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Abstract

Background: Venous thromboembolism (VTE) remains a critical cause of mortality among patients who are hospitalized.
Patients with traumatic brain injury (TBI) are particularly susceptible to VTE due to coagulation abnormalities and immobilization.
Despite this elevated risk, no validated predictive model currently exists for postoperative VTE in populations with TBI.

Objective: This study aims to develop machine learning (ML)–based predictive models for VTE in patients with TBI undergoing
surgical procedures, with a focus on clinical translatability.

Methods: Data were collected from patients with TBI who underwent surgical treatment at Chongqing University Central
Hospital (from October 2016 to December 2024). The dataset was randomly partitioned into a training set and an internal test set
in a 7:3 ratio. The recursive feature elimination algorithm was applied for feature selection, followed by the synthetic minority
oversampling technique to address class imbalance. Six ML models, including logistic regression (LR), random forest, gradient
boosting decision tree, extreme gradient boosting, support vector machine, and categorical boosting, were trained and validated.
Model performance was evaluated using receiver operating characteristic analysis, calibration curves (assessing
probability-observation alignment), and decision curve analysis to quantify clinical net benefit. For the LR model, clinical utility
was enhanced through nomogram construction, with Shapley additive explanation values providing interpretability.

Results: A total of 1806 participants were enrolled in this study, and 257 (14.2%) experienced VTE events. All ML models
demonstrated strong predictive performance, with area under the receiver operating characteristic curve values ranging from 0.79
to 0.83. The LR model exhibited the highest discriminatory power (area under the receiver operating characteristic curve 0.83;
accuracy 0.80; specificity 0.83). Calibration curves confirmed that the LR model provided well-calibrated probability estimates.
Shapley additive explanations analysis identified key contributors to VTE risk and transformed model outputs into individualized
risk predictions. A user-friendly postoperative VTE risk prediction nomogram was developed for patients with TBI.

Conclusions: This study successfully developed and validated multiple ML models for postoperative VTE prediction in patients
with TBI. The LR-based nomogram, supported by calibration and decision curve validation, offers a clinically actionable tool to
guide thromboprophylaxis strategies. Future external validation across diverse populations is warranted to confirm generalizability.

(JMIR Med Inform 2025;13:e78655) doi: 10.2196/78655
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Introduction

Venous thromboembolism (VTE), encompassing deep vein
thrombosis (DVT) and pulmonary embolism (PE), is a critical
clinical syndrome associated with high morbidity and mortality
among hospitalized patients [1]. Globally, an estimated 10
million individuals experience VTE annually. In the United
States, PE ranks among the leading causes of cardiovascular
death, accounting for up to 300,000 fatalities per year [2].
Patients with VTE experience severe complications, including
adverse effects of long-term anticoagulation (eg, hemorrhage
risk), prolonged hospitalization, elevated 30-day readmission
rates, and delayed adjuvant therapies (eg, chemotherapy or
radiotherapy) [3]. VTE significantly contributes to extended
hospital stays and increased mortality [4,5]. Notably, patients
with traumatic brain injury (TBI) who develop VTE exhibit
prolonged intensive care unit stays and extended mechanical
ventilation duration [6].

TBI affects approximately 50 million individuals globally each
year, with epidemiological models suggesting that nearly half
of the global population may sustain at least 1 TBI during their
lifetime [7]. TBI is an independent risk factor for VTE, elevating
the risk through multifactorial pathophysiological mechanisms
[6]. Studies indicate that patients with multitrauma and TBI
face significantly higher VTE risk than those without TBI,
attributable to disease complexity and delayed early
interventions [8]. Coagulopathy is prevalent in this population;
67% of the patients with severe TBI exhibit coagulation
abnormalities upon emergency presentation, which often
progress during hospitalization [9,10]. In addition, cohorts of
patients who underwent surgical procedures demonstrate
elevated VTE incidence due to venous stasis from general
anesthesia and intraoperative immobilization, postoperative
mobility restrictions, and tissue injury–induced inflammation
and coagulation pathway activation [11].

