerations
This study was approved by the Ethics Committee of Tongji
Hospital (approval number: TJ-IRB202410023), and written
informed consent was obtained from all participants. In
addition, the patient information included in this study has
been deidentified. No compensation was provided to any
participants.

Results
A total of 3276 hospitalized patients with biopsy-confirmed
IgA nephropathy were included in this study. The characteris-
tics of individuals with mild and severe tubular atrophy/inter-
stitial fibrosis are presented in Table 1. Among the 3276
participants, 2086 (63.7%) had mild tubular atrophy/inter-
stitial fibrosis, whereas 1190 (36.3%) had severe tubular
atrophy/interstitial fibrosis. Compared to those with mild
tubular atrophy/interstitial fibrosis, individuals with severe
tubular atrophy/interstitial fibrosis were older, more likely
to be male, had lower educational attainment, and exhibited
higher proportions of hypertension, diabetes, smoking, and
alcohol consumption, as well as higher BMI (all P<.05).
In addition, significant differences were observed between
the two groups in terms of hematological parameters, liver
function, renal function, lipid profiles, and glucose metabo-
lism indicators (all P<.05).
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Table 1. Characteristics of study individuals and univariates analysis of mild/severe tubular atrophy/interstitial fibrosis groups (n=3276).
Variables Mild group (n=2086) Severe group (n=1190) P value
Age, years, median (IQR) 34.0 (27.0‐43.0) 36.0 (29.0‐46.0) <.001
Women, n (%) 1198 (57.4) 592 (49.8) <.001
Hypertension history, n (%) 558 (26.8) 557 (46.8) <.001
Diabetes history, n (%) 195 (9.4) 179 (15.0) <.001
Smoking, n (%) 164 (7.9) 152 (12.8) <.001
Alcohol consumption, n (%) 116 (5.6) 96 (8.1) .006
Education (high school or above), n (%) 1420 (68.1) 700 (58.8) <.001
Systolic blood pressure, mmHg, median (IQR) 124.0 (113.0‐135.0) 132.0 (120.0‐144.0) <.001
Diastolic blood pressure, mmHg, median (IQR) 82.0 (75.0‐90.0) 86.0 (78.0‐96.0) <.001
BMI, kg/m², median (IQR) 22.7 (20.4‐24.9) 23.1 (20.8‐26.0) <.001
White blood cell count, ×10⁹/L, median (IQR) 6.7 (5.7‐8.0) 7.0 (5.9‐8.5) <.001
Neutrophil percentage, median (IQR) 63.2 (57.4‐68.8) 64.9 (59.2‐70.5) <.001
Neutrophil count, ×10⁹/L, median (IQR) 4.2 (3.3‐5.3) 4.5 (3.6‐5.7) <.001
Lymphocyte percentage, median (IQR) 27.8 (22.5‐33.1) 26.1 (20.9‐30.9) <.001
Lymphocyte count, ×10⁹/L, median (IQR) 1.9 (1.5‐2.2) 1.8 (1.4‐2.2) .003
Monocyte percentage, median (IQR) 6.5 (5.4‐7.8) 6.4 (5.1‐7.8) .017
Monocyte count, ×10⁹/L, median (IQR) 0.4 (0.4‐0.6) 0.4 (0.4‐0.6) .122
Eosinophil percentage, median (IQR) 1.5 (0.9‐2.4) 1.6 (0.9‐2.7) .030
Eosinophil count, ×10⁹/L, median (IQR) 0.1 (0.1‐0.2) 0.1 (0.1‐0.2) .018
Basophil percentage, median (IQR) 0.3 (0.2‐0.5) 0.3 (0.2‐0.5) .421
Basophil count, ×10⁹/L, median (IQR) 0.0 (0.0‐0.0) 0.0 (0.0‐0.0) .064
Red blood cell count, ×10¹²/L, median (IQR) 4.4 (4.0‐4.9) 4.3 (3.8‐4.7) <.001
Hemoglobin, g/L, median (IQR) 132.0 (120.0‐145.0) 125.0 (111.0‐140.0) <.001
Hematocrit percentage, median (IQR) 39.1 (35.8‐42.6) 37.2 (33.4‐41.4) <.001
MCVa, fL, median (IQR) 88.3 (85.6‐91.1) 88.2 (85.2‐91.1) .223
