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Abstract
Background: Predicting colorectal cancer (CRC) recurrence risk remains a challenge in clinical practice. Owing to the
widespread use of radiomics in CRC diagnosis and treatment, some researchers recently explored the effectiveness of
radiomics-based models in forecasting CRC recurrence risk. Nonetheless, the lack of systematic evidence of the efficacy
of such models has hampered their clinical adoption.
Objective: This study aimed to explore the value of radiomics in predicting CRC recurrence, providing a scholarly rationale
for developing more specific interventions.
Methods: Overall, 4 databases (Embase, PubMed, the Cochrane Library, and Web of Science) were searched for relevant
articles from inception to January 1, 2025. We included studies that developed or validated radiomics-based machine learning
models for predicting CRC recurrence using computed tomography or magnetic resonance imaging and provided discrimina-
tive performance metrics (c-index). Nonoriginal articles, studies that did not develop a model, and those lacking clear outcome
measures were excluded from the study. The quality of the included original studies was assessed using the Radiomics Quality
Score. A bivariate mixed-effects model was used to conduct a meta-analysis in which the c-index values with 95% CI were
pooled. For the meta-analysis, subgroup analyses were conducted separately on the validation and training sets.
Results: This meta-analysis included 17 original studies involving 4600 patients with CRC. The quality of the identified
studies was low (mean Radiomics Quality Score 13.23/36, SD 2.56), with limitations in prospective design and biological
validation. In the validation set, the c-index values based on clinical features, radiomics features, and radiomics features
combined with clinical features were 0.73 (95% CI 0.68‐0.79), 0.80 (95% CI 0.75‐0.85), and 0.83 (95% CI 0.79‐0.87),
respectively. In the internal validation set, the c-index values based on clinical features, radiomics features, and radiomics
features+clinical features were 0.70 (95% CI 0.61‐0.79), 0.83 (95% CI 0.78‐0.88), and 0.83 (95% CI 0.78‐0.88), respectively.
Finally, in the external validation set, the c-index values based on clinical features, radiomics features, and radiomics features
combined with clinical features were 0.76 (95% CI 0.70‐0.83), 0.75 (95% CI 0.66‐0.83), and 0.83 (95% CI 0.78‐0.88),
respectively.
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Conclusions: Radiomics-based machine learning models, especially those integrating radiomics and clinical features, showed
promising predictive performance for CRC recurrence risk. However, this study has several limitations, such as moderate study
quality, limited sample size, and high heterogeneity in modeling approaches. These findings suggest the potential clinical value
of integrated models in risk stratification and their potential to enhance personalized treatment, though further high-quality
prospective studies are warranted.
Trial Registration: PROSPERO CRD420250656632; https://www.crd.york.ac.uk/PROSPERO/view/CRD420250656632

JMIR Med Inform 2025;13:e78644; doi: 10.2196/78644
Keywords: colorectal cancer; radiomics; meta-analysis; clinical prediction model; PRISMA; Preferred Reporting Items for
Systematic Reviews and Meta-Analyses

Introduction
Colorectal cancer (CRC) is ranked as the third most prevalent
malignancy and the second most common cause of cancer-
related deaths worldwide [1,2]. According to the International
Agency for Research on Cancer, there were 1,926,100 (9.6%)
new CRC cases and 903,900 (9.3%) CRC-related deaths in
2022 alone [2], highlighting CRC as a major public health
concern. Although notable developments have been reported
for targeted therapies, adjuvant chemotherapy, as well as
radical surgery, cases of tumor recurrence are still a major
issue leading to poor survival outcomes [3]. Therefore, early
identification of CRC recurrence risk in clinical practice and
the development of precise interventions would be imperative
for improved clinical outcomes.

Machine learning (ML) and radiomics have recently
gained widespread attention in oncological diagnoses and
treatments, including in CRC [4,5]. Radiomics is an
interdisciplinary technology that quantitatively analyzes
high-dimensional features in medical images (eg, compu-
ted tomography [CT], magnetic resonance imaging [MRI],
and positron emission tomography) to mine pathological
information not visible to the naked eye. It entails segment-
ing regions of interest (ROIs) from medical images, extract-
ing predefined mathematical features, and integrating them
with ML or deep learning (DL) algorithms to generate
interpretable clinical prediction models [6]. This technique
has been extensively documented in the literature for cancer
diagnosis and survival prediction [7-9]. Specifically within
CRC, several studies have explored radiomics for recurrence
prediction [10], using various image modalities including CT
and MRI.