Severe TBI is strongly associated with coagulopathy,
substantially elevating the risk of VTE, particularly in cohorts
of patients who underwent surgical procedures. Identifying
patients at high risk for postoperative VTE is thus critically
imperative. Despite this established clinical need, current
literature lacks dedicated studies developing VTE predictive
models tailored to patients with surgical TBI. Machine learning
(ML) has demonstrated significant efficacy in perioperative risk
prediction across diverse surgical contexts [12]. Therefore, the
objective of our study is to develop an ML-based risk assessment
model for VTE in patients with TBI undergoing surgical
procedures.

Methods

Recruitment
This retrospective study consecutively enrolled patients
hospitalized with TBI who underwent surgical intervention at
Chongqing University Central Hospital between October 2016
and December 2024.

Ethical Considerations
This study was approved by the Institutional Review Board of
Chongqing University Central Hospital (2024-66). The
requirement of obtaining written informed consent was waived
owing to the retrospective study design. All visual
representations in this manuscript, including feature importance
diagrams, contain only aggregated or anonymized data. No
personally identifiable information of research participants is
displayed in any figures or supplementary materials.

Data Collection

Overview
This study collected comprehensive clinical data from patients
with TBI who underwent surgery, encompassing 6 core domains.

Demographics
Demographic data included age, sex, weight, height, American
Society of Anesthesiologists (ASA) physical status
classification, and history of smoking and alcohol use.

Preoperative Comorbidities
Preoperative comorbidities included hypertension, coronary
heart disease, diabetes mellitus, atrial fibrillation, chronic renal
insufficiency, myocardial infarction, pulmonary infection, and
malignant tumors.

Injury Characteristics
The following variables were recorded: Glasgow Coma Scale
(GCS) score, Rotterdam computed tomography score, injury
mechanism (falls, traffic accidents, or assaults), Injury Severity
Score, Abbreviated Injury Scale (AIS), head injury types (eg,
concussion, cerebral contusion, diffuse axonal injury, subdural
or epidural hematoma, subarachnoid hemorrhage, or skull
fracture), and injury-to-admission interval.

Biochemical Parameters
Biochemical parameters included complete blood count, liver
function tests, comprehensive metabolic panel, and coagulation
profiles.

Preoperative Interventions
Information on medications and supportive measures included
the following: anticoagulants and antiplatelets (eg, rivaroxaban,
clopidogrel, and aspirin), hemostatic agents (eg, tranexamic
acid, vitamin K, and etamsylate), and supportive therapies (eg,
pneumatic compression therapy, mechanical ventilation, blood
transfusion, endotracheal intubation or tracheostomy, and
mannitol administration).

Surgical and Anesthesia Details
Data included surgical site (intracranial or extracranial),
emergency status, multiple surgeries (≥2 procedures), anesthesia
method (general or regional), surgery duration, intraoperative
fluid balance, blood loss volume, vasopressor use, invasive
monitoring (central venous), and intraoperative hypotension
(systolic blood pressure <90 mm Hg).

Missing data were imputed using the K-nearest neighbors
algorithm for continuous variables and the mode for categorical
variables.
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Outcome
The diagnosis of VTE, encompassing DVT and PE, relies on
confirmatory imaging studies integrated with clinical
presentation. The first-line imaging modality for DVT is Doppler
ultrasonography, which identifies noncompressible veins with
hypoechoic thrombi and abnormal blood flow patterns.
Symptoms of PE typically present acutely and include
respiratory and cardiovascular manifestations. The diagnosis

of PE is commonly established using computed tomography
pulmonary angiography. Clinical signs suggestive of DVT in
the lower limbs include edema, discomfort, tenderness, the
presence of a palpable cord, and erythema or cyanosis.