MCHb, pg, median (IQR) 29.9 (28.7‐30.9) 29.9 (28.7‐30.8) .931
MCHCc, g/L, median (IQR) 337.0 (328.0‐345.0) 337.0 (328.0‐346.0) .583
RDW-CVd, median (IQR) 12.6 (12.1‐13.2) 12.8 (12.2‐13.5) <.001
RDW-SDe, fL, median (IQR) 40.5 (38.7‐42.6) 40.8 (39.0‐43.1) <.001
Platelet count, ×10⁹/L, median (IQR) 226.0 (187.3‐271.0) 229.0 (185.0‐271.0) .552
Platelet distribution width, fL, median (IQR) 12.8 (11.4‐14.8) 12.8 (11.4‐14.7) .900
Mean platelet volume, fL, median (IQR) 10.6 (9.9‐11.4) 10.7 (10.0‐11.5) .538
Large platelet ratio, %, median (IQR) 30.7 (25.3‐37.6) 31.1 (25.3‐37.4) .911
Plateletcrit, %, median (IQR) 0.2 (0.2‐0.3) 0.2 (0.2‐0.3) .905
ALTf, U/L, median (IQR) 14.0 (11.0‐22.0) 14.0 (10.0‐21.0) .361
ASTg, U/L, median (IQR) 18.0 (15.0‐21.0) 18.0 (15.0‐22.0) .602
Total protein, g/L, median (IQR) 71.7 (67.4‐75.6) 68.8 (63.2‐73.0) <.001
Albumin, g/L, median (IQR) 42.2 (38.9‐45.2) 39.3 (35.3‐42.8) <.001
Globulin, g/L, median (IQR) 29.2 (26.9‐31.8) 28.9 (26.3‐32.0) .077
Total bilirubin, μmol/L, median (IQR) 7.7 (5.5‐10.3) 6.6 (4.5‐9.3) <.001
Direct bilirubin, μmol/L, median (IQR) 2.4 (1.9‐3.3) 2.1 (1.6‐2.9) <.001
Indirect bilirubin, μmol/L, median (IQR) 5.4 (3.6‐7.5) 4.9 (3.1‐7.1) <.001
ALPh, U/L, median (IQR) 60.0 (50.0‐74.0) 61.0 (50.0‐75.0) .692
GGTi, U/L, median (IQR) 17.0 (13.0‐25.0) 19.0 (13.3‐28.0) <.001
Total cholesterol, mmol/L, median (IQR) 4.4 (3.8‐5.0) 4.6 (3.9‐5.5) <.001
Triglycerides, mmol/L, median (IQR) 1.4 (1.0‐2.1) 1.8 (1.2‐2.6) <.001
High-density lipoprotein, mmol/L, median (IQR) 1.1 (1.0‐1.4) 1.1 (0.9‐1.3) <.001
Low-density lipoprotein, mmol/L, median (IQR) 2.6 (2.1‐3.1) 2.8 (2.2‐3.5) <.001
Urea, mmol/L, median (IQR) 5.1 (4.1‐6.2) 6.8 (5.2‐9.1) <.001
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Variables Mild group (n=2086) Severe group (n=1190) P value
Serum creatinine, μmol/L, median (IQR) 80.0 (64.0‐100.0) 116.5 (84.0‐165.0) <.001
Uric acid, μmol/L, median (IQR) 333.0 (272.9‐402.0) 394.0 (328.8‐473.9) <.001
eGFRj, ml/min/1.73 m², median (IQR) 96.5 (75.5‐115.2) 61.4 (40.0‐90.5) <.001
Erythrocyte sedimentation rate, mm/h, median (IQR) 8.0 (4.0‐14.0) 13.0 (6.0‐26.0) <.001
Fasting blood glucose, mmol/L, median (IQR) 5.3 (4.9‐6.0) 5.4 (4.9‐6.3) <.001
ALT/AST ratio, median (IQR) 0.8 (0.7‐1.1) 0.8 (0.6‐1.1) .256
Albumin/Globulin ratio, median (IQR) 1.4 (1.3‐1.6) 1.3 (1.2‐1.5) <.001
ln(Urinary creatinine), μmol/L, median (IQR) 9.5 (9.0‐9.9) 9.2 (8.8‐9.6) <.001
ln(Urine albumin-to-creatinine ratio), μg/mg, median (IQR) 5.8 (5.0‐6.6) 6.9 (6.1‐7.7) <.001
ln(Urinary micro total protein), mg/L, median (IQR) 6.4 (5.8‐7.1) 7.3 (6.6‐7.9) <.001
ln(Urinary microalbumin), mg/L, median (IQR) 6.1 (5.3‐6.8) 7.0 (6.3‐7.6) <.001
ln(24 h urine total microprotein), mg/24 h, median (IQR) 6.4 (5.8‐6.9) 7.4 (7.0‐7.9) <.001
ln(24 h urine microalbumin), mg/24 h, median (IQR) 6.0 (5.3‐6.6) 7.2 (6.7‐7.7) <.001
Urine pH, median (IQR) 6.0 (5.5‐6.5) 6.0 (5.5‐6.5) .060
Urine specific gravity, median (IQR) 1.0 (1.0‐1.0) 1.0 (1.0‐1.0) .003
Urinary red blood cell count/μL, median (IQR) 35.7 (12.2‐112.4) 28.1 (9.7‐76.4) <.001
Urinary white blood cell count/μL, median (IQR) 7.8 (3.6‐19.5) 7.3 (3.4‐17.0) .065

