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Abstract
Background: Early diagnosis of hepatocellular carcinoma (HCC) in patients with chronic hepatitis B virus (HBV) is
challenging. Models that combine novel biomarkers with clinical features may improve both early diagnosis and risk strat-
ification, but few have been systematically validated.
Objective: This study aimed to develop and validate an extra spindle pole bodies–like 1 (ESPL1)–based model for diagnostic
discrimination of HBV-related HCC and longitudinal risk stratification in patients with chronic HBV infection.
Methods: Patients with chronic HBV were consecutively recruited from the First Affiliated Hospital of Guangxi Medical
University (a single-center, tertiary hospital) between January 2012 and November 2023. Patients were divided into a training
set and an independent hold-out testing set. A LASSO logistic regression model was constructed to identify independent
predictors and then used to develop a risk score discriminating patients with HBV-related HCC from those with chronic
hepatitis B or cirrhosis. Model performance was evaluated using discrimination (C-index), calibration, and decision curve
analysis. Internal validation was performed with bootstrap resampling, and independent hold-out validation was conducted
with the independent hold-out testing set. Longitudinal follow-up of patients with chronic hepatitis B or cirrhosis was
subsequently used to examine cumulative incidence across risk groups, thereby assessing the model’s ability to stratify future
HBV-related HCC risk. A web-based calculator was developed to facilitate clinical application.
Results: The study involved a cohort of 621 patients diagnosed with chronic HBV infection, divided into a training set of
373 (60.1%) patients and an independent hold-out testing set of 248 (39.9%) patients. Age (odds ratio [OR] 1.08, 95% CI
1.05‐1.12), ESPL1 expression (OR 1.01, 95% CI 1.00‐1.01), and log (alpha-fetoprotein) levels (OR 2.55, 95% CI 1.95‐3.33)
were identified as independent predictors of HBV-related HCC. The model demonstrated excellent diagnostic discrimination,
with a C-index of 0.922 in the training set and 0.958 in the independent hold-out testing set, coupled with strong calibration.
Decision curve analysis revealed that the model consistently provided a higher net benefit across clinically relevant thresh-
old probabilities. Subgroup analyses further validated the model’s high discriminative power, with C-index values ranging
from 0.86 to 0.98, and no significant interactions were detected (all interaction P values > .10). Furthermore, the model
demonstrated superior discriminatory power relative to 5 established HBV-related HCC risk scores, including REACH-B,
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GAG-HCC, CU-HCC, PAGE-B, mPAGE-B, and alpha-fetoprotein alone, with all pairwise comparisons yielding statistical
significance (P<.001). For prognostic stratification, patients categorized as low risk, medium risk, and high risk had distinct
5-year cumulative HCC incidences of 5.1%, 21.1%, and 31.3%, respectively (P<.001).
Conclusions: The ESPL1-based model may serve as both a diagnostic tool for differentiating patients with HCC from those
with non-HCC and as a preliminary approach for risk stratification during follow-up. This dual role has the potential to
support earlier detection and personalized monitoring. The web-based calculator improves accessibility and may facilitate
future clinical integration.
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Introduction
Global Burden and Clinical Challenges of
Hepatitis B Virus–Related Hepatocellular
Carcinoma
Hepatitis B virus (HBV), mainly spread through blood and
bodily fluids, is a major global health concern and a leading
cause of hepatocellular carcinoma (HCC), accounting for
more than 50% of cases worldwide [1,2]. More than 200
million people have chronic HBV, of whom 15% to 25%
at risk of developing liver cirrhosis or HCC. The preva-
lence and mortality of HBV-related HCC are projected to
continue rising over the next two decades [3]. HCC increa-
ses public health challenges and places significant economic
and emotional strain on patients and families [4]. Surgical
resection is the best cure for early-stage HCC, but most
patients are diagnosed at advanced stages because of the
asymptomatic nature of early disease, rendering curative
treatment infeasible. Thus, early diagnosis and risk stratifica-
tion of high-risk patients are essential for improving HCC
outcomes.
Limitations of Current Risk Prediction
Models
Current guidelines advocate for patients with chronic hepatitis
B (CHB) to undergo a series of diagnostic tests every 3
to 6 months during antiviral therapy. However, challenges
such as limited patient compliance, the low sensitivity of
individual biomarkers, high costs, and inconsistent imple-
mentation across different health care settings impede the
early detection of HCC [5-8]. A cost-effective approach to
facilitate early HCC diagnosis and treatment involves the
identification of high-risk individuals with chronic HBV
infection and their regular monitoring. Risk prediction models
provide personalized assessments of HCC risk for patients
with CHB, thereby aiding physicians in improving patient
adherence and optimizing screening and monitoring strategies
[9,10]. Several models, including REACH-B, GAG-HCC,
and PAGE-B, have been developed to assess HCC risk
in patients with chronic HBV [11-16]. Nevertheless, these
models primarily rely on conventional clinical parameters,
limiting their generalizability, and they often fail to incor-
porate novel biomarkers or undergo validation for both
diagnostic accuracy and longitudinal applicability.

Objectives
Among the various potential biomarkers, the extra spin-
dle pole bodies-like 1 (ESPL1) gene has garnered sig-
nificant attention because of its involvement in genomic
instability and tumor progression. Alterations in ESPL1,
potentially induced by chronic viral infections or environ-
mental carcinogens, may play a role in malignant trans-
formation [17]. Our previous research identified frequent
HBV S–ESPL1 fusion events in HBV-related HCC tissues
and demonstrated that circulating ESPL1 protein levels can
effectively differentiate early HCC from cirrhotic nodules
[17,18]. Building upon these findings, this study pursued 2
primary objectives: first, to construct an ESPL1-based model
capable of accurately distinguishing patients with HBV-rela-
ted HCC from those with non-HCC, thereby demonstrating
its diagnostic utility; and second, to substantiate its prognos-
tic significance through longitudinal follow-up, stratifying
patients with non-HCC according to their prospective risk
of developing HCC. By integrating a biologically pertinent
biomarker with real-world patient data, our model seeks to
address the limitations of conventional methodologies and
offer a clinically significant framework for both the early
diagnosis and longitudinal risk stratification of HBV-related
HCC.