Inclusion and Exclusion Criteria

The inclusion and exclusion criteria are presented in Textbox
1.

Textbox 1. Inclusion and exclusion criteria.

Inclusion Criteria

• Patients with traumatic brain injury (including concussion, cerebral contusion, diffuse axonal injury, subarachnoid hemorrhage, and epidural or
subdural hemorrhage of traumatic origin)

• Patients undergoing surgical management during the current hospitalization

• Patients aged 18 years or older at the time of enrollment

Exclusion Criteria

• Patients aged younger than 18 years

• No surgical intervention performed during the study period, surgery performed before admission to the study institution, or surgery conducted
during previous hospitalizations

• Missing more than 20% of essential study variables

• Length of hospital stay shorter than 72 hours after admission

• Venous thromboembolism diagnosed before surgery

Model Development and Explanation
The comprehensive dataset was stratified randomly and
partitioned into a training set (1264/1806, 70%) and an internal
validation set (542/1806, 30%) while preserving class
distribution. Feature selection was performed using the recursive
feature elimination algorithm followed by application of the
synthetic minority oversampling technique to mitigate class
imbalance [13,14]. A total of 6 ML algorithms were evaluated
for predictive performance: logistic regression (LR), support
vector machine (SVM), random forest (RF), gradient boosting
decision tree (GBDT), extreme gradient boosting (XGBoost),
and categorical boosting (CatBoost).

Model performance was comprehensively evaluated through a
suite of discriminative, calibrated, and clinically interpretable
metrics. For discriminative capacity, we assessed receiver
operating characteristic analysis with area under the curve,
alongside precision-recall metrics (including F1-score—the
harmonic mean of precision and recall), sensitivity, specificity,
positive predictive values (PPVs), and negative predictive values
(NPVs). Calibration was quantified using the Brier score and
visualized via calibration curves that compared predicted
probabilities against observed outcomes across risk deciles to
ensure reliable probability estimates. In terms of clinical
interpretability, Shapley additive explanations (SHAP) were
applied to quantify feature contributions to individual
predictions, elucidating both global feature importance and local
decision logic, while a nomogram was developed based on LR
coefficients to translate model outputs into clinically actionable
risk stratification categories. Advanced validation further
strengthened the robustness of findings. Decision curve analysis

was performed to evaluate net clinical benefit across threshold
probabilities (0%-100%), comparing model-guided interventions
against “treat-all” or baseline strategies.

Statistical Analysis
Continuous variables were presented as medians (IQRs), and
categorical variables were presented as numbers and
percentages. All analyses were performed using PyCharm
(version 2023.3.4; JetBrains), SPSS (version 26.0; IBM Corp),
and R (version 4.2.1; R Foundation for Statistical Computing).

Results

Overview
From October 2016 to December 2024, a total of 1806 patients
with TBI who underwent surgical intervention were enrolled
in this study (Figure 1). Among these patients, 257 (14.2%)
experienced VTE, including 254 (14.1%) cases of DVT and 3
(0.2%) cases of PE (Figure S1 in Multimedia Appendix 1).
Table 1 presents the demographic and clinical characteristics
of the study population. The median age of the patients was 51
(IQR 37-62) years. A total of 1324 (73.4%) patients were male.
The most common cause of injury was traffic accidents,
affecting 1033 (57.2%) patients. Cerebral contusion was
diagnosed in 1017 (56.3%) patients, subdural or epidural
hematoma in 967 (53.5%) patients, and subarachnoid
hemorrhage in 910 (50.4%) patients (Figures S2 and S3 in
Multimedia Appendix 1). Regarding the severity of head injury
based on the GCS scores, 1022 (56.6%) patients had mild head
injury (GCS score 13-15), 226 (12.5%) had moderate head
injury (GCS score 9-12), and 558 (30.9%) had severe head
injury (GCS score 3-8; Table 1 and Figure S4 in Multimedia
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Appendix 1). For the modeling dataset, 1806 cases were
included, with 1264 (70%) assigned to the training set and 541
(30%) to the internal validation set (Table 1).