However, the available primary studies adopt
diverse methodologies, using different imaging protocols,
segmentation methods, feature extraction techniques, and

model validation approaches. Therefore, the findings from
such studies are inconsistent, making the clinical translation
of individual models challenging. Although some reviews
have summarized the application of radiomics in CRC
management [11,12], none have specifically synthesized
and quantitatively evaluated the predictive performance of
radiomics-based ML models for CRC recurrence risk through
meta-analysis. In addition, most of the previous reviews failed
to discuss how integrative modeling, combined with radiomic
and clinical variables, facilitates clinical decision-making to
mitigate recurrence and improve patient management.

In this meta-analysis, we aimed to systematically assess
the predictive performance of radiomics-based ML models
on the risk of CRC recurrence, focusing on models incor-
porating both imaging and clinical features. In addition,
we explored whether integrated approaches offer superior
predictive accuracy compared to models using either data
type alone. By comprehensively evaluating the existing
evidence and its limitations, this study aims to provide
robust evidence that can inform the development of effective,
personalized intervention strategies for CRC.

Methods
Study Registration
This study was submitted to PROSPERO (Interna-
tional Prospective Register of Systematic Reviews; ID:
CRD420250656632) and adhered to the PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses)
guidelines.
Eligibility Criteria
The inclusion and exclusion criteria for study selection are
summarized in Textbox 1.
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Textbox 1. Inclusion and exclusion criteria.
Inclusion criteria

• Studies enrolling patients with colorectal cancer with no requirement for cancer staging and metastatic resections.
• Studies involving radiomics-based machine learning (ML) predictive models and imaging data (magnetic resonance

imaging and computed tomography)–based radiomics models.
• Studies published in English.

Exclusion criteria
• Meta-analyses, reviews, guidelines, expert opinions, and conference abstracts.
• Studies that performed variance factor analysis but did not construct a grammatical ML model.
• Studies without clearly defined endpoint metrics that could make it difficult to assess ML predictive accuracy.
• Studies that only performed image segmentation without constructing a full model.

Data Sources and Search Strategy
We systematically searched 4 databases (Web of Science,
Cochrane Library, Embase, and PubMed) from inception to 1
January 2025. The search strategy involved a combination of
Medical Subject Heading terms and free-text words. Detailed
search strategies are provided in Table S1 in Multimedia
Appendix 1 [10,13-28]. The search had no regional restric-
tions.
Study Selection and Data Extraction
The literature retrieved from the searched databases was
imported into EndNote software (Clarivate). After eliminating
redundant entries, the remaining articles were systematically
screened based on titles and abstracts to discard references
that did not meet the predetermined eligibility requirements.
The full texts of the remnant studies were screened to obtain
additional relevant studies.

Data extracted included titles, year of publication, first
author, study type, country, patient sources, study design,
treatment regimen, outcome definitions, radiomics source,
segmentation method, number of imaging investigators, ROI
segmentation software, number of cases and total number of
outcome events in the validation and training sets, type of
model used, variable screening method, modeling variables,
overfitting assessment, and model rating metrics.

Two authors (YS and BL) independently selected the
studies and extracted the data, with a third researcher (JA)
consulted to resolve any disputes. The interrater agreement
between the 2 independent reviewers during the study
selection process was excellent, with a Cohen κ value of
0.895.
Study Quality and Risk-of-Bias
Assessment
This meta-analysis included studies that used radiomics-based
ML models to predict CRC recurrence risk. The Radiomics
Quality Score (RQS) was used to determine the reporting
completeness and methodological robustness of the included
articles [29]. This 16-item scoring system, with a maximum
score of 36, is specifically designed to facilitate radiomics
studies that encompass various aspects, including image
protocol quality, multiple segmentation processes, phantom
studies across all scanners, imaging conducted at multiple

time points, feature reduction techniques, and multivariable
analyses incorporating nonradiomics features. In addition, it
addresses the detection and discussion of biological corre-
lates, cut-off analyses, discrimination statistics, calibration
statistics, and prospective studies registered in trial databa-
ses. Furthermore, the system emphasizes the importance
of validation, comparison against established “gold stand-
ards,” potential clinical use, cost-effectiveness analyses, and
adherence to principles of open science and data sharing.
Existing radiological studies are challenging to evaluate
within the RQS framework, as they often lack phantom
studies across different scanners, imaging at multiple time
points, identification and discussion of biological correlates,
prospective trial registration, and cost-effectiveness analyses.