Methods
Ethical Considerations
This study was approved by the Ethics Committee of the
First Affiliated Hospital of Guangxi Medical University
(2024-E614-01). The Ethics Committee of the First Affiliated
Hospital of Guangxi Medical University waived written or
oral informed consent of participants because there was no
personally identifiable information in the article. The study
followed the ethical standards outlined in the Declaration of
Helsinki (World Medical Association Declaration of Helsinki
2013). All data were anonymized before analysis to pro-
tect patient privacy and confidentiality. No individual-level
identifiers were included in the dataset, and all results are
presented in aggregate form. No financial or other compen-
sation was provided to participants in this study. Finally,
no images or other materials that could potentially identify
individual participants are presented in this manuscript or
supplementary files.
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Study Design and Patients
This study was designed in 2 parts: (1) development of a
diagnostic model to distinguish patients with HBV-related
HCC from those with non-HCC (CHB and cirrhosis) and (2)
longitudinal validation of its prognostic utility using follow-
up data in patients with non-HCC.

This study is reported following the Transparent Reporting
of a Multivariable Prediction Model for Individual Progno-
sis or Diagnosis reporting guideline checklist for developing
and validating prediction models [19]. To minimize selec-
tion bias, all eligible patients with chronic HBV infec-
tion who were managed by our team from January 2012
to November 2023 were enrolled consecutively, adhering
to stringent inclusion and exclusion criteria. Standardized
follow-up protocols were implemented to accurately represent
the natural clinical spectrum of HBV patients in our region.
These protocols included assessments every 3 months during
the first year of antiviral therapy, which comprised eval-
uations of HBV serological markers, HBV DNA levels,
liver function tests, and alpha-fetoprotein (AFP) levels.
Subsequently, follow-ups were conducted every 6 months,
incorporating abdominal ultrasound. Patients diagnosed with
cirrhosis or hepatic nodules were monitored every 3 months,
with additional imaging modalities such as contrast-enhanced
ultrasound, computed tomography, or magnetic resonance
imaging recommended if nodules increased in size by more
than 1.0 cm or if AFP levels rose.

To further reduce center-related bias, patients who met
the inclusion criteria were divided based on their enroll-
ment period into a training set and a temporally distinct
testing set, rather than being allocated randomly. This
approach provided an independent hold-out validation that
more accurately simulates real-world application compared to
random resampling. In addition, a subset of patients from the
follow-up cohort, who had stored paired serum samples (1 at
baseline and another after more than 5 years of follow-up),
was included in a longitudinal analysis. These patients were
managed under the same standardized protocol as the main
cohort. Their paired samples were used to calculate predic-
ted HCC risk values at both time points, thereby enabling
an evaluation of the model’s capacity to capture dynamic
changes in risk over time.
Inclusion Criteria
The inclusion criteria have been described below.

Patients with Chronic HBV
These included individuals aged >18 years with CHB or
HBV-related liver cirrhosis. CHB was defined as persis-
tent HBsAg positivity for more than 6 months, detectable
HBV DNA, and evidence of active liver disease, character-
ized by either persistently or intermittently elevated ala-
nine aminotransferase (ALT) levels, histological findings
of significant necroinflammation, or histological/noninva-
sive evidence of significant fibrosis (≥F2) [8]. HBV-rela-
ted cirrhosis was diagnosed either histologically, based on
liver biopsy consistent with cirrhotic changes, or clinically

[8]. Clinical diagnosis required documented chronic HBV
infection (current HBsAg positivity or HBsAg negativity with
anti-HBc positivity and a history of HBsAg positivity >6 mo,
with other causes excluded), together with at least two of the
following 5 features: (1) imaging findings of cirrhosis and/or
portal hypertension; (2) endoscopic evidence of esophageal
or gastric varices; (3) liver stiffness measurement (LSM)
consistent with cirrhosis, defined as ≥12.0 kPa when ALT
<1×ULN or ≥17.0 kPa when ALT is 1‐5×ULN; (4) serum
albumin <35 g/L or prothrombin time prolonged >3 seconds
compared with controls; and (5) platelet count <100×10⁹/L.
Patients with HBV-related HCC
These included patients with pathologically confirmed HCC
following partial hepatectomy. All HCC cases had chronic
HBV infection as defined earlier, with no evidence of other
etiologies such as hepatitis C, alcohol, or autoimmune liver
disease.

Patients with Untreated HCC
These included patients with newly diagnosed HBV-related
HCC who had not undergone prior curative or palliative
therapies, including liver resection, transarterial chemoem-
bolization, radiofrequency ablation, systemic therapy, or
chemotherapy.

Adequate Frozen Serum Samples
There should have been the availability of at least 0.5 mL of
stored serum per patient, collected before HCC treatment or
during routine follow-up, and preserved at −40°C or lower in
our serum biobank.
Exclusion Criteria
The exclusion criteria were as follows: (1) patients co-infec-
ted with HBV and other infections such as hepatitis D, E,
C, or HIV/AIDS; (2) patients with non-HBV-related cancers,
including non-HBV-related HCC; (3) patients with liver
disease from other causes, such as autoimmune liver disease;
and (4) patients with decompensated liver cirrhosis or liver
failure.