The top 7 variables selected for inclusion in the models based
on the recursive feature elimination were as follows: age, Barthel
index (BI), ASA class, multiple surgeries, anesthesia types,

serum magnesium (Mg2+) levels, and limb AIS score (Figure
2).

Figure 1. The flowchart of the study population. TBI: traumatic brain injury; VTE: venous thromboembolism.

JMIR Med Inform 2025 | vol. 13 | e78655 | p. 4https://medinform.jmir.org/2025/1/e78655
(page number not for citation purposes)

Zheng et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Baseline characteristics of the patients in the training set and test set.

Test set (n=542)Training set (n=1264)Total (N=1806)Variables

51 (36-62)52 (37-61)51 (37-62)Age (y), median (IQR)

62 (55-70)63 (55-70)62 (55-70)Weight (kg), median (IQR)

10 (0-30)10 (0-30)0 (10-30)Barthel index, median (IQR)

389 (71.8)935 (74)1324 (73.3)Male, n (%)

333 (61.4)800 (63.2)1133 (62.7)ASAa physical status classification≥3, n (%)

82 (15.1)197 (15.6)278 (15.4)Delayed admission, n (%)

155 (28.6)384 (30.4)539 (29.8)Smoking, n (%)

87 (16.1)201 (15.9)288 (15.9)Drinking, n (%)

70 (12.9)166 (13.1)236 (13.1)Hypertension, n (%)

13 (2.4)22 (1.7)35 (1.9)Coronary heart disease, n (%)

29 (5.4)83 (6.6)112 (6.2)Diabetes, n (%)

21 (3.9)45 (3.6)66 (3.7)Pulmonary infection, n (%)

3 (0.6)7 (0.6)10 (0.6)Chronic kidney disease, n (%)

3 (0.6)11 (0.9)14 (0.8)Cancer, n (%)

4 (0.7)12 (0.9)16 (0.9)Atrial fibrillation, n (%)

8 (1.5)8 (0.6)16 (0.9)Estrogen or progestin, n (%)

62 (11.4)127 (10)189 (10.5)Shock, n (%)

Preoperative treatment, n (%)

268 (49.4)593 (46.9)861 (47.7)Admission to the ICUb

145 (26.8)429 (33.9)474 (26.2)Anticoagulation and antiplatelet therapy

64 (11.8)109 (8.6)173 (9.6)Hemostatic drugs

133 (24.5)353 (27.9)485 (26.9)Mannitol

48 (8.9)106 (8.4)154 (8.5)Trachea intubation

25 (4.6)41 (3.2)66 (3.7)Tracheotomy

17 (3.1)64 (5.1)80 (4.4)Limb pressure therapy

44 (8.1)92 (7.3)136 (7.5)Mechanical ventilation

42 (7.7)75 (5.9)116 (6.4)Blood transfusion

Mechanism of injury, n (%)

82 (15.1)211 (16.7)293 (16.2)Fall

326 (60.1)706 (55.9)1033 (57.2)Traffic accident

98 (18.1)256 (20.3)354 (19.6)Fall from height

18 (3.3)67 (5.3)85 (4.7)Assault

18 (3.3)23 (1.8)41 (2.3)Attack

Type of head injury

116 (21.4)287 (22.7)403 (22.3)Concussion, n (%)

305 (56.3)712 (56.3)1017 (56.3)Contusion, n (%)

291 (53.7)676 (53.5)967 (53.5)Subdural or extradural hematoma, n (%)

23 (4.2)64 (5.1)87 (4.8)Diffuse axonal injury, n (%)

267 (49.3)643 (50.9)910 (50.4)Subarachnoid hemorrhage, n (%)

215 (39.7)469 (37.1)684 (37.9)Skull fracture, n (%)