Two investigators (YS and CJ) administered the RQS
measure and cross-checked the results upon completion. A
third investigator (HS) was consulted to resolve any disputes.
Synthesis Methods
This meta-analysis aimed to synthesize the discrimination
metrics (c-index) for evaluating the overall accuracy of
ML models. For primary studies with 95% CI values or
SEs for c-index values, the standard errors were estimated
using Debray et al [30] methodological framework. Heteroge-
neity across studies was evaluated quantitatively using the
I² index. The restricted maximum likelihood method was
used to estimate between-group variance, which is recom-
mended for its improved performance in handling heteroge-
neity, particularly when the number of studies is limited
[31]. Given significant heterogeneity (defined as I²>50%),
a random-effects model was adopted for meta-analysis, and
sensitivity analyses were performed. Publication bias was
assessed through funnel plot asymmetry analysis and Egger
test. Subgroup analyses were conducted to further detect
possible sources of heterogeneity. Subgroup analyses were
conducted based on imaging modality (CT vs MRI) and
dataset type (training vs validation sets). The meta-analysis
was conducted in Stata 15 (StataCorp LLC). In addition, to
calculate the 95% prediction intervals, which estimate the
range within which the true effect of a future study would
be expected to fall, we used R software (version 4.4.3; R
Development Core Team).
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Quality of the Evidence (Grading
of Recommendations, Assessment,
Development, and Evaluation
Assessment)
The GRADE (Grading of Recommendations, Assessment,
Development, and Evaluation) approach was used to
determine the overall certainty of evidence for our primary
outcome (predictive performance measured by c-index) [32].
Given that the included studies were observational in design,
the initial evidence level was low. Therefore, we evalu-
ated the evidence across the 5 GRADE domains (risk of
bias [RoB], inconsistency, indirectness, imprecision, and
publication bias), creating a final certainty rating for each
model comparison.

Results
Study Selection
The initial search of the 4 databases yielded 5916 articles,
of which 5049 remained after removing duplicates. Two

reviewers independently assessed the title and abstract of
all remaining articles, of which 5007 were excluded due to
inconsistencies with the study goals. Reasons for exclusion
were primarily nonrelevant study type (eg, reviews), not
focusing on CRC radiomics or ML, or not having recurrence
as a prediction outcome. The remaining articles were further
subjected to a careful full-text review, after which 25 articles
(5 conference abstracts, 12 articles without CRC recurrence
endpoints, and 8 articles missing indicators for assessing
model accuracy) were removed. Therefore, only 17 articles
[10,13-28] were included in the study’s analyses. Figure 1
shows the study selection process.