Peripheral venous blood samples (5 mL) were collected
from patients in the CHB and cirrhosis of liver (LC) groups
during outpatient visits and from the HBV-HCC group before
surgical resection. Samples were centrifuged at 4000 rpm for
5 minutes, and the serum supernatant was stored at −40°C for
subsequent analysis.
Serum ESPL1 Levels Detection
Serum ESPL1 levels were measured using an Enzyme-Linked
Immunosorbent Assay (ELISA) kit (Nova Lifetech Inc,
Catalog No.: ELI-48263h) according to the manufacturer’s
instructions. The procedure included standard and sample
preparation, incubation, washing, addition of reagents, and
optical density measurement. The absorbance (optical density
value) of each sample was quantified using a microplate
reader (BioRad, Co, Ltd, USA) at a wavelength of 450 nm.
Three replicate wells were used for each sample, and the
mean value was determined. The concentration of serum
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ESPL1 in the unknown samples was calculated based on the
standard curve [20].

Data Collection
Collected patient follow-up data included name, diagnosis,
sex, family history of HCC or LC, age details (age at ESPL1
testing, antiviral treatment duration), antiviral drugs, HBV
DNA levels, HBeAg status, liver nodules, and ALT, albumin
(ALB), and AFP levels at ESPL1 testing.

A total of 16 variables were collected: 9 continuous
(ESPL1, age at ESPL1 testing, antiviral treatment duration,
HBV DNA, AFP, ALT, aspartate aminotransferase [AST],
ALB, and liver stiffness) and 7 categorical (diagnosis,
sex, family history of HCC/LC, treatment status, antiviral
medication, HBeAg status, and liver nodules). To enhance
data robustness and reduce outlier effects, a log transforma-
tion was applied to the HBV DNA and AFP data because of
their wide range and extreme values.

Missing Data
Missing data rates were 1.6% for AFP, 0.5% for ALB, and
18.7% for liver stiffness. Missingness was addressed using
multiple imputation via the mice package in R (version 3.6.2,
Institute for Statistics and Mathematics, Vienna, Austria)
[21]. The missing data pattern was inspected, and imputa-
tions were generated under the assumption of missing at
random using predictive mean matching, which preserves
the observed data distribution. Five imputed datasets were
created, pooled according to Rubin’s rules, and used for the
primary analyses. To assess robustness, sensitivity analy-
ses were conducted by comparing results from the pooled
imputed dataset with those from the complete-case dataset,
and each of the 5 individual imputed datasets. The retained
predictors and their effect sizes were consistent across all
analyses, indicating that missing data had minimal influence
on the final model in Multimedia Appendix 1.
Comparison With Established HCC Risk
Models
To assess the comparative performance of the ESPL1-based
Age-ESPL1-AFP (AEA) score, we conducted an evaluation
against 5 established HBV-related HCC risk models (ie,
REACH-B, GAG-HCC, CU-HCC, PAGE-B, and mPAGE-B
[22]) using an independent hold-out testing cohort. These
models were chosen due to the consistent availability of
their requisite predictors within our dataset, facilitating
direct implementation and ensuring a fair comparison. Each
score was computed in accordance with its original pub-
lished definition, with comprehensive details of the scor-
ing algorithms provided in the Supplementary Materials
in Multimedia Appendix 2. Subsequently, the predictive
performance of these models was evaluated and juxtaposed
with that of our model.
Statistical Analysis
Statistical analysis was conducted using SPSS 26.0 and R
4.3.2 with rms and DynNom packages. Two-sided P values
<0.05 were deemed significant. Normally distributed data are

shown as “mean (SD)” and compared with t tests, whereas
nonnormally distributed data are presented as [median (P25,
P75)] and analyzed using the Wilcoxon rank-sum test.
Categorical data are shown as n (%), and group differences
were assessed with the χ2 test.

LASSO regression, a data mining technique, adds a
penalty to traditional linear regression to simplify the model
by reducing coefficient values, addressing multicollinearity,
and preventing overfitting. It was used by the modeling
group to initially select predictors for HBV-related HCC
[23]. Variables with nonzero coefficients from the LASSO
regression were refined using stepwise backward selection
in multivariate logistic regression to determine the final
predictors for HBV-related HCC risk. The primary objective
was to establish a diagnostic tool that differentiates patients
with HBV-related HCC from those with CHB/LC. Subse-
quently, to examine prognostic relevance, we applied the
model to the non-HCC subgroup with longitudinal follow-up,
assessing cumulative HCC incidence across risk strata. We
then developed a clinical prediction model and an interac-
tive web-based risk calculator using Shinyapps, designed
exclusively for patients with chronic HBV infection or
HBV-related cirrhosis, and not intended for use in the general
population without HBV.

We assessed the model’s predictive performance by
calculating discrimination and plotting calibration curves for
both training and independent hold-out testing sets [24]. The
C-index, ranging from 0.5 (no discrimination) to 1.0 (perfect
prediction), was used to evaluate discrimination. Calibra-
tion was further evaluated using the Hosmer–Lemeshow
goodness-of-fit test, which compares observed and predicted
event rates across deciles of risk [25]. Calibration was also
assessed using calibration curves and the Brier score, where
lower scores indicate higher accuracy. We conducted 1000
bootstrap resampling iterations for internal validation of the
model’s predictive performance. Optimal cutoff values for
HBV-related HCC risk stratification were determined using
X-tile software, a validated tool for biomarker assessment and
outcome-based cutoff optimization [26]. These cutoffs were
first applied to baseline predicted risk values in the longi-
tudinal cohort, categorizing patients into low risk, medium
risk, and high risk groups. The cumulative incidence of HCC
within each risk group was then estimated using the Kaplan–
Meier method, with differences between groups assessed by
the log-rank test [27]. Clinical decision curves were used to
evaluate the model’s clinical applicability. The main metric
in the clinical decision curve was the net benefit, determined
by the model’s true and false positive rates in predicting
outcomes for the target population. The formula applied was
as follows: net benefit=(true positives/N)−(false positives/N)
×(Pt/(1−Pt)), with N as the total sample size and Pt as the
model’s event probability threshold. By linking net benefits
across various probabilities, we created a decision curve,
where a higher net benefit signifies greater model value in
clinical use [28].
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Results
Patient Characteristics
A total of 621 patients with chronic HBV were included,
comprising 373 in the training set (median follow-up: 2.6
years) and 248 in the independent hold-out testing set

(median follow-up: 5.0 years), as shown in Figure 1. The
overall median age was 46 years, with 467 males (75.2%)
and 154 females (24.8%). At baseline, 293 patients (47.2%)
had CHB, 204 (32.9%) had LC, and 124 (20.0%) had HCC.
Clinical characteristics of the two cohorts are summarized in
Table 1.

