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Abstract
Background: Drug repositioning is a pivotal strategy in pharmaceutical research, offering accelerated and cost-effective
therapeutic discovery. However, biomedical information relevant to drug repositioning is often complex, dispersed, and
underutilized due to limitations in traditional extraction methods, such as reliance on annotated data and poor generalizability.
Large language models (LLMs) show promise but face challenges such as hallucinations and interpretability issues.
Objective: This study proposed long chain-of-thought for drug repositioning knowledge extraction (LCoDR-KE), a light-
weight and domain-specific framework to enhance LLMs’ accuracy and adaptability in extracting structured biomedical
knowledge for drug repositioning.
Methods: A domain-specific schema defined 11 entities (eg, drug, disease) and 18 relationships (eg, treats, is biomarker
of). Following the established schema architecture, we constructed automatic annotation based on 10,000 PubMed abstracts
via chain-of-thought prompt engineering. A total of 1000 expert-validated abstracts were curated into a drug repositioning
corpus, a high-quality specialized corpus, while the remaining entries were allocated for model training purposes. Then, the
proposed LCoDR-KE framework combined supervised fine-tuning of the Qwen2.5-7B-Instruct model with reinforcement
learning and dual-reward mechanisms. Performance was evaluated against state-of-the-art models (eg, conditional random
fields, Bidirectional Encoder Representations From Transformers, BioBERT, Qwen2.5, DeepSeek-R1, OpenBioLLM-70B, and
model variants) using precision, recall, and F1-score. In addition, the convergence of the training method was assessed by
analyzing performance progression across iteration steps.
Results: LCoDR-KE achieved an entity F1 of 81.46% (eg, drug 95.83%, disease 90.52%) and triplet F1 of 69.04%, outper-
forming traditional models and rivaling larger LLMs (DeepSeek-R1: entity F1=84.64%, triplet F1=69.02%). Ablation studies
confirmed the contributions of supervised fine-tuning (8.61% and 20.70% F1 drop if removed) and reinforcement learning
(6.09% and 14.09% F1 drop if removed). The training process demonstrated stable convergence, validated through iterative
performance monitoring. Qualitative analysis of the model’s chain-of-thought outputs showed that LCoDR-KE performed
structured and schema-aware reasoning by validating entity types, rejecting incompatible relations, enforcing constraints, and
generating compliant JSON. Error analysis revealed 4 main types of mistakes and challenges for further improvement.
Conclusions: LCoDR-KE enhances LLMs’ domain-specific adaptability for drug repositioning by offering an open-source
drug repositioning corpus and a long chain-of-thought framework based on a lightweight LLM model. This framework
supports drug discovery and knowledge reasoning while providing scalable, interpretable solutions applicable to broader
biomedical knowledge extraction tasks.
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Introduction
Drug repositioning, also known as drug repurposing, has
emerged as a pivotal strategy in pharmaceutical research,
enabling the discovery of novel therapies for existing drugs
[1]. This approach significantly facilitates the drug develop-
ment process, shortens the required time, and reduces the
cost [2]. However, biomedical information relevant to drug
repositioning is often complex and dispersed across various
sources [3], such as literature, clinical trials, and databa-
ses. These valuable resources remain underutilized because
of the challenges associated with knowledge extraction [4,
5]. Extracting knowledge from biomedical literature, such
as entities, relationships, and structured triplets, can facil-
itate drug repositioning research by uncovering hidden
connections between drugs and diseases [6]. Recent studies
have demonstrated the effectiveness of knowledge extrac-
tion in supporting knowledge discovery in drug reposition-
ing. For example, Bang et al [7] developed a semantic
multilayer guilt-by-association approach to extract drug-dis-
ease associations from large-scale biomedical corpora, while
Huang et al [8] leveraged TxGNN, a graph foundation
model for zero-shot drug repurposing, to identify therapeutic
candidates even for diseases with limited treatment options
or no existing drugs. These advancements underscore the
importance of automated knowledge extraction in identify-
ing potential drug candidates for the treatment of complex,
multifactorial diseases.