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart of the study selection procedure for this
systematic review and meta-analysis. CRC: colorectal cancer; ML: machine learning.
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Features of the Included Study
This meta-analysis included 17 studies (involving 4600
patients with CRC) [10,13-28], which were published
between 2019 and 2025. All 17 studies were cohort investiga-
tions, of which 12 were conducted in China [10,13-15,17,18,
20,21,23,25-27], and the rest were conducted in Canada [16],
France [24], South Korea [28], the Netherlands [19], and the
United States [22]. Furthermore, 8 [16,20,22,23,25-28] and
9 [10,13-15,17-19,21,24] studies were single- and multicen-
ter investigations, respectively. In addition, 7 [16-18,20,23-
25], 9 [10,13-15,19,21,22,26,28], and 1 [27] studies involved
patients with CRC, rectal cancer, and colon cancer, respec-
tively. The included studies encompassed patients from stage
I to IV, with the majority involving stages II and III. Most
patients underwent curative-intent surgery, and 2 [18,20]
studies specifically included cases with resectable metastases.
All studies conducted radiomics analysis, of which 8 [13-15,
19,21,22,26,28] and 9 [10,16-18,20,23-25,27] were based on
MRI and CT images, respectively. Only 1 included study
applied a DL model [16], while the remaining used diverse
traditional ML algorithms [10,13-15,17-28]. Regarding the
number of researchers involved in image segmentation, 2
studies [24,28] had only 1 imaging researcher, 9 studies
[10,13,14,17-21,23] had 2 researchers working together, 4
studies [15,22,25,26] had 3 researchers working together,
and 2 studies [16,27] did not report the number of imaging
researchers. Regarding the segmentation software used for
ROI regions, ITK-SNAP and 3D Slicer were used in 8 [10,13-
15,17,18,20,21] and 3 studies [20,24,25], respectively, with
the rest of the studies using The Medical Imaging Interaction
Toolkit (MITK) [16], Gold LX [22], INFINITE PACS [23],
Radcloud radiomics platform, and the Eclipse system. Two
studies [16,27] did not perform validation set partitioning, 1
study [22] performed 5-fold cross-validation, and 8 studies
[10,13-15,17-21,25] had a separate external validation cohort
[10,13-15,17-19,21], of which 5 studies [13-15,17,18] had 2
cohorts (internal and external). In 14 studies [10,13-21,23-25,
28], clinical factors were combined with radiomics features
to construct models, while the rest of the studies developed
models using radiomics features or clinical factors alone [22,
26,27]. Table S2 in Multimedia Appendix 1 [10,13-28] shows
the basic characteristics of the included studies. Table S4 in
Multimedia Appendix 1 [10,13-28] shows essential data for
pooled analysis.

Study Quality and RoB Assessment
The average and median RQS scores of all 17 studies were
13.23 (SD 2.56) and 13 (IQR 6-16), respectively. All studies
had “Image protocol quality,” “Discrimination statistics,”
and “Cut-off analyses” items. In addition, 16 [10,14-28]
out of 17 studies (94%) had “Calibration statistics” and
“Validation” items [10,13-26,28]. On the other hand, 13
[10,13-15,17-23,25,26] out of 17 studies (77%) conducted
“Multiple segmentations.” Fourteen [10,13-21,23-25,27,28]
out of 17 studies (82%) performed multivariable analysis
and incorporated nonradiomics features [10,13,14,16-18,21-
28], potentially yielding a more holistic model. A total of
11 [10,13,15,17-21,26-28] out of 17 studies (65%) reported
potential clinical use and generated clinical decision curves.
Two [15,16] studies provided open science and data access,
and only 1 study [23] detected and discussed biological
correlations. There were no phantom studies, and none of the
studies used the comparison to the “gold standard,” adjust-
ment for multiple testing or feature reduction, prospective
designs, imaging at multiple time points, or cost-effective-
ness analysis. Supplementary material provides the detailed
RQS scores for all included studies (Table S3 in Multimedia
Appendix 1) [10,13-28].

The RoB and concerns regarding applicability for each
included study were rigorously assessed using the Quality
Assessment of Diagnostic Accuracy Studies (QUADAS-2)
tool [33]. Notably, the included studies were cohort studies,
and most of them were not excluded, which avoided the
low RoB in case selection. Furthermore, considering that the
included studies primarily used supervised ML with clearly
defined outcomes, they had a low RoB. The implementation
and interpretation of gold standards were performed by using
clear criteria for recurrence, and the blinding did not influence
outcomes; hence, the RoB was minimal. In addition, there
was low RoB in case selection, given that known gold
standards were applied. However, given that both studies
enrolled cases of CRC-related metastases, there was a high
RoB in the clinical applicability. A traffic-light plot summa-
rizing the QUADAS-2 assessment for each study is presented
in Figure 2.
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Figure 2. Traffic-light plot summarizing the Quality Assessment of Diagnostic Accuracy Studies-2 assessment [10,13-28].