Figure 1. HBV-related HCC clinical prediction model research design flowchart. HBV: hepatitis B virus; HCC: hepatocellular carcinoma; CHB:
chronic viral hepatitis B; LC: cirrhosis of liver.

Table 1. Characteristics of patients included in the study.
Variable Training set (n=371) Independent hold-out testing set (n=248)
Sex, n (%)
  Male 277 (74.3) 190 (76.6)
  Female 96( 25.7) 58 (23.4)
Age (y) 44 (37, 53) 48 (39, 54)
Family history of LC/HCC, n (%)
  No 180 (48.3) 162 (65.3)
  Unknown 122 (32.7) 53 (21.4)
  Yes 71 (19.0) 33 (13.3)
Previously treated, yes, n (%) 50 (13.4) 34 (13.7)
log (HBV DNA), median (P25, P75) 1 (1,3) 1 (1,1)
HBeAg positive, n (%) 118 (31.6) 57 (23.0)
ASTa (U/L), median (P25, P75) 31 (26, 41) 28 (25, 33)
ALTb (U/L), median (P25, P75) 28 (20, 42) 23 (17, 30)
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Variable Training set (n=371) Independent hold-out testing set (n=248)
ALBc(g/L), median (P25, P75) 42.2 (40.1, 44.7) 42.3 (40.9, 44.4)
LSMd (kPa), median (P25, P75) 6.6 (5.5, 11.5) 6.1 (5.2, 7.5)
ESPL1e (ng/L), median (P25, P75) 270.7 (270.71, 350.06) 212.65 (153.94, 300.92)
AFPf (ng/mL), median (P25, P75) 3.02 (2.06, 5.90) 2.50 (1.91, 3.59)
Antiviral treatment duration (months) 18 (0, 51) 104 (64, 141)
Antiviral drugs, n (%)
  Non–first-line nucleotides 53 (14.2) 26 (10.5)
  First-line nucleotidesg 62 (16.6) 145 (58.5)
  Mixed medication 258 (69.2) 77 (31.0)
Liver nodule, n (%)
  Yes 203 (54.4) 169 (67.7)
  No 170 (45.6) 79 (31.9)
Diagnosis, n (%)
  CHBh 157 (42.1) 135 (54.4)
  LCi 126 (33.8) 75 (30.2)
  HCCj 90 (24.1) 38 (15.3)

aAST: aspartate aminotransferase.
bALT: alanine aminotransferase.
cALB: albumin.
dLSM: liver stiffness measurement.
eESPL1: extra spindle poles like 1.
fAFP: alpha-fetoprotein.
gFirst-line nucleotides: define entecavir or tenofovir as first-line nucleotide analog antiviral drugs.
hCHB: chronic hepatitis B viral.
iLC: liver cirrhosis.
jHCC: hepatocellular carcinoma.

During follow-up in the independent hold-out testing set, 38
patients (15.3%) developed HCC, with cumulative incidence
rates of 2.4%, 9.3%, and 15.3% at 1, 3, and 5 years,
respectively. Compared with the training set, patients in
the independent hold-out testing set were older, had longer
antiviral treatment duration, and exhibited higher ALT levels.
They also showed lower HBV DNA, AFP, AST, and ESPL1
levels, fewer liver nodules, a lower prevalence of family
history of HCC/LC, and different distributions of antiviral
medication use.
Construction of a Risk Prediction Model
for HBV-Related HCC
Using LASSO regression, 9 predictors with non-zero
coefficients were identified from an initial set of 16 variables,

including gender, age, ESPL1, antiviral drugs, log (HBV
DNA), Alb, AST, log (AFP), and liver nodules (Multime-
dia Appendix 3). Detailed information on these HCC-rela-
ted predictors is provided in Table 2 (lambda.min=0.04091).
Subsequently, a predictive model for predicting HBV-rela-
ted HCC risk was developed using multivariable logistic
regression, incorporating both the LASSO-selected vari-
ables and those identified through univariable logistic
regression variables, as presented in Table 2. The final
prediction model included age, ESPL1, and log (AFP)
as independent predictors, and the regression coefficients
are provided in Table 2. The estimated probability of
HCC was calculated using the logistic regression equation:
logit(P)=−8.9764+0.0802×age+0.0059×ESPL1+0.9365×log
(AFP).

Table 2. Univariate and multivariate logistic regression analyses variables relating to HCC in the training set. Note: In multivariate logistic
regression, variables such as first-line nucleotides and liver nodules produced extremely high odds ratios with confidence intervals of (0, Inf),
consistent with quasi-complete separation. Under such conditions, maximum likelihood estimation becomes unstable, and the coefficients are not
reliable; therefore, these variables were excluded from the final model.

Variable
Univariate analysis

P value
Multivariate analysis

P valueOR (95% CI) OR (95% CI)
Sex
  Male Reference Reference
  Female 0.36 (0.19‐0.70) .003 0.33 (0.08‐1.39) .132
Age 3.40 (2.31‐5.01) <.001 1.08 (1.05‐1.12) <.001
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Variable
Univariate analysis

P value
Multivariate analysis

P valueOR (95% CI) OR (95% CI)
ESPL1a 2.96 (2.17,4.03) <.001 1.01 (1.00‐1.01) <.001
Antiviral drugs
  Non–first-line nucleotides Reference Reference
  First-line nucleotides 73.17 (24.92‐214.82) <.001 249,179 097.26 (0, Inf) .990
  Mixed medication 0.41 (0.14‐1.20) .105 0.87 (0.13‐5.89) .888
log (HBVb DNA) 2.17 (0.71‐6.63) .176 N/A
ALBc 0.83 (0.62‐1.13) .235 N/A
ASTd 1.04 (0.97‐1.11) .248 N/A
log (AFPe) 1.83 (1.57‐2.13) <.001 2.55 (1.95‐3.33) <.001
Liver nodule
  No Reference Reference
  Yes 221.95 (30.41‐1620.00) <.001 3,944,282,432.72(0, Inf) .988

a ESPL1: extra spindle poles like 1.
bHBV: hepatitis B virus.
cALB: albumin.
dAST: aspartate aminotransferase.
eAFP: alpha-fetoprotein.