aMCV: Mean corpuscular volume.
bMCH: Mean corpuscular hemoglobin.
cMCHC: Mean corpuscular hemoglobin concentration.
dRDW-CV: coefficient of variation of red blood cell volume size.
eRDW-SD: standard deviation of red blood cell distribution width.
fALT: Alanine aminotransferase.
gAST: Aspartate aminotransferase.
hALP: Alkaline phosphatase.
iGGT: Gamma-glutamyl transferase.
jeGFR: Estimated glomerular filtration rate.

Univariate analysis revealed that 48 out of 66 analyzed
variables showed statistically significant differences between
the mild and severe tubular atrophy/interstitial fibrosis
groups. These 48 variables were subsequently included in
a LASSO regression model to reduce dimensionality and
identify potential predictors. The LASSO analysis yielded
35 candidate predictors (Figure S5 in Multimedia Appen-
dix 1). To further reduce multicollinearity and enhance
model stability, variables with a variance inflation factor
greater than 5 were excluded, resulting in 31 remaining
candidate predictors (Figure S6 in Multimedia Appendix
1). Furthermore, these 31 predictors were then subjected
to stepwise backward logistic regression analysis. Eight
variables were ultimately identified as independent predic-
tors of severe tubular atrophy/interstitial fibrosis: age (OR
1.011; 95% CI 1.002‐1.020; P=.021), hypertension history
(OR 1.383; 95% CI 1.144‐1.672; P<.001), education (high
school or above; OR 0.739; 95% CI 0.607‐0.900; P=.003),
coefficient of variation of red blood cell volume size (red
cell distribution width-CV; OR 1.117; 95% CI 1.048‐1.190;
P<.001), direct bilirubin (OR 0.859; 95% CI 0.802‐0.920;
P<.001), uric acid (OR 1.003; 95% CI 1.002‐1.004; P<.001),
estimated glomerular filtration rate (eGFR; OR 0.979; 95%

CI 0.976‐0.982; P<.001), and ln(24-hour urine microalbumin)
(OR 3.161; 95% CI 2.843‐3.513; P<.001; Figure 1).