16 (11-22)16 (10-22)16 (11-22)ISSc, median (IQR)
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Test set (n=542)Training set (n=1264)Total (N=1806)Variables

3 (2-3)3 (2-3)3 (3-3)Head AISd score, median (IQR)

0 (0-2)0 (0-2)0 (0-3)Limb AIS score, median (IQR)

13 (8-15)13 (7-15)13 (7-15)GCSe score, median (IQR)

311 (57.4)711 (56.3)1022 (56.6)Mild, n (%)

68 (12.5)158 (12.5)226 (12.5)Moderate, n (%)

163 (30.1)395 (31.3)558 (30.9)Severe, n (%)

2 (1-2)2 (1-2)2 (1-2)Rotterdam CTf score, median (IQR)

Intraoperative events, n (%)

292 (53.9)693 (54.8)984 (54.5)Vasoconstrictor

98 (18.1)239 (18.9)336 (18.6)Transfusion

332 (61.3)825 (65.3)1156 (64)Invasive monitoring

263 (48.5)686 (54.3)949 (52.5)Emergency

466 (86)1124 (88.9)1589 (88)General anesthesia

235 (43.4)508 (40.2)743 (41.1)Hypotension

Surgical site, n (%)

245 (45.2)598 (47.3)831 (46)Head

121 (22.3)239 (18.9)360 (19.9)Thorax

139 (25.6)313 (24.8)452 (25)Limbs

21 (3.9)68 (5.4)88 (4.9)Abdomen

15 (2.8)58 (4.6)74 (4.1)Body surface

143 (26.4)347 (27.5)489 (27.1)Multiple surgeries, n (%)

194 (35.8)480 (38)674 (37.3)Intracranial surgery, n (%)

389 (71.8)880 (69.6)1268 (70.2)Extracranial surgery, n (%)

160 (110-220)157 (106-210)158 (109-215)Operation duration (min), median (IQR)

200 (93-400)200 (50-500)200 (50-500)Bleeding (mL), median (IQR)

1700 (1200-2500)1800 (1200-2600)1800 (1200-2600)Intraoperative fluid volume (mL), median (IQR)

aASA: American Society of Anesthesiologists.
bICU: intensive care unit.
cISS: Injury Severity Score.
dAIS: Abbreviated Injury Scale.
eGCS: Glasgow Coma Scale.
fCT: computed tomography.
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Figure 2. Selected features by recursive feature elimination. AIS: Abbreviated Injury Scale; ASA: American Society of Anesthesiologists; BI: Barthel
index; Mg: magnesium.

Model Performance
Figure 3 displays the area under the receiver operating
characteristic curve (AUC-ROC) for the 6 models in the internal

validation set. Table 2 and Figure S5 in Multimedia Appendix
1 present the additional evaluation metrics, including accuracy,
sensitivity, specificity, PPV, and NPV for each model.
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Figure 3. Area under the receiver operating characteristic curves (AUC-ROC) of 6 machine learning models in the internal validation dataset. CatBoost:
categorical boosting; GBDT: gradient boosting decision tree; SVM: support vector machine; XGBoost: extreme gradient boosting.

Table 2. Model performance in predicting venous thromboembolism in the validation set.

F1-scoreNPVcPPVbSpecificitySensitivityAccuracyAUC-ROCaModel

0.470.930.370.830.620.800.83Logistic regression

0.410.920.290.720.690.720.79Random forest

0.490.950.360.780.740.780.81SVMd

0.440.930.340.790.650.770.80GBDTe

0.450.920.380.840.580.800.80XGBoostf

0.440.920.360.830.570.790.81CatBoostg

aAUC-ROC: area under the receiver operating characteristic curve.
bPPV: positive predictive value.
cNPV: negative predictive value.
dSVM: support vector machine.
eGBDT: gradient boosting decision tree.
fXGBoost: extreme gradient boosting.
gCatBoost: categorical boosting.