A risk model for predicting HBV-related HCC was developed
using age, ESPL1, and AFP (AEA score) from multivariable
logistic regression analysis, as depicted in Figure 2. Each
variable has a score, and their sum estimates HCC risk. For
example, in a 59-year-old male patient with pathologically
confirmed HBV-related HCC who had an AFP level of 3.32
ng/mL and an ESPL1 level of 581.60 ng/L, the calculated
total score corresponded to a predicted HCC risk probability
of 64.2%. Conversely, in a 45-year-old male patient with
chronic HBV infection and imaging evidence of cirrhotic
nodules but no HCC diagnosis, with an ESPL1 level of
252.50 ng/L and an AFP level of 3.09 ng/mL, the calculated
score indicated a predicted HCC risk probability of 7.47%.

These contrasting examples illustrate how the AEA score can
distinguish between patients at markedly different levels of
HCC risk within the HBV population. For easier clinical use,
we developed a web calculator [29]. In this, we can access the
URL, input the necessary data, and click “Predict” to view the
patient’s current HCC risk, as shown in Figure 3.

Sensitivity analyses, which compared the pooled imputed
dataset, the 5 individual imputed datasets, and the complete-
case dataset, yielded highly consistent results. The same
independent predictors were retained, and similar effect
sizes were observed across all methodologies, as detailed in
Multimedia Appendix 1.
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Figure 2. AEA score for predicting HBV-associated HCC risk was constructed based on the results of multivariate logistic regression analysis. Risk
stratification thresholds were determined using X-tile: low risk (<4%), medium risk (4%‐24%), and high risk (>24%), as illustrated by the colored bar
at the bottom of the figure. This is an example of calculating the probability of HBV-related HCC risk in patients. The irregular curves corresponding
to each variable in the figure represent the distribution of variable values in the modeling group. On the basis of the corresponding variable, a score
can be obtained, and the scores are added to get a total score. Finally, the total score can be used to calculate the corresponding HCC risk probability.
In this illustrative case of a patient with pathologically confirmed HBV-related HCC, the red dots for AFP, ESPL1, and age indicate the patient’s
respective values: AFP=3.32 ng/mL, ESPL1=581.60 ng/L, and age=59 years. The corresponding scores (19+39+34.2) yield a total of 92.2, which
translates into a predicted HCC risk probability of 64.2%. AFP: alpha-fetoprotein; ESPL1: extra spindle poles like 1; HBV: hepatitis B virus; HCC:
hepatocellular carcinoma.
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Figure 3. Example of HBV-related HCC risk probability web calculator. Age is in years, AFP in ng/mL, and ESPL1 in ng/L. AFP: alpha-fetoprotein;
ESPL1: extra spindle poles like 1; HBV: hepatitis B virus; HCC: hepatocellular carcinoma.

Evaluation of HBV-Related HCC
Diagnostic Model Performance

Internal Validation
In the training set, the Hosmer–Lemeshow test yielded a P
value of .596, suggesting an absence of evidence for model
overfitting. The model demonstrated a C-index of 0.922
(95% CI 0.890–0.954), with an internally validated C-index
of 0.923 (95% CI 0.890–0.950). It exhibited a consistency
of 0.83, sensitivity of 0.89, specificity of 0.82, a positive
predictive value of 0.606, a negative predictive value of

0.959, and a Youden Index of 0.71, indicating excellent
discriminatory power. Furthermore, the model surpassed the
performance of AFP alone (C-index 0.605) and ESPL1 alone
(C-index 0.773) in predicting HCC risk. The calibration curve
(Figure 4A) demonstrated a strong concordance between
predicted and observed HCC incidence, with a slope of 0.93,
a mean squared error of 0.023, and a Brier score of 0.08.
Collectively, these findings suggest that the model provides
both precise and dependable risk estimation, which is crucial
for early clinical decision-making.
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Figure 4. Calibration curves of the AEA score in the training set (A) and independent hold-out testing set (B). The dashed line indicates perfect
calibration, the dotted line represents the apparent performance, and the solid line shows the bias-corrected performance after 1000 bootstrap
resamples. Short vertical ticks at the top of each panel denote the distribution of patients according to predicted HCC risk (rug plot). HCC:
hepatocellular carcinoma.

To further evaluate robustness, subgroup analyses were
conducted across clinically pertinent categories, including
sex, antiviral drug usage, treatment history, family history
of LC/HCC, and HBeAg status in Multimedia Appendix
4. The model consistently exhibited high discriminatory
performance, with C-index values ranging from 0.86 to
0.98, and no significant interactions were detected (all P
values for interaction >.10). Owing to the absence of HCC
events among noncirrhotic patients during the follow-up
period, subgroup analysis stratified by cirrhosis status was not
feasible. Collectively, these findings affirm that the ESPL1-
based model maintains stable predictive accuracy across
diverse patient subgroups, underscoring its reliability for
broad clinical application.