Traditional knowledge extraction methods have evolved
from manual annotation and rule-based techniques to machine
learning and deep learning approaches. Early methodolo-
gies relied heavily on expert-curated databases and handcraf-
ted rules, which lacked scalability while being precise [9,
10]. Machine learning models, such as conditional ran-
dom fields (CRF), introduced statistical learning to auto-
mate entity recognition and relationship extraction [11-13].
More recently, deep learning models, including BERT
and transformer-based architecture, have achieved remarka-
ble performance in biomedical natural language processing
tasks. For example, domain-specific language models, such
as BioBERT [14], PubMedBERT (trained on biomedical
literature) [15], ClinicalBERT (trained on the MIMIC-III
dataset) [16], and PharmBERT (trained on prescription drug
labeling) [17], have been further developed. Despite their
success, these methods still have several limitations. They
often require extensive labeled datasets for training, which
are costly and labor-intensive to obtain. Furthermore, deep
learning models demonstrate limited generalizability across
diverse biomedical domains [18] and often overlook implicit
knowledge that extends beyond surface-level textual patterns
[19]. As a result, refining extraction methodologies to achieve
greater adaptability and performance continues to be an
important focus in drug repositioning studies.

Large language models (LLMs) have emerged as a
promising solution for biomedical knowledge extraction,
demonstrating superior performance across various natu-
ral language processing tasks. Models such as ChatGPT
(OpenAI) [20], LlaMA (Meta) [21], GLM (Tsinghua) [22],
Qwen (AlibabaCloud) [23], and Deepseek [24] have been
extensively used in biomedical text mining because of
their advanced semantic comprehension and text genera-
tion capacities. By leveraging key methodologies, including
pretraining [25], prompt engineering [26], and domain-spe-
cific fine-tuning [27], these models demonstrate improved
accuracy and adaptability for specialized tasks [28], such
as named entity recognition [29] and association prediction
[30]. Xie et al [31] developed Me-LLaMA through continual
pretraining and instruction tuning of LLaMA2 models and
outperformed existing open medical LLMs on 6 text analysis
tasks. Hao et al [26] developed and evaluated MedScaleNER,
a task-oriented prompt framework, advancing the application
of LLMs and prompt engineering for specialized named
entity recognition tasks in Chinese medical literature. Recent
advances such as BioGPT [32] and OpenBioLLM-70B
[33] have demonstrated the potential of large-scale genera-
tive pretrained transformers in enhancing biomedical text
generation and domain-specific knowledge mining. Focus-
ing on a more specific biomedical task, Yuan et al [34]
introduced BioFocal-DDI, a framework combining BioGPT
for data augmentation, BioBERT, and BiLSTM for contex-
tual and sequential feature extraction to optimize drug-drug
interaction extraction.

Compared to traditional methods, LLMs demonstrate
superior knowledge extraction capabilities, including better
generalization, reduced reliance on annotated data, and
stronger contextual comprehension. Nevertheless, persistent
challenges [35,36], including model hallucination, output
accuracy, interpretability, and high computational demands,
must be addressed. For drug repositioning applications,
these issues can be mitigated through gold-standard cor-
pus validation, careful prompt engineering, and chain-of-
thought (CoT) [37] methodologies. Chen et al [38] leveraged
retrieval‐augmented generation combined with instruction
prompting to build LLMs specialized for osteoarthritis
diagnosis and treatment Q&A, providing reliable clinical
decision support to health care professionals.

While LLMs demonstrate promise in biomedical knowl-
edge extraction, challenges persist in domain-specific
adaptability, particularly in drug repositioning, where sparse
annotated data, semantic ambiguity, and cross-sentence
dependencies hinder accurate knowledge inference [39,40].
To address these limitations, we proposed long chain-of-
thought (LCoT) for drug repositioning knowledge extraction
(LCoDR-KE), a lightweight framework that combined LCoT
prompting, supervised fine-tuning (SFT), and reinforcement
learning (RL). To enhance the performance of knowl-
edge extraction, our approach also introduced a dual-level
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reward mechanism to guide knowledge extraction and a
high-quality drug repositioning corpus (DrugReC), meticu-
lously curated from biomedical publications in PubMed.
Through comparative and ablation studies, we validated
the framework’s superiority over traditional models and
its competitive performance against state-of-the-art LLMs,
offering a scalable, interpretable solution for accelerating
drug discovery and biomedical knowledge inference.