Among the evaluated models, LR demonstrated superior
performance in the internal validation set, achieving the highest
AUC-ROC of 0.83, with an accuracy of 0.80 and specificity of

0.83, consistently generating reliable predictions and accurately
identifying true negative cases. Although other models showed
merit, they fell short in key performance domains. RF had an
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AUC-ROC of 0.78 (lower than LR), accuracy of 0.72, and
specificity of 0.82, but its sensitivity of 0.69 (relatively low)
led to more false negatives. SVM had an AUC-ROC of 0.81
(close to LR) but underperformed in sensitivity (0.74) and PPV
(0.36). GBDT and XGBoost both achieved an AUC-ROC of
0.80 (respectable but trailing LR), with GBDT’s sensitivity
(0.65) slightly better than LR and XGBoost, despite the highest
accuracy (0.80) among non-LR models, suffering from
suboptimal PPV (0.38) and lower sensitivity (0.58). CatBoost,
with an AUC-ROC of 0.81, had a low sensitivity (0.57) despite
a high NPV (0.92; still lower than LR’s NPV of 0.93). These
results underscore LR’s balanced performance across
discriminative, calibration, and clinical utility metrics, making

it the most robust choice for VTE prediction in this cohort of
patients with TBI undergoing surgical procedures.

Model Explanation Results and Nomogram
The SHAP algorithm enabled interpretable insights at both
global and instance-specific levels. Figure 4 visualizes the
relative importance and directional impact of 7 key features on
the LR model’s predictions, as derived from SHAP’s
interpretation of the model’s output. These features were
identified as critical predictors: BI, age, limb AIS, ASA Class,

multiple surgeries, serum magnesium (Mg2+) levels, and
anesthesia type.

Figure 4. Global feature importance on the logistic regression model. AIS: Abbreviated Injury Scale; ASA: American Society of Anesthesiologists;
BI: Barthel Index; Mg: magnesium; SHAP: Shapley additive explanations.

Subsequently, we linked SHAP values to their directional impact
on VTE risk (ie, the probability of a feature increasing or
decreasing the likelihood of VTE) and visualized these
relationships using data from 1 patient with VTE and 1 patient
without VTE in the internal validation dataset (Figure 5). Figure
6 specifically illustrates a case of a patient with VTE, where

red segments denote features with positive SHAP values
(indicating they contributed to an increased predicted VTE risk)
and blue segments represent features with negative SHAP values
(indicating they reduced the predicted VTE risk). This
visualization clarified how individual features collectively
modulate the model’s risk stratification for VTE.

Figure 5. Local explanation for a non–venous thromboembolism sample. AIS: Abbreviated Injury Scale; ASA: American Society of Anesthesiologists;
BI: Barthel index; Mg: magnesium.
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Figure 6. Local explanation for a venous thromboembolism sample. AIS: Abbreviated Injury Scale; ASA: American Society of Anesthesiologists; BI:
Barthel index; Mg: magnesium.

Figure 7 presents a user-friendly nomogram for rapid risk
quantification, where feature scores are weighted by regression
coefficients, allowing clinicians to sum points and visualize risk
thresholds. This aligned with SHAP-derived feature importance,
bridging statistical rigor with clinical decision-making. The
calibration curve illustrated the calibration performance of the
LR model in the internal validation set, with the x-axis
representing predicted probabilities (0-1) and the y-axis
depicting observed risks (0-1). Key curves included the
bias-corrected curve (derived from 1000 bootstrap resamples),
which aligned closely with the ideal reference line in the
moderate-risk range (0.2-0.7), indicating strong predictive

accuracy and the apparent curve, reflecting raw data fit with
minor deviations at extreme probabilities (<0.2 and >0.8; Figure
S6 in Multimedia Appendix 1). Further evaluation of clinical
utility using the decision curve analysis demonstrated that the
nomogram provided superior net benefits on the validation set
(Figure S7 in Multimedia Appendix 1).