Based on these eight independent predictors, a logistic
regression model was constructed to predict severe tubu-
lar atrophy/interstitial fibrosis. The final model equation
was as follows: Logit (P)=0.011×age (years)+0.324×hyper-
tension history –0.302×education+.111×red cell distribu-
tion width-CV –0.152×direct bilirubin (μmol/L)+0.003×uric
acid (μmol/L) –0.021×eGFR (ml/min/1.73m²)+1.151×ln(24
h urine microalbumin) (mg/24h). In this equation, hyperten-
sion history was coded as 0=no, 1=yes; education level was
coded as 0=junior high school or below, 1=high school or
above. The predicted probability P ranges between 0 and 1.
To facilitate clinical application, a nomogram was developed
based on the final model (Figure 2). The nomogram included
a point scale (0‐100 points), the eight independent predictors,
a total score axis (0‐240 points), a linear predictor axis,
and the predicted probability of severe tubular atrophy/inter-
stitial fibrosis. This provided an intuitive and user-friendly
visualization of the contribution of each predictor to the risk
of severe tubular atrophy/interstitial fibrosis.
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Figure 1. Forest plot of independent predictors for severe tubular atrophy/interstitial fibrosis identified on logistic regression analysis.

Figure 2. Nomogram for predicting the risk of severe tubular atrophy/interstitial fibrosis.

Model performance was evaluated using ROC, calibration
plots, and DCA. The AUC for the logistic model was 0.860
(Figure 3A), indicating excellent discriminative ability. The
calibration curve closely followed the diagonal line (y=x),
with a mean absolute error of 0.004, suggesting a high
agreement between predicted and observed risks (Figure 3B).
DCA demonstrated favorable net benefits across a range of
threshold probabilities from 0 to 1 (Figure 3C). The optimal
cutoff value determined by the Youden index was 0.407,
yielding a sensitivity of 73.9% and a specificity of 82.4%.
Accordingly, patients with predicted probabilities ≥0.407
were classified as high risk for severe tubular atrophy and
interstitial fibrosis. The Brier score was 0.143, indicating
good calibration and probability prediction performance of
the model. Internal and external validation of the prediction
model was further performed using six machine learning
algorithms. In internal validation, the AUCs (95% CI) of
the ROC curves ranged from 0.793 (0.765‐0.822) to 0.880
(0.859‐0.902), while those of the precision-recall curves
ranged from 0.748 (0.698‐0.792) to 0.813 (0.776‐0.845;

Figure 4A and C). In external validation, ROC AUCs
(95% CI) ranged from 0.785 (0.756‐0.814) to 0.862 (0.839‐
0.885) and precision-recall AUCs from 0.655 (0.603‐0.704)
to 0.720 (0.664‐0.776; Figure 4B and D). As summarized
in Table 2, the logistic regression model demonstrated
robust classification performance, with consistently high
accuracy, precision, F1-score, and recall across both internal
and external validation datasets. All six machine learning
models exhibited comparable performances. During internal
validation, accuracy ranged from 0.758 to 0.783, with recall
values consistently high (0.742‐0.896). The model with the
highest accuracy (0.783) also achieved the best F1-score
(0.747) and recall (0.896). In external validation, the model
accuracy ranged from 0.721 to 0.757, and recall remained
satisfactory (0.754‐0.870). The top-performing model yielded
an F1-score of 0.698 and a recall of 0.862, indicating good
generalizability. Despite minor variations across models,
precision was generally lower than recall in both valida-
tion sets, suggesting a trade-off between false positives and
sensitivity.
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Figure 3. Performance evaluation of the predictive model for severe tubular atrophy/interstitial fibrosis. (A) Receiver operating characteristic (ROC)
curve assessing the discrimination ability of the model. (B) Calibration curve evaluating the agreement between predicted and observed outcomes.
(C) Decision curve analysis (DCA) demonstrating the net clinical benefit across different threshold probabilities.
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Figure 4. Internal and external validation of severe tubular atrophy/interstitial fibrosis using six machine learning algorithms. (A) Receiver operating
characteristic (ROC) curves in internal validation. (B) ROC curves in external validation. (C) Precision-recall curves in internal validation. (D)
Precision-recall curves in external validation. RF: random forest; GLM: generalized linear model; DT: decision tree, GBM: gradient boosting
decision tree; XGBoost: extreme gradient boosting; SVM: support vector machine.