Independent Hold-Out Validation
In the independent hold-out testing set, the model demonstra-
ted robust performance, evidenced by a C-index of 0.958
(95% CI 0.929–0.988) and an adjusted C-index of 0.958
(95% CI 0.926–0.986). Additionally, the model exhibited a
consistency of 0.92, a sensitivity of 0.87, a specificity of 0.94,
a positive predictive value of 0.696, a negative predictive
value of 0.976, and a Youden Index of 0.81. The calibration
curve (Figure 4B) confirmed consistency between predicted
and observed outcomes, with a slope of 0.91, mean squared
error of 0.027, and a Brier score of 0.05. These findings
support the robustness and clinical applicability of the model,
suggesting that its predictions remain reliable when applied to
independent patient data.
Comparison of AEA Score With Other
HBV-Related HCC Risk Scores
The AEA score consistently exhibited superior discrimina-
tory power compared to the 5 established HBV-related HCC
risk models (REACH-B, GAG-HCC, CU-HCC, PAGE-B,

and mPAGE-B). Within our cohort, the C-index of the
AEA score was significantly greater than that of each
comparator model, with all pairwise comparisons achieving
statistical significance (P<.001, Multimedia Appendix 5).
In addition, the discriminative ability of AFP alone was
limited (C-index=0.61, 95% CI 0.56‐0.65), further highlight-
ing the incremental value of incorporating ESPL1 into the
AEA score. These results underscore the enhanced predictive
value of integrating ESPL1 into risk assessment, surpassing
traditional demographic and clinical variables.
Validation of AEA Score for HBV-Related
HCC in a Longitudinal Cohort
The longitudinal analysis confirmed that the ESPL1-based
AEA score dynamically reflected disease trajectories:
predicted HCC risk remained stable or significantly decreased
in patients with clinical improvement, whereas it rose
markedly in those with disease progression. Patients with
CHB who exhibited clinical improvement (n=129) main-
tained stable risk values over a 3-year period (0.07 vs
0.08, P=0.367). In contrast, those who experienced disease
progression (n=14) showed a significant increase in risk
values (0.07 vs 0.13, P=.002; Figure 5A–B). Similarly,
among patients with cirrhosis, those demonstrating clinical
improvement (n=65) experienced a significant reduction in
predicted risk (0.19 vs 0.12, P=.025), whereas patients
who developed HCC during follow-up (n=40) exhibited a
substantial increase in risk probability, rising from 0.17
to 0.62 (P<.001; Figure 5C–D). These results underscore
the model’s capability not only to estimate baseline risk
but also to detect significant changes corresponding with
clinical outcomes, thereby affirming its utility for dynamic
risk monitoring.
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Figure 5. Trend chart of AEA score predicting HCC risk changes with the condition of patients with chronic HBV infection. HBV: hepatitis B virus;
HCC: hepatocellular carcinoma.

Using the X-tile tool, 3 optimal cutoff points (4% and
24%) were identified for stratifying HBV-related HCC risk.
Application of these thresholds in the independent hold-
out validation cohort (n=248) categorized patients into low
risk (45.6%), medium risk (47.5%), and high risk (10.9%)
groups (Figure 6). Kaplan–Meier analysis revealed signifi-
cant differences in cumulative HCC incidence among groups,
with 5-year rates of 5.1% in the low-risk group, 21.1% in
the medium-risk group, and 31.3% in the high-risk group
(P<.001). This separation highlights the ability of the model
to statistically distinguish relative risk levels among patients,
which may support risk-adapted surveillance strategies in
future studies.

As shown in Multimedia Appendix 6, the distribution of
clinical outcomes at the end of follow-up varied markedly
across the 3 risk strata in the independent hold-out testing
set. In the high-risk group, most patients had progressed
to HBV-related HCC by the end point (88%), whereas the
medium-risk group comprised a mixture of CHB, LC, and
HCC cases. In contrast, the low-risk group at follow-up was
composed predominantly of patients with CHB, and no HCC
events were observed in this category. This clear gradient
in outcome distribution demonstrates the model’s ability to
stratify patients according to their likelihood of HBV-related
HCC development and underscores its potential to inform
surveillance strategies.
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Figure 6. Cumulative incidence curve of HBV-related HCC in longitudinal cohort. HBV: hepatitis B virus; HCC: hepatocellular carcinoma.

The Clinical Application Value of HBV-
Related HCC Prediction Model
As shown in Figure 7, decision curve analysis indicated that
our AEA score consistently provided greater net benefit than
either the “All” and “None” strategies when the risk threshold

is above 0.01. This finding implies that the model has the
potential to enhance surveillance efficiency by improving
case detection across clinically relevant thresholds. Neverthe-
less, all risk groups continue to face nonnegligible risks,
necessitating ongoing monitoring in alignment with current
guidelines.
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Figure 7. Clinical decision curve of the AEA score in HCC diagnosis. Net benefit is the primary outcome observed in the clinical decision curve. It
is calculated based on the true positive rate and false positive rate of the model’s prediction for the outcome in the target population. The formula is
as follows: net benefit=(true positives/N)–(false positives/N)×(Pt/(1−Pt)), where N is the total sample size and Pt is the probability threshold used by
the model to distinguish between the occurrence and nonoccurrence of the event. Connecting the net benefit values at different probability thresholds
forms the decision curve. A higher net benefit indicates greater practical value of the model in real-world applications.