Meta Analysis

Training Set
In total, 8 studies [10,13-15,18-20,25] compared models
constructed to predict recurrence based on clinical factors,
and a c-index of 0.73 (95% CI 0.69‐0.78; GRADE=low) was
obtained using a random-effects model (Figure 3A; Table
S5 in Multimedia Appendix 1) [10,13-28]. Furthermore, 13
radiomics-based ML models had a pooled c-index of 0.83
(95% CI 0.77‐0.89; GRADE=very low, due to inconsistency;

Figure 3B; Table S5 in Multimedia Appendix 1) [10,13-28].
The c-index values of the CT-based and MRI-based radio-
mics summaries were 0.84 (95% CI 0.74‐0.94; GRADE=very
low, due to inconsistency) and 0.81 (95% CI 0.71‐0.91;
GRADE=very low, due to inconsistency), respectively. In
addition, 12 studies [10,13-21,25,27] developed ML models
based on radiomics features plus clinical features, with a
pooled c-index of 0.82 (95% CI 0.72‐0.91; GRADE=very
low, due to inconsistency; Figure 3C; Table S5 in Multimedia
Appendix 1) [10,13-28].
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Figure 3. (A) Forest plot of c-index meta-analysis of machine learning (ML) constructed based on clinical features to predict colorectal cancer (CRC)
recurrence in the training set. (B) Forest plot of c-index meta-analysis for ML to predict CRC recurrence based on radiomics features in the training
set. (C) Forest plot of c-index meta-analysis of ML based on radiomics combined with clinical features to predict CRC recurrence in the training set
[10,13-22,25-28]. CT: computed tomography; MRI: magnetic resonance imaging.
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Validation Set
Eight studies [10,13-15,18-20,25] compared models
constructed to predict recurrence based on clinical fac-
tors, and a pooled c-index of 0.73 (95% CI 0.68‐0.79;
GRADE=very low, due to inconsistency) was obtained using
a random-effects model (Figure 4A; Table S5 in Multimedia
Appendix 1) [10,13-28]. Publication bias was not detected by
the Egger test (P=.11) and funnel plot (Multimedia Appendix
2). Furthermore, 16 radiomics features–based ML models had
a pooled c-index of 0.80 (95% CI 0.75‐0.85; GRADE=very
low, due to inconsistency; Figure 4B; Table S5 in Multimedia

Appendix 1) [10,13-28]. Publication bias was not detected by
Egger test (P=.73) and funnel plot (Multimedia Appendix 3).
The c-index values of the CT-based and MRI-based radio-
mic summaries were 0.83 (95% CI 0.80‐0.87; GRADE=low)
and 0.78 (95% CI 0.70‐0.86; GRADE=very low, due to
inconsistency), respectively. In addition, ML models based
on radiomics features plus clinical features had a pooled
c-index of 0.83 (95% CI 0.79‐0.87; GRADE=very low, due to
inconsistency; Figure 4C; Table S5 in Multimedia Appendix
1) [10,13-28]. Publication bias was detected by the Egger test
(P=.01) and funnel plot ( Multimedia Appendix 4).
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Figure 4. (A) Forest plot of c-index meta-analysis of machine learning constructed based on clinical features to predict colorectal cancer (CRC)
recurrence in the validation set. (B) Forest plot of c-index meta-analysis for machine learning to predict CRC recurrence based on radiomics features
in the validation set. (C) Forest plot of c-index meta-analysis of machine learning based on radiomics combined with clinical features to predict CRC
recurrence in the validation set [10,13-21,23-28]. CT: computed tomography; MRI: magnetic resonance imaging.
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Internal Validation Set
Overall, 6 studies [13-15,18,20,25] compared models
constructed to predict recurrence based on clinical fac-
tors, and a pooled c-index of 0.70 (95% CI 0.61‐0.79;
GRADE=very low, due to inconsistency) was obtained using
the random-effects model (Multimedia Appendix 5; Table
S5 in Multimedia Appendix 1) [10,13-28]. Furthermore, 9
radiomics features–based ML models had a pooled c-index of
0.83 (95% CI 0.78‐0.88; GRADE=very low, due to incon-
sistency; Multimedia Appendix 6; Table S5 in Multimedia
Appendix 1) [10,13-28]. The c-index values for the CT-
based and MRI-based models were 0.84 (95% CI 0.80‐0.88;
GRADE=low) and 0.82 (95% CI 0.71‐0.92; GRADE=very
low, due to inconsistency), respectively. In addition, ML
models based on radiomics features plus clinical features had
a pooled c-index of 0.83 (95% CI 0.78‐0.88; GRADE=very
low, due to inconsistency; Multimedia Appendix 7; Table S5
in Multimedia Appendix 1) [10,13-28].