Table 2. Performance metrics of six machine learning models in internal and external validation.
Models Accuracy Precision F1-score Recall
Internal validation
  RFa 0.775 0.635 0.743 0.896
  GLMb 0.758 0.624 0.716 0.840
  DTc 0.765 0.656 0.696 0.742
  GBMd 0.778 0.643 0.742 0.877
  XGBooste 0.783 0.648 0.747 0.882
  SVMf 0.777 0.654 0.728 0.821
External validation
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Models Accuracy Precision F1-score Recall
  RF 0.748 0.581 0.697 0.870
  GLM 0.721 0.558 0.654 0.791
  DT 0.746 0.593 0.664 0.754
  GBM 0.750 0.586 0.696 0.856
  XGBoost 0.751 0.587 0.698 0.862
  SVM 0.757 0.600 0.691 0.814

aRF: random forest.
bGLM: generalized linear model.
cDT: decision tree.
dGBM: gradient boosting decision tree.
eXGBoost: extreme gradient boosting.
fSVM: support vector machine.

Discussion
Principal Findings and Comparison With
Previous Work
This study developed and validated a predictive model for
severe tubular atrophy/interstitial fibrosis in hospitalized
patients with IgA nephropathy at Tongji Hospital, based
on multidimensional clinical data. The model was success-
fully constructed using 8 independent predictors significantly
associated with severe tubular atrophy/interstitial fibrosis:
age, hypertension history, education, red cell distribution
width-CV, direct bilirubin, uric acid, eGFR, and ln(24-hour
urine microalbumin). This model holds substantial clinical
value in early diagnosis and screening, clinical decision-
making, personalized treatment planning, and pathological
monitoring in renal transplant recipients.

In line with previous studies, age and hypertension were
identified as independent risk factors for severe tubular
atrophy/interstitial fibrosis, highlighting their pivotal roles
in CKD progression [11-14]. Advancing age is typically
associated with a decline in nephron number, increased
glomerulosclerosis, and exacerbated interstitial fibrosis [11,
12]. Moreover, age-related inflammatory processes may
contribute to irreversible structural kidney damage. Hyper-
tension, a major driver of CKD progression, may pro-
mote ischemic injury in renal microvasculature and activate
pro-fibrotic pathways, thereby accelerating tubular atro-
phy/interstitial fibrosis [13,15]. Interestingly, a higher
education level (high school or above) was inversely
associated with severe tubular atrophy/interstitial fibrosis.
Previous cohort and Mendelian randomization studies have
demonstrated a causal relationship between lower educational
attainment and both increased risk of chronic kidney disease
and reduced eGFR [16-18]. These data indicated that higher
educational attainment might indeed play a role in preserving
kidney function, including structural injury such as tubular
atrophy and interstitial fibrosis. It was unlikely that educa-
tion level directly influences tubular damage or fibrosis.
Rather, it might act as a proxy for a range of interconnec-
ted downstream factors. Individuals with a higher education
might have better health literacy, medication adherence, and
proactive engagement with health care systems, enabling

the earlier identification and management of modifiable risk
factors like hypertension, diabetes, and metabolic syndrome
[19]. Furthermore, prior studies have suggested that a low
educational attainment might amplify the genetic risk for
reduced eGFR [17], offering a potential mechanistic link from
a genetic–environmental interaction perspective. Together,
these findings support the plausibility that the education
level is indirectly associated with tubular atrophy/interstitial
fibrosis severity through both environmental and genetic
pathways.