Methods
Overview
The workflow of the proposed LCoDR-KE is illustrated in
Figure 1 and consisted of 4 main stages: drug repositioning
schema design, data preparation and gold standard annotation,
implementation of LCoT framework, and in-depth evaluation.

• Drug repositioning schema design: This stage
established a structured schema for drug repositioning,
defining 11 entity types (eg, drug, gene, disease, target)
and 18 relationship types. The schema provided a
standardized ontology that enabled accurate knowledge
extraction while maintaining conceptual consistency
across the domain.

• Data preparation and annotation: We first annotated
a scale of 10,000 PubMed abstracts via CoT prompt
engineering, incorporating role definitions and k-shot
demonstrations. Among these, 1000 abstracts were
subjected to meticulous manual annotations, resulting
in a high-quality corpus specifically curated for the task
of drug repurposing, DrugReC. The remaining 9000
abstracts were used as part of the training data in this
study.

• Implementation of the LCoT framework: We first
conducted SFT to establish a strong output with explicit
reasoning chains for LLM. Following this, we applied
Group Relative Policy Optimization (GRPO), an RL
strategy guided by reward modeling. Tailored reward
functions were specifically designed for drug reposi-
tioning entity and triple recognition, enabling more
accurate and structured output aligned with domain-
specific requirements.

• Evaluation and performance analysis: We evaluated the
model’s effectiveness through performance compari-
sons, ablation studies, k-shot performance, reward
parameter optimization, CoT reasoning patterns, steps
of training iterations, and error analysis.

JMIR MEDICAL INFORMATICS Kang et al

https://medinform.jmir.org/2025/1/e77837 JMIR Med Inform 2025 | vol. 13 | e77837 | p. 3
(page number not for citation purposes)

https://medinform.jmir.org/2025/1/e77837


Figure 1. Workflow of long chain-of-thought for drug repositioning knowledge extraction (LCoDR-KE). CoT: chain-of-thought; LCoT: long
chain-of-thought.
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Drug Repositioning Schema Design
We developed a multidimensional knowledge model by
conducting in-depth analyses of drug mechanisms [41-43]
while precisely defining core entity dimensions and their
relationships. We conducted comprehensive analyses of
drug labels, literature, and multiple biomedical databases
(including DrugBank, CTD, PharmGKB, and DisGeNET) to
establish foundational knowledge. In addition, this multidi-
mensional knowledge framework was subsequently refined
and validated through expert consultation, incorporating
specialized domain knowledge from pharmacology, bioinfor-
matics, clinical medicine, and computational biology.
Data Preparation
A total of 10,000 PubMed abstracts were extracted using
a 4-step filtering strategy to ensure quality and domain
relevance:

1. Initial search: Articles published between January 1,
2015, and January 1, 2025, were retrieved via PubMed
using Medical Subject Headings (MeSH) terms and
keywords related to drug repositioning, drug mecha-
nisms, and pharmacology.

2. Journal filtering: We retained articles published in
top-tier pharmacological journals ranked in Q1 of the
Journal Citation Reports (Multimedia Appendix 1).

3. Relevance filtering: Abstracts were kept if the title or
abstract mentioned at least one drug or disease entity
from a standard drug repositioning dataset [44].

4. Length filtering: Abstracts under 50 characters were
excluded to ensure basic content adequacy.

This rigorous selection process (detailed in a PRISMA
[Preferred Reporting Items for Systematic Reviews and
Meta-Analyses] flow diagram in Multimedia Appendix
1) ensured the inclusion of the latest high-quality
research articles relevant to pharmacological mechanism and
repurposing strategies.
Data Annotation With CoT-Prompt
Engineering
Owing to the lack of annotated datasets for drug repositioning
knowledge extraction, we constructed an annotated corpus
from 1000 PubMed abstracts mentioned earlier. The prompt
was evaluated on DeepSeek-R1 [45] via CoT [46], which
required LLMs to generate coherent intermediate reasoning
steps leading to a final answer [47].