External Validation Set
A total of 5 studies [10,14,15,18,19] compared models
constructed to predict recurrence based on clinical factors and
a pooled c-index of 0.76 (95% CI 0.70‐0.83; GRADE=very

low, due to inconsistency) was obtained using the ran-
dom-effects model (Multimedia Appendix 8; Table S5 in
Multimedia Appendix 1) [10,13-28]. Furthermore, 7 ML
models established using radiomics features showed a pooled
c-index of 0.75 (95% CI 0.66‐0.83; GRADE=very low,
due to inconsistency; Multimedia Appendix 9; Table S5
in Multimedia Appendix 1) [10,13-28], while that of MRI-
based radiomics models was 0.74 (95% CI 0.62‐0.85;
GRADE=very low, due to inconsistency) and that for
CT-based was 0.79 (95% CI 0.71‐0.88; GRADE=low). In
addition, the ML models derived from radiomics features
plus clinical features had a pooled c-index of 0.83 (95% CI
0.78‐0.88; GRADE=low; Multimedia Appendix 10; Table S5
in Multimedia Appendix 1) [10,13-28].

Sensitivity Analysis
The robustness of the pooled estimates was determined using
leave-one-out sensitivity analyses applied to the validation set
results. It was observed that, while the point estimate of the
pooled c-index showed minor fluctuations upon the sequential
removal of each study, the overall estimates remained stable
and within a consistent range. The results of the sensitivity
analysis are visualized in Figure 5.
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Figure 5. Sensitivity analysis on the validation sets based on clinical features, radiomics features, and combined clinical and radiomics features
[10,13-15,17-21,23-26,28].
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Discussion
Principal Findings
This meta-analysis systematically evaluated and compared
the predictive performance of different radiomics-based ML
models for CRC recurrence risk. We postulated that models
integrating both radiomic features and clinical variables
may show superior predictive accuracy compared to either
modality alone. The results revealed that the integrated
models achieved the highest pooled c-index of 0.83 (95%
CI 0.79‐0.87) in the validation set, outperforming models
based solely on radiomics features (c-index: 0.80; 95%
CI 0.75‐0.85) or clinical features (c-index: 0.73; 95% CI
0.68‐0.79). Collectively, the findings of this study underscore
the complementary value of combining quantitative imaging
biomarkers with clinical data to enhance recurrence risk
stratification in patients with CRC.

Notably, research on cancer diagnosis has seen a prolifer-
ation of systematic reviews and meta-analyses, particularly
concerning CRC diagnosis, treatment response, and progno-
sis [34,35]. While this reflects the high clinical interest in
radiomics, it also underscores the challenge of demonstrat-
ing novel and impactful contributions. Our study addresses
a specific and clinically pertinent niche within this satura-
ted field. Unlike previous reviews that often focus on a
broader diagnostic or prognostic scope, this meta-analysis
provides a dedicated quantitative synthesis focused exclu-
sively on ML-based models for recurrence risk prediction.
More importantly, we placed a particular emphasis on
evaluating the incremental value of integrating radiomics
with clinical features, a comparative approach that is less
commonly the central focus of existing reviews. Therefore,
we believe this work offers a nuanced and actionable insight:
that the future of radiomics in clinical decision-making may
lie not in replacing clinical factors, but in synergistically
combining with them. This promising finding, however,
should be considered in light of the detected publication bias,
which indicates that the literature may lack smaller studies
with negative results. Therefore, there is an urgent need for
prospective validation studies in the future to confirm these
promising findings.
Comparison to Prior Work
Multiple reviews and meta-analyses have reported the clinical
use of potential biomarkers in predicting CRC recurrence
postsurgery [36,37]. Nonetheless, the predictive value of
radiomics remains inadequately assessed. Several studies
have constructed different clinical prediction models for CRC
recurrence risk. For instance, Alinia constructed a predic-
tive model and validated its predictive efficacy using 7
ML algorithms based solely on clinicopathological features
(eg, disease stage and treatment type) in a cohort of 284
patients with CRC [38]. In addition, Mohammadian Rad
predicted recurrence risk using a gradient-boosting model that
combined clinicopathological features (eg, carcinoembryonic
antigen level) and demographic data [39]. Furthermore,
Seong et al [40] integrated unstructured textual information

from colonoscopy reports with clinical data for CRC risk
stratification.