Collectively, the LR model’s balanced performance
(AUC-ROC=0.83; NPV=0.93), robust calibration, and actionable
interpretability—coupled with the nomogram’s clinical
utility—establish it as a reliable tool for VTE prediction in TBI
surgical cohorts.

Figure 7. Postoperative venous thromboembolism risk prediction nomogram for patients with traumatic brain injury. AIS: Abbreviated Injury Scale;
ASA: American Society of Anesthesiologists; BI: Barthel index; Mg: magnesium.

Discussion

Principal Findings
The prevention of VTE remains a cornerstone in the
management of patients with TBI, particularly those undergoing
surgical intervention, due to their heightened thrombotic risk
driven by prolonged immobilization, hypercoagulability, and
endothelial injury. Although pharmacological

thromboprophylaxis (eg, low-molecular-weight heparin) and
mechanical methods (eg, sequential compression devices) are
widely implemented, balancing efficacy with safety remains
challenging due to the risk of intracranial hemorrhage associated
with these agents [15]. Current guidelines lack consensus on
optimal dosing protocols, timing of initiation, and patient
selection criteria, further complicating clinical decision-making
[16].
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In this study, we documented a postoperative VTE incidence
of 14.2% among patients with TBI, markedly exceeding the
3.9% reported in a 2019 national registry study [17]. This
disparity underscores the urgent need for improved risk
assessment tools to identify high-risk patients and guide targeted
thromboprophylactic interventions.

Previous studies have used various risk-scoring systems to assess
PE risk in patients who were hospitalized, including the Caprini
and Padua scores [18-20]. The Caprini score, while simple and
widely adopted, has significant limitations, such as its
overreliance on subjective historical data (eg, previous VTE
and obesity), omission of objective biomarkers (eg, D-dimer
dynamics), and failure to account for anatomical factors (eg,
craniotomy type) or anticoagulation therapy risks. For instance,
in Asian cohorts, where patients with TBI frequently undergo
prolonged surgeries (>45 min) and present with comorbid
conditions (eg, hypertension), the Caprini score often
overestimates VTE risk by classifying excessive numbers of
patients as high risk. This has led to unnecessary anticoagulation
therapy, increasing bleeding risks and health care costs [21,22].

To address these challenges and more accurately identify
patients with TBI at high risk of postoperative VTE, we used
6 ML algorithms (including LR, RF, SVM, XGBoost, GBDT,
and CatBoost) to develop predictive models and created a
postoperative VTE risk prediction nomogram specifically for
patients with TBI. These models aim to enhance risk assessment
precision, enabling more targeted and effective
thromboprophylactic interventions. ML has demonstrated
efficacy in VTE prediction across various patient populations.
Wang et al [23] and Liu et al [24] validated the RF model for
VTE risk assessment in Chinese inpatients and patients who
have experienced stroke, respectively.

Comparison With Prior Work
The morphology and influence of most features on the
predictions are consistent with clinical practice and previous
evidence. LR-based global feature importance analysis identified
several critical VTE risk factors. BI scores, a validated measure
of activities of daily living, emerged as the strongest predictor,
with poorer functional status (lower BI scores) substantially
increasing VTE risk—likely due to immobility and venous
stasis—with moderate-certainty evidence supporting this
association [25,26]. Advanced age was another key determinant
of VTE risk, as older patients exhibited heightened susceptibility
to VTE, attributed to age-related coagulation changes, increased
comorbidity burden, and potential immobilization—all
well-documented VTE risk factors consistent with previous
epidemiological studies. Severe limb injuries (eg, pelvic
fractures) were significantly associated with elevated VTE risk,
aligning with findings by Hereford et al [27]. Higher ASA
scores, reflecting greater comorbidity burden and poorer
physiological reserve, strongly correlated with increased VTE
risk, consistent with the American College of Chest Physicians’
guidelines, which emphasize ASA status in VTE risk assessment
for patients undergoing major surgeries [28].