We summarized the execution steps and proposed a
task-specific prompt as follows and outlined them in
Multimedia Appendix 2.

• Step 1: Role assignment and task description. Ini-
tialized the LLM as a biomedical annotation special-
ist, explicitly defining the drug repositioning schema
and incorporating k-shot demonstrations to establish
contextual understanding of target entities and semantic
relationships.

• Step 2: Identification of entity and relationship
types. Identified candidate entity types and contex-

tual relationship types in text according to predefined
schema.

• Step 3: Entity and relationship annotation. Based on
the categories identified in step 2, this step extracted
specific entities (eg, “Metformin” as drug, “Diabe-
tes” as disease) and their contextual relationships (eg,
treats) from text.

•  Entity annotation principles. (1) Nonoverlapping: A
single string cannot be assigned to multiple entity
types. (2) Nonnesting: An entity should not contain
another entity within its span. (3) Minimal punctuation
and conjunction: Entities should exclude unnecessary
punctuation or connecting words.

•  Relationship annotation principles. (1) Intrasentence
priority: Triplets within a single sentence are prefer-
red; cross-sentence triplets are permitted only if no
valid intrasentence relation exists. (2) Unidirectional
relations: Only 1 directional relation is retained between
any 2 related entities.

• Step 4: Triplets construction. Extracted drug reposi-
tioning entities and their contextual associations into
semantically coherent triplets.

• Step 5: Output format standardization. Specified the
output format and standards, setting clear expecta-
tions for the output as {Entity1; Type1; Relationship;
Entity2; Type2} in JSON format.

To ensure the quality of the DrugReC, we manually reviewed
the standard results from 1000 abstracts as well. A total of 3
annotators in pharmacology, clinical medicine, and bioinfor-
matics were recruited, with 2 conducting cross-review and
the third senior expert adjudicating conflicting or ambiguous
cases. The corpus was subsequently partitioned into a training
set (n=800) for RL algorithm development and a test set
(n=200) to evaluate model generalizability. The remaining
9000 abstracts were used as training data for SFT.
Long Chain-of-Thought

LLM Deployment
The Qwen2.5-7B-Instruct model [48], developed by Alibaba
Cloud, represented a significant advancement in the Qwen
series of LLMs, specifically optimized for semantic compre-
hension and complex task processing. This 7-billion-parame-
ter transformer-based architecture demonstrated exceptional
performance in specialized applications, including knowledge
extraction [49] and conversational interaction [50] scenarios.
Meanwhile, an extended context window of 128,000 tokens
facilitated precise capture of fine-grained semantic features
within textual data.

For the Qwen2.5-7B-Instruct setup, we used temperature
sampling with the parameter of 0.02. A lower temperature
parameter can limit the model to make excessive crea-
tive jumps, thus ensuring accurate and consistent outputs.
Meanwhile, we set the max_token parameter to 16,384 while
leaving all other hyperparameters at their default values.
The used hyperparameters during model training included a
training batch size of 8, a learning rate of 1e−6, a cutoff
length of 16,384, and a gradient accumulation step of 1.
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The model was trained on the Wuwen Xinqiong platform.
Training the 7B model with 8× NVIDIA A100 40GB GPUs
took approximately 40 hours, with a total cost of approxi-
mately 1000 RMB (US $140.47).

Cold-Start SFT
To address the output incoherence and unstable reason-
ing patterns caused by directly initializing RL [51] in
foundation LLMs, we implemented cold-start SFT [52]
with CoT data from 9000 PubMed literature as mentioned
earlier. These domain-specific annotated triplets were used
to optimize model parameters under a supervised learning
framework, enabling the model to progressively acquire
human-aligned reasoning patterns. This phase implemented
multistep reasoning paths and strict output formats, signifi-
cantly enhancing the model’s complex problem decomposi-
tion capacity and intermediate step interpretability. In brief,
the approach of cold-start SFT provided stable initialization
for subsequent RL stages.