Despite their good predictive results, these studies had
some limitations, which could be attributed to several factors.
First, the performance of the models based on clinical data
alone in predicting CRC recurrence risk was lower than
that of the fusion model integrating radiomics features,
highlighting the significance of combining imaging features
for an improved predictive ability. Second, colonoscopy
is highly invasive and relies largely on the endoscopist’s
experience and skill level; hence, its images are mainly based
on morphological features, which lack quantitative analy-
sis of deep infiltration or the tumor’s metastatic potential,
thus limiting the model’s clinical applicability. Conversely,
radiomics can extract hundreds of quantitative features (eg,
texture and grayscale covariance matrix) from CT and MRI,
among other images, reflecting tumor heterogeneity more
comprehensively and providing a more reliable individualized
treatment basis.

Herein, the CT and MRI images were predominantly
used to predict CRC recurrence risk. Notably, there were no
significant differences between the CT and MRI radiomics-
based prediction models in the validation set. Nonetheless,
MRI radiomics studies often require integrated multisequence
image segmentation and feature extraction, whereas CT
radiomics is usually based on a single modality (eg, enhanced
CT) and features a relatively simplified process. In other
words, MRI image segmentation has a greater workload [41].
Given that there is no significant difference in the predic-
tive value between the 2, CT-based radiomics, despite its
simplicity, can still be considered in the future in constructing
radiomics-based ML prediction models.

Selecting ML algorithms remains a notable challenge
when constructing radiomics-based predictive models,
especially for image-processing tasks. Notably, ML models
could be influenced by traditional ML and DL algorithms
[42]. Traditional ML relies on the (manual) segmentation
of images, image texture screening for model construction,
and model validation. When extracting and screening image
textures, some of the image information may be lost,
somewhat impacting the model’s accuracy [43]. On the other
hand, DL can intelligently segment images or be trained
directly on segmented images. Furthermore, it incorporates
the extraction and screening of image texture features into the
training process, maximizing image information retention and
providing better accuracy [44,45]. Here, manual segmentation
was used owing to the few enrolled studies. Therefore, future
studies should further explore the application of DL methods
in constructing radiomics-based predictive models, potentially
improving image recognition.

The role of clinical and demographic characteristics is
particularly important when constructing prediction models
based on radiomics, as they can accurately reflect disease
progression. Some studies reported a significant correla-
tion between laboratory test results and tumor staging
and prognosis information, including tumor markers [46,
47]. In addition, social factors such as marital status and
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family income were markedly linked to the prognosis
of patients with tumors [48,49]. These studies highlight
the potential significance of screening and incorporating
meaningful clinical and sociodemographic characteristics
when constructing radiomics-based prediction models. To
effectively integrate these multimodal models into clinical
practice, future efforts should focus on developing interoper-
able digital health platforms that can seamlessly combine
radiomic features with real-time clinical and demographic
data. Such systems should be designed to interface with
existing electronic health records, support automated image
analysis, and generate interpretable risk scores that can be
readily used by clinicians for personalized recurrence risk
assessment. In addition, implementation studies are needed
to evaluate the usability, workflow integration, and clinical
impact of these tools in routine care settings.

When constructing a clinical prediction model, validation
is often conducted both internally and externally. For internal
validation, both the training and validation sets are often
derived from the same dataset and split through random
sampling, among other methods [50]. Notably, internal
validation often has limitations on the model’s interpreta-
tion and generalizability, especially in radiomics research
that is highly dependent on images. Consequently, external
validation, which involves datasets from different sources,
is often recommended [51]. Herein, internal and external
validation performances were assessed separately, revealing
that the latter exhibited desirable prediction accuracy.