Discussion
Principal Findings
Chronic HBV infection can lead to liver inflammation
and fibrosis, which may progress to HCC. Early detection
of HCC significantly enhances prognosis; however, the
asymptomatic nature of its early stages poses challenges for
timely diagnosis. Recent technological advancements [30]
and the identification of novel biomarkers, in conjunction
with clinical features, are expected to enhance the accuracy
and feasibility of early HCC detection. Building on our
previous research, we developed an AEA score that inte-
grates the newly identified ESPL1 protein biomarker with
long-term clinical data from patients with chronic HBV
infection. The AEA score demonstrated superior perform-
ance in both accuracy and calibration compared to existing
HCC risk models. In addition, subgroup analyses indica-
ted that the ESPL1-based model maintained high discrimina-
tory accuracy across various factors, including sex, antiviral
regimen, treatment history, family history of LC or HCC, and
HBeAg status, thereby affirming its robustness across diverse
clinical contexts.
Comparison to Prior Work
In this study, the ESPL1-based AEA score demonstrated
consistently superior predictive accuracy compared with 5

widely used HBV-related HCC risk models (ie, REACH-B,
GAG-HCC, CU-HCC, PAGE-B, and mPAGE-B). As our
study was conducted in Guangxi, a region with a particu-
larly high incidence of HBV-related HCC, these findings
emphasize that conventional models may not fully reflect
risk profiles in this population. By integrating ESPL1, the
AEA score provides additional discriminatory value beyond
demographic and clinical variables, enabling more accurate
risk stratification in high-burden settings. With respect to
individual biomarkers, AFP and PIVKA-II remain widely
used in clinical practice but have well-recognized limitations
in sensitivity and specificity for early HCC detection. In
our comparative analysis within the same cohort, ESPL1
demonstrated significantly stronger discriminatory ability
than both AFP and PIVKA-II (C-index: 0.923 vs 0.572 and
0.788, respectively), underscoring its potential to distinguish
early HCC from cirrhotic nodules [17,18,31]. Although LSM
reflects fibrosis and cirrhosis, it was not retained as an
independent predictor in our multivariate analysis, suggest-
ing limited incremental value when combined with ESPL1
and clinical factors in this population. Taken together,
these findings highlight that while conventional models
and biomarkers provide useful prognostic information, they
remain insufficient for precise early HCC risk prediction
in patients with chronic HBV, especially in high-incidence
regions such as Guangxi. By incorporating ESPL1 with
readily available clinical variables, the AEA score delivers
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both superior discrimination and appears to provide incre-
mental value for risk stratification in populations with a high
burden of HBV-related HCC. Nevertheless, these observa-
tions should be interpreted cautiously, as our study was based
on a single-center cohort and requires external confirmation.

Our study used a cross-sectional design combined with
LASSO regression to identify key predictors, thereby
reducing redundancy and confounding relative to traditional
Cox survival models. This methodology facilitated the
selection of the most informative variables and the develop-
ment of a parsimonious logistic regression model, ultimately
enhancing both predictive accuracy and stability. The final
model, which included age, serum ESPL1 levels, and log
(AFP), exhibited strong discrimination and calibration in
both the training and testing sets. In contrast, other variables
commonly cited as predictors of HCC in previous studies,
such as serum albumin [13,32,33], HBV DNA [11,12], ALT
[11], and LSM [34], did not maintain independent signifi-
cance in our multivariate analysis. A possible explanation
for this finding is that early-stage HCC induces only subtle
changes in biochemical markers, whereas the widespread use
of antiviral therapy diminishes the predictive value of HBV
DNA levels. Similarly, although LSM reflects fibrosis and
cirrhosis, it may not offer additional discriminatory power
once ESPL1 and AFP are accounted for.
Biological Rationale
Our prior study revealed that the expression of the HBV
S–ESPL1 fusion gene persists despite long-term antiviral
therapy, underscoring its specific role in hepatocarcinogen-
esis [17,35]. Mechanistically, ESPL1 encodes separase, a
cysteine protease that plays a critical role in chromatid
segregation during anaphase. Dysregulation of ESPL1 results
in chromosomal instability, a well-established driver of
malignant transformation. Under conditions of chronic viral
infection and prolonged carcinogenic stress, integration of
HBV into the ESPL1 locus can produce HBV S–ESPL1
fusion transcripts, potentially enhancing oncogenic signal-
ing and compromising genomic integrity. Previous studies
have demonstrated that mutations, overexpression, or viral
fusion events involving ESPL1 contribute to uncontrolled
cell proliferation, defective DNA repair, and the activation
of tumor-promoting pathways, including p53 inhibition and
Wnt/β-catenin signaling [36-38]. Beyond HCC, overexpres-
sion of ESPL1 has also been implicated in breast, pros-
tate, osteosarcoma, and endometrial cancers, highlighting
its role as a broadly relevant oncogenic driver [39-41].
From a clinical perspective, these biological mechanisms
elucidate the enhanced efficacy of ESPL1 in comparison
to traditional biomarkers. AFP, the most commonly used
biomarker, demonstrates limited sensitivity in the early stages
of HCC, frequently remaining below diagnostic thresholds
and exhibiting a stronger correlation with tumor burden
rather than the molecular initiation of malignancy [18,42].
Conversely, serum levels of ESPL1 protein may indicate
early oncogenic events induced by HBV integration and
genomic instability, thereby capturing risk signals before
the overt formation of tumors. In our study, AFP alone did
not reach conventional diagnostic thresholds; however, the

log (AFP) maintained independent predictive significance.
Notably, when combined with patient age and serum ESPL1
levels, the resultant AEA score demonstrated excellent
discrimination (C-index 0.92) and was robustly validated
in external cohorts. Collectively, these findings suggest
that ESPL1 enhances predictive accuracy in a statistically
significant manner and serves as a mechanistically substanti-
ated biomarker that encapsulates the molecular mechanisms
underlying HBV-induced hepatocarcinogenesis. This dual
benefit—biological plausibility combined with robust clinical
efficacy—advocates for its incorporation into risk prediction
models to facilitate earlier and more precise identification of
patients with high-risk HBV.
Clinical Implications
Cirrhotic nodules, a family history of liver cirrhosis or HCC,
and the use of non–first-line antiviral agents are well-rec-
ognized clinical risk factors for HCC development, and
their identification remains important for patient manage-
ment. In our univariate analysis, all 3 factors were signifi-
cantly associated with HCC risk. However, these associations
lost statistical significance in the multivariate model. This
phenomenon likely reflects that their predictive influence
is relatively modest once stronger predictors, such as age,
serum ESPL1, and AFP, are accounted for and may also be
partly explained by correlations among variables (eg, cirrhotic
nodules reflecting fibrosis already captured by ESPL1 or
AFP). Our subgroup analyses further confirmed that the
ESPL1-based model maintained robust discrimination across
strata of sex, antiviral treatment regimen, prior treatment
status, family history of LC/HCC, and HBeAg status, with no
significant interactions detected. These findings suggest that
the diminished significance of these factors in the multivariate
model does not reflect instability, but rather their limi-
ted incremental predictive value beyond the key predic-
tors. Nevertheless, given their established clinical relevance,
these factors should not be disregarded in practice, and
future studies with larger multicenter cohorts and nonlinear
modeling approaches may help clarify their contribution to
HCC risk prediction.