RL Algorithm
To reduce the training costs associated with RL, we used
GRPO to further optimize reasoning paths through self-itera-
tion in an unannotated environment [53]. Specifically, GRPO
generated multiple candidate outputs o1, o2,…oG  from the
old policy πθold and then optimized the policy model πθ by
maximizing the following objective:

(1)ζGPRO(θ) = E i = 1
G min πθ(oi)πθold(oi) Ai, clip πθ(oi)πθold(oi) , 1 − ε, 1 + ε Ai − βDKL πθ ‖ πref

(2)DKL πθ‖πref = πθref oi |qπθ oi |q − logπθref oi |qπθ oi |q − 1
and the advantage Ai was defined as follows:

(3)Ai = ri − μgroup /σgroup

where ri was the raw reward for the ith answer and μgroup
and σgroup represented the mean and SD, respectively,
of rewards within the candidate outputs. The group-wise
contrastive mechanism mitigated absolute reward scale bias
while encouraging high-quality reasoning.

For the task of drug repositioning knowledge extrac-
tion, this optimization process facilitated complex cogni-
tive mechanisms based on a high-performance RL training
framework, EasyR1 [54], leading to enhancement of task-
specific reasoning performance.

Reward Modeling
Subsequently, we proposed a novel dual-reward mechanism
specifically for drug repositioning knowledge extraction
to guide model self-evolution. This mechanism integrates
2 complementary reward types: (1) an accuracy reward
targeting factual correctness in entity and triplet extraction
and (2) a structural format reward focusing on the integrity
and interpretability of the model’s reasoning process through
structured tag compliance.
Accuracy Reward Mechanism
This mechanism established a multidimensional evaluation
that compares model outputs with annotated references.
Dynamic scoring rules for entity recognition and triplet
extraction are presented in Table 1.

According to these scoring rules, the accuracy reward was
as follows:

(4)Racc = αSentity + βStriplet + γSrare
where Sentity was accuracy reward of entity recognition,Stripletwas accuracy reward of triplet extraction, and Srare
was reward of rare entity or relationship. This hierarchical
award mechanism effectively balanced comprehensiveness
and granularity in drug repositioning knowledge extraction.

Table 1. Scoring rules of accuracy reward.
Reward factor and detail Reward mechanism
Entity recognition
  Exact match: boundary and type fully consistent Score rewarded (+)
  Partial overlap: correct type with boundary overlap Partial rewarded (+)
  False positive: misrecognition and false negative: omission No score (0)
Triplet extraction
  Correct triplet Score rewarded (+)
  Dependency error: incorrect entity in relation No score (0)
Others
  Rare entity/relationship Score rewarded (+)
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Structural Format Reward
To enhance the model’s step-by-step reasoning, we also
introduced an XML tag–guided mechanism (Table 2) that
enforced structured output. It was required to encapsulate
complete reasoning processes within “<think>……</think>”
tags and nested <step> tags, enabling multilevel logical
decomposition.

According to these scoring rules, the structural format
reward was as follows:

(5)Rfmt = δStag + εSlengtℎ
where Stag was format reward of tag integrity and Slengtℎ
was format reward of thinking length. This approach ensured
machine-parsable outputs while enhancing the interpretability
of inference pathways.

Table 2. Scoring rules of structural format reward.
Reward factor and detail Reward mechanism
Tag integrity
  Missing/redundant tags No score (0)
  Tag closure disorder: closing tag appears before opening tag No score (0)
Thinking length
  Underlength/overlength content No score (0)

In-Depth Evaluation and Comparison
To comprehensively assess the performance of LCoDR-KE,
we conducted an in-depth analysis.

First, comparative experiments were conducted to
benchmark LCoDR-KE against traditional machine learn-
ing models (eg, CRF), general-purpose pretrained models
(BERT), domain-specific biomedical models (BioBERT),
and state-of-the-art LLMs, including ChatGPT-4, Llama3,
QIANWEN, and variants with different parameter scales.
These comparative analyses served to validate the effective-
ness of our proposed model against established benchmarks,
thereby highlighting its superior performance in addressing
specialized biomedical knowledge extraction problems.