In this study, we observed that higher levels of RDW-
CV were positively associated with tubular atrophy and
interstitial fibrosis. RDW-CV, an index reported in the
routine complete blood count test, reflects the variation in
red blood cell size and is an established marker of eryth-
rocyte volume heterogeneity. It has been linked to sys-
temic inflammation and oxidative stress in various chronic
diseases [20]. A large population-based cohort study revealed
a strong graded association between RDW and C-reactive
protein, which remained significant even after adjusting
for multiple confounding factors [21]. Chronic inflamma-
tion and subsequent oxidative stress are thought to be key
mediators linking elevated RDW to kidney injury [22]. In
renal tissue, persistent inflammation and oxidative stress
can activate NF-κB pathways, promoting fibroblast prolif-
eration and extracellular matrix deposition [23,24]. Direct
bilirubin, an endogenous antioxidant, has recently gained
attention for its anti-inflammatory and anti-fibrotic proper-
ties. Mildly elevated bilirubin levels might confer protec-
tive effects against several chronic conditions, including
diabetic nephropathy, metabolic syndrome, cardiovascular
disease, and cancer [25-28]. For instance, a large cohort
study demonstrated an inverse association between plasma
bilirubin levels and all-cause mortality [29]. Mechanistically,
bilirubin can modulate immune responses by influencing
the expression of cell adhesion molecules and complement
activity, as well as by inhibiting T cell differentiation
[30]. It also suppresses the release of cytokines such as
IL-2, IL-6, IL-10, and tumor necrosis factor-α, and reduces
the expression of major histocompatibility complex class
II in macrophages [25], thereby contributing to its immu-
nomodulatory and anti-inflammatory effects. Additionally,
bilirubin could alleviate renal inflammation and fibrosis
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through suppression of oxidative stress, inhibition of NADPH
oxidase, and blockade of the TGF-β signaling pathway [25,
31]. The inverse association observed in this study supports
its potential nephroprotective role.

Elevated serum uric acid levels were known to exert
pro-inflammatory effects and can induce tubular epithelial
cell apoptosis and epithelial-to-mesenchymal transition [32,
33]. In this study, we observed a positive association between
serum uric acid levels and the severity of tubular atrophy
and interstitial fibrosis. Consistent with our findings, previous
studies have also reported that elevated serum uric acid
contributes to the progression of renal dysfunction [34].
Several potential mechanisms might underlie this associa-
tion. For instance, the accumulation of uric acid has been
reported to induce mast cell degranulation and stimulate
renin secretion, which subsequently enhances angiotensin II
production and contributes to oxidative stress within renal
tissue [35]. Animal studies have demonstrated that uric
acid promotes interstitial damage and fibrosis through the
activation of the NLRP3 inflammasome and ROS signal-
ing pathways [36,37]. Clinically, hyperuricemia has been
consistently associated with poor outcomes in IgAN [38].
Furthermore, both eGFR and 24-hour urinary microalbumin
are established biomarkers reflecting glomerular and tubular
damage [39,40]. Persistent microalbuminuria might indicate
impaired tubular reabsorption and increased local inflam-
mation. The predictive value of these markers for tubular
atrophy/interstitial fibrosis was further corroborated in this
study.
Limitations
Although the study benefits from a relatively large sample
size, strong statistical foundations, and clinical relevance,

several limitations should be acknowledged. First, data were
derived from three medical centers affiliated with Tongji
Hospital in Wuhan, and although both internal and external
validations were conducted, further validation in multi-cen-
ter cohorts is necessary to assess the model’s generalizabil-
ity. Second, the cross-sectional nature of the biopsy-based
design limits the ability to predict the progression of tubular
atrophy/interstitial fibrosis over time. Third, although our
model included a comprehensive set of routinely available
clinical and laboratory variables, key factors such as diabetes
subtype, medication use (such as renin-angiotensin system
inhibitors or immunosuppressants), and kidney imaging data
were not captured in our dataset. The absence of these
variables might have limited the model’s predictive accu-
racy and clinical interpretability. Future studies integrating
multicenter cohorts, longitudinal follow-up, and additional
biomarkers, medication history, or imaging features are
needed to improve the model’s external validity and clinical
applicability.
Conclusions
In summary, this study developed a concise, accurate, and
clinically interpretable predictive model for severe tubular
atrophy/interstitial fibrosis in patients with IgA nephropathy,
integrating multi-center data and machine learning techni-
ques. This tool offers a non-invasive alternative for risk
stratification of patients in whom renal biopsy is contraindi-
cated or impractical, providing valuable support for clinical
decision-making and promoting individualized management
strategies.
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