Our study further demonstrated that lower serum magnesium

(Mg2+) levels are associated with higher VTE risk, potentially

mediated by endothelial dysfunction (eg, slowed endothelial
cell proliferation, stimulated monocyte adhesion, and impaired
synthesis of vasoregulatory molecules) and myocardial
instability (eg, altered intracellular calcium handling, prolonged
QT intervals, and increased arrhythmia risk) [29-31]. However,
a prospective cohort study conducted by Kunutsor and
Laukkanen [32] among middle-aged Caucasian men (n=2361)
reported no significant association between serum magnesium

(Mg2+) levels and VTE risk (adjusted hazard ratio 1.38, 95%
CI 0.48-3.96), with discrepancies potentially attributed to
population heterogeneity (eg, age, sex, and comorbidities).
Therefore, future studies are warranted to validate the
association between serum magnesium levels and VTE risk in
more diverse populations encompassing varying age groups,
sexes, and comorbid conditions. Although other factors (eg,
multiple surgeries and anesthesia type) also influenced VTE
risk to a lesser extent, these findings collectively provide critical
insights for developing targeted preventive strategies and
enhancing patient-specific risk assessment in clinical practice.
This study investigated potential VTE predictors in patients
with TBI after undergoing surgery and compared the
performance of multiple machine learning algorithms.
Nonetheless, the model's reliance solely on preoperative and
intraoperative variables, excluding postoperative data such as
laboratory tests and therapeutic interventions, potentially
constrained its predictive power. Abbasi et al [33] successfully
predicted postoperative bleeding events, VTE, and stroke risk
in cardiac surgery by integrating preoperative, intraoperative,
and postoperative variables, achieving high performance
(AUC-ROC=0.92-0.97). Their study demonstrated that including
postoperative variables significantly enhanced model
performance, with prediction accuracy critically dependent on
these data. Thus, future studies should integrate postoperative
laboratory tests and therapeutic interventions as key variables
to enhance the predictive capability of VTE risk models in
populations with TBI.

Limitations
Several limitations of this study warrant acknowledgment. First,
the dataset was derived from a single medical center for an
8-year period, which may have introduced data heterogeneity
and unavoidable selection bias. Second, although this study
included 1806 cases with a notably high VTE incidence, the
number of VTE-positive events remained relatively small.
Therefore, larger sample sizes are critical for future studies to
enable more precise analyses and the development of robust
predictive models. Third, postoperative laboratory tests and
treatment regimens were not integrated into the analysis, which
may have affected the study outcomes. Finally, given that all
data originated from a single center, external validation of the
developed model across multiple centers over time is necessary
to confirm its generalizability.

Conclusions
This study successfully developed and validated ML models
for VTE risk prediction in patients with TBI undergoing surgery,
with a specific focus on clinical translatability. Leveraging the
LR model’s robust performance, we constructed a practical
nomogram that enables bedside VTE risk assessment using
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routinely collected preoperative and intraoperative data. This
user-friendly tool empowers clinicians to rapidly quantify
individualized VTE risk and guide targeted thromboprophylactic
decisions at the point of care. Future external validation across

diverse clinical settings and patient populations is warranted to
confirm the model’s generalizability and ensure its broader
applicability in real-world practice.
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ASA: American Society of Anesthesiologists
AUC-ROC: area under the receiver operating characteristic curve
BI: Barthel index
CatBoost: categorical boosting
DVT: deep vein thrombosis
GBDT: gradient boosting decision tree
GCS: Glasgow Coma Scale
LR: logistic regression
ML: machine learning
NPV: negative predictive value
PE: pulmonary embolism
PPV: positive predictive value
RF: random forest
SHAP: Shapley additive explanations
SVM: support vector machine
TBI: traumatic brain injury
VTE: venous thromboembolism
XGBoost: extreme gradient boosting
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