The significant statistical heterogeneity observed in our
meta-analysis, while addressed by the use of a random-effects
model, warrants a deeper qualitative discussion regarding its
potential sources. The methodological diversity across the
included studies likely introduced substantial variability that
influences the interpretation of our pooled estimates. For
instance, differences in imaging protocols (eg, CT vs MRI,
scanner manufacturers, and contrast-enhancement phases)
directly affect radiomics feature values, making it challeng-
ing to harmonize models across studies. Variations in patient
characteristics, such as the inclusion of different cancer
stages (I-IV), alter the underlying recurrence risk profiles
of the cohorts. Simpler models, such as logistic regression,
offer high interpretability but may fail to capture intricate,
nonlinear relationships in the radiomics data. In contrast,
more complex traditional ML algorithms (eg, random forest
and support vector machines) can model these nonlineari-
ties and often achieve higher accuracy, albeit at the cost
of increased computational demand and potential overfit-
ting if not properly regularized. While DL models hold
the promise of end-to-end feature learning and potentially
superior performance by automatically discovering relevant
patterns from image data, they were scarcely represen-
ted in our included studies and require large datasets to
train effectively. Finally, the definition of the recurrence
outcome itself varied, encompassing disease-free survival,
local recurrence, or time-to-recurrence, each capturing a
slightly different clinical endpoint. Despite the methodologi-
cal heterogeneity, our meta-analysis offers a comprehensive
and robust synthesis of the current evidence. The fact that

a consistently strong discriminative performance (c-index
>0.80) was maintained across such varied technical and
clinical contexts is a key finding, underscoring the robustness
of radiomics-based prediction for CRC recurrence.

Study Limitations
Despite its valuable insights, this study had some limitations.
First, the number of eligible studies was limited, which
constrained more granular subgroup analyses. In addition,
the geographic origin of the evidence base was imbalanced,
with 12 of the 17 included studies conducted in China. While
this provides a robust assessment within that specific context,
it may limit the generalizability of our findings to other
populations with different genetic backgrounds, ethnicities,
and healthcare systems (eg, in terms of screening protocols,
treatment strategies, and staging criteria). Therefore, further
multinational studies are advocated to validate the broader
applicability of these radiomics models and to investigate
potential geographic or ethnic variations in their perform-
ance. Second, the limited number of studies resulted in
even less data for the subgroup analysis of images, possi-
bly affecting result interpretation. Third, although subgroup
analyses based on the image source (CT vs MRI) were
performed in the validation set, thereby explaining some
of the heterogeneity, there was significant heterogeneity.
This likely reflects the clinical and methodological diversity
across studies, including differences in imaging protocols,
patient characteristics, model types, clinical variables, and
recurrence definitions. These factors, compounded by the
limited number of studies, make it difficult to quantitatively
identify other potential sources of heterogeneity and highlight
the challenges in achieving standardized validation across
independent cohorts. Furthermore, regarding reproducibility,
only 2 studies provided open-source code or datasets. This
lack of transparency prevents independent validation of the
proposed models and limits the clinical translation of our
findings. In the future, researchers should promote open
science practices by sharing code and data where possible
to facilitate verification and build upon existing work. Finally,
the assessment of model performance was primarily based on
the c-index due to inconsistent reporting of calibration metrics
(eg, Brier score and calibration slope) and time-dependent
discrimination measures (eg, time-dependent–area under the
curve) across studies. While the c-index provides valuable
evidence of the models’ ability to stratify risk, this assessment
should be complemented by future evaluations of calibration
to ensure the accuracy of predicted probabilities for individ-
ual patients. Establishing robust calibration will be a crucial
next step in translating these promising discriminative models
into reliable clinical tools. These aspects represent important
limitations that should be addressed in future studies with
larger and more standardized datasets.

Conclusions
This study demonstrates that ML models based on radio-
mics and incorporating clinical features exhibit superior
performance in predicting the risk of CRC recurrence, with
a significantly higher discriminative ability (c-index) than
models relying only on a single data source. This finding
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highlights the significant value of multimodal data fusion in
improving prediction accuracy. However, most of the existing
studies use traditional ML methods that rely on manual
feature extraction and screening, which may lead to infor-
mation loss and limited model generalization ability. Future
studies should further explore the potential of end-to-end

feature learning methods, such as DL, to improve model
robustness and clinical translational value by automatically
extracting high-level image features and reducing manual
intervention, and prioritize prospective, multicenter validation
with standardized protocols and explainable AI to facilitate
clinical adoption.
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