Second, ablative experiments were designed to evalu-
ate the individual contributions of the key technological
advancements, including high-quality data-driven prompt
engineering and LCoT reasoning mechanism. By removing
or substituting these modules, the study quantified their
independent contributions and synergistic effects on task
performance.

Finally, we conducted an error analysis by manually
reviewing 100 randomly selected abstracts from the model
outputs to identify common types of mistakes and areas for
future algorithmic improvements.

Meanwhile, we used precision, recall, and F1-score for
model evaluations. Precision quantifies the proportion of
correct identifications among all model predictions, reflect-
ing the reliability of positive results. Recall evaluates the
coverage for true positive instances, indicating the compre-
hensiveness of knowledge extraction. The F1-score, as the
harmonic mean of precision and recall, provides a balanced
assessment that mitigates the impact of omissions and false
extraction, thereby offering a comprehensive evaluation. For
rigorous validation, we compared model outputs against
manually annotated corpus using exact string matching,
which ensured high quality of model performance.

Ethical Considerations
This study did not involve human participants or ani-
mal experiments. All data used in the research, including
biomedical literature and structured databases, were publicly
available and deidentified before analysis. Therefore, ethics
approval was not required in accordance with institutional and
international research ethics policies.

Results
Knowledge Representation for Drug
Repositioning
Drug repositioning schema (summarized in Multimedia
Appendix 3) encompassed 11 entity categories, including
core entities (drug, disease, and target) along with extended
dimensions, such as side effect, gene, biomarker, symp-
tom, complication, anatomical structure, clinical examination,
and treatment. Furthermore, 18 relationship categories were
defined in detail to comprehensively characterize semantic
features among multilevel entities, such as “treat...,” “is target
of,” “is side_effect of,” “is biomarker of.” This framework
substantially enhanced semantic representation capabilities
and facilitated the discovery of latent associations in drug
repositioning research.

Statistics of DrugReC
Via defined prompt engineering and manual review, we
constructed a high-quality DrugReC, specially for drug
repurposing text mining. This corpus, annotated from 1000
PubMed abstracts, contained 11 entity types and 18 relation-
ship types closely related to drug repositioning. After the
concordance test and revision, a total of 9329 entities and
4879 triplets consisted of this standard dataset (presented in
Table 3). Among the entity types, disease (19.10%) and drug
(15.80%) were the most frequently represented, followed by
anatomy (13.62%), test (10.32%), and biomarker (10.26%).
Less prevalent but critical categories included complication,
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target, treatment, symptom, gene, and side effect. Regard-
ing knowledge triplets, is_examination_for (18.16%), treat
(17.20%), and is_biomarker_of (17.16%) together accounted
for more than half of all triplets, emphasizing the cor-
pus’s focus on clinically relevant associations. This distribu-
tion reflected DrugReC’s design to support comprehensive
text mining efforts in drug repositioning by capturing key
therapeutic and diagnostic linkages. We have made this

corpus publicly available on GitHub with Apache License
version 2.0, providing a high-quality data foundation to
advance biomedical informatics mining.

Then, this dataset was randomly divided at the document
level into training (80%) and test (20%) subsets, with detailed
statistical characteristics of both partitions provided in Tables
3 and 4.

Table 3. Statistics of entities in training and test set.
Entity type Total, n (%) Training set, n (%) Test set, n (%)
disease 1782 (19.10) 1426 (19.11) 356 (19.08)
drug 1474 (15.80) 1179 (15.80) 295 (15.81)
anatomy 1271 (13.62) 1017 (13.63) 254 (13.61)
test 963 (10.32) 770 (10.32) 193 (10.34)
biomarker 957 (10.26) 766 (10.26) 191 (10.24)
complication 644 (6.90) 515 (6.90) 129 (6.91)
target 583 (6.25) 466 (6.24) 117 (6.27)
treatment 561 (6.01) 449 (6.02) 112 (6.00)
symptom 490 (5.25) 392 (5.25) 98 (5.25)
gene 362 (3.88) 290 (3.89) 72 (3.86)
side effect 242 (2.59) 194 (2.60) 48 (2.57)
Total 9329 (100) 7463 (100) 1866 (100)