Accurate HCC risk prediction in patients with chronic
HBV is essential during follow-up. Tumor heterogeneity
and complex serum biomarkers pose challenges. Unlike
models using AFP or PIVKA-II, our HBV-related HCC
risk model based on ESPL1 integrates patient disease status
and serological marker characteristics. This enables person-
alized HCC risk assessments to inform patient follow-up
strategies. Our study shows that patients with an HCC risk
probability over 24% are at high risk. This was validated
externally, where patients with chronic HBV who developed
HCC had an average risk of 62%, much higher than the
17% baseline. This confirms our model’s effectiveness in
predicting HCC occurrence. The model’s risk values allow
patients to be categorized into low risk, medium risk, and
high risk groups, with significant differences in 3-year
and 5-year HCC incidence rates. These findings suggest
that ESPL1 may improve early identification of patients
at elevated risk; however, their implications for guiding
follow-up strategies need to be validated in larger multicenter
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cohorts. In the internet age, online calculators enable quick
risk assessments. Such tools may facilitate predicting HCC
risk exclusively in patients with chronic HBV infection or
HBV-related cirrhosis, supporting individualized follow-up
strategies. However, their role in routine clinical decision-
making remains exploratory and requires further validation.

Clinical prediction models are crucial for assessing HCC
risk in patients with chronic HBV, aiding physicians in
predicting risk and guiding treatment. However, traditional
evaluation metrics such as discrimination and calibration
often fall short in reflecting clinical benefits at varying risk
thresholds [43-45]. Discrimination metrics such as AUC
assess a model’s predictive accuracy but do not confirm
its clinical usefulness. To validate the clinical utility of the
HBV-related HCC risk prediction model based on ESPL1,
we used clinical decision curve analysis instead of multicen-
ter, large-sample prospective studies, which are time-consum-
ing and involve many uncertainties. Clinical decision curves
reveal potential clinical benefits at various risk thresholds
and calculate net benefits [28]. An ideal curve should show
positive net benefits across clinically relevant thresholds. Our
analysis indicates that when the threshold probability is over
1%, the model achieves a positive net benefit. In addition, the
4% and 24% thresholds used to categorize patients into low
risk, medium risk, and high risk groups in our HBV-RELA-
TED HCC model are within this range. These results provide
insight into possible clinical relevance but cannot substi-
tute for large-scale, multicenter prospective validation. Our
findings suggest that the model may be clinically informative,
yet confirmation in diverse populations is warranted before
widespread adoption.

In addition to its predictive accuracy, the practical
feasibility of ESPL1 testing is a critical consideration for
clinical translation. Serum ESPL1 levels can be measured
through a standard ELISA assay, which is cost-effective and
comparable in price to AFP testing. Although this suggests
potential feasibility, reproducibility across laboratories and
consistency in different health care systems have not yet
been established. Therefore, widespread clinical implementa-
tion should await further multicenter validation and assay
standardization. Furthermore, we developed a web-based
calculator that can be accessed on computers and mobile
devices, allowing clinicians to easily input routinely available
variables, including ESPL1, to obtain individualized risk
estimates. At this stage, the calculator should be regarded as
a prototype tool to illustrate the model’s potential application
rather than a ready-to-use clinical instrument.
Limitations
This study has several limitations. First, all patients were
recruited from a single tertiary hospital in Guangxi,

which may introduce selection bias and limit representative-
ness compared with broader, community-based populations.
Second, as the study population was restricted to a high-inci-
dence HBV region, the global generalizability of ESPL1
as a biomarker remains uncertain. Third, ESPL1 levels
were quantified using a single ELISA kit under standar-
dized laboratory conditions, and interlaboratory variability
may affect reproducibility. Fourth, although major demo-
graphic, clinical, and virological factors were included,
residual confounding from unmeasured variables (eg, lifestyle
behaviors, alcohol consumption, aflatoxin exposure, or other
environmental risks) cannot be excluded. We attempted
to mitigate these limitations using strict inclusion criteria,
internal and independent hold-out validation, and robust
statistical modeling; however, multicenter prospective studies
are needed to confirm these findings.
Future Directions
Future research should focus on multicenter, geographically
diverse cohorts to validate the ESPL1-based model, stand-
ardize assays across laboratories, and evaluate integration
into clinical practice. In addition, combining ESPL1 with
other emerging biomarkers or imaging modalities may further
enhance predictive accuracy. Although the model demonstra-
ted prognostic value during longitudinal validation, it was
primarily developed for diagnostic purposes. Therefore, larger
multicenter prospective cohorts will be needed to confirm its
long-term predictive performance and ensure generalizability.
Further work should also aim to standardize ESPL1 assays,
assess cost-effectiveness in different health care systems, and
evaluate patient and clinician acceptance. Finally, mechanistic
studies on ESPL1 in HBV-related hepatocarcinogenesis may
reveal therapeutic targets and extend its utility beyond risk
stratification.
Conclusions
The ESPL1-based AEA score exhibits enhanced predic-
tive accuracy relative to existing HBV-related HCC risk
models, indicating significant potential for individualized
risk stratification. By incorporating both biomarker and
clinical features, this model could facilitate earlier detec-
tion of HCC and enable personalized surveillance strat-
egies. However, larger multicenter prospective studies across
diverse populations are necessary to validate its broader
applicability.
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