Table 4. Statistics of triplets in training and test set.
Relationship typea Total, n (%) Training set, n Test set, n
is_examination_for 886 (18.16) 709 177
treat 839 (17.20) 671 168
is_biomarker_of 837 (17.16) 670 167
complication_of 618 (12.67) 494 124
is_located_in 579 (11.87) 463 116
is_symptom_of 449 (9.20) 359 90
is_target_of 349 (7.15%) 279 70
is_side_effect_of 303 (6.21) 242 61
increases_expression_of 19 (0.39%) 15 4
Total 4879 (100) 3903 976

aEach relationship included bidirectional relationships between head and tail entities.

Knowledge Extraction With Different
Types
LCoDR-KE achieved an overall F1 score of 81.46%. High
performance was observed for the most frequent entity
types, including drug (F1=95.83%) and disease (F1=90.52%),
likely due to their distinct semantic boundaries and abun-
dant contextual representations. Mid-range performance was
observed for anatomy (82.38%) and test (82.11%), while
categories such as gene (74.70%), complication (73.93%),
and biomarker (72.03%) showed moderate degradation. The
lowest entity F1 scores occurred for target (64.05%) and
treatment (67.21%), not solely due to lower frequency but
likely due to greater semantic ambiguity and overlapping
usage with other types. Performances are detailed in Table
5.

Triplet extraction yielded an overall F1 score of
70.39% (Table 6). The model excelled on treat relations
(F1=84.47%) and is_target_of (74.73%), which may benefit
from clearer syntactic patterns. In contrast, performance
declined for is_biomarker_of (57.69%) and increases_expres-
sion_of (50.00%), reflecting both data sparsity and higher
contextual variability.

Performance differences can largely be attributed to
variations in data distribution, semantic complexity, and
context dependency, rather than entity or relation frequency
alone. These findings suggested that targeted data augmen-
tation, finer-grained annotation, or context-aware modeling
strategies may further improve performance across challeng-
ing categories.
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Table 5. Performance of entity extraction.
Entity type Precision (%) Recall (%) F1 (%)
ALL 83.37 79.64 81.46
drug 95.44 96.23 95.83
disease 90.88 90.16 90.52
anatomy 84.23 80.60 82.38
test 82.98 81.25 82.11
side_effect 76.79 84.31 80.37
gene 64.58 88.57 74.70
complication 87.16 64.19 73.93
biomarker 75.74 68.67 72.03
symptom 66.19 76.67 71.04
treatment 70.94 63.85 67.21
target 81.67 52.69 64.05

Table 6. Performance of triplet extraction.
Relationship type Precision (%) Recall (%) F1 (%)
ALL 73.94 67.17 70.39
treat 87.74 81.44 84.47
is_target_of 82.93 68.00 74.73
is_located_in 77.10 70.63 73.72
is_symptom_of 64.84 73.45 68.88
is_examination_for 70.47 65.63 67.96
is_side_effect_of 67.80 66.67 67.23
complication_of 80.95 55.56 65.89
is_biomarker_of 60.98 54.74 57.69
increases_expression_of 66.67 40.00 50.00

Performance Comparisons

Performance Comparison With State-of-the-
Art Models
To evaluate the performance, we compared our LCoDR-KE
model with several state-of-the-art models, including CRF
(machine learning model), BERT (general-purpose pretrained
language model), BioBERT (domain-specific biomedical
model), and LLMs, including DeepSeek-R1, QIANWEN,
and variants with varying parameter scales. These LLMs
were evaluated under a 5-shot setting, consistent with the
configuration used for our LCoDR-KE model. This ensured
a fair comparison under equivalent prompt-based conditions.
Detailed hyperparameter settings for each model are provided
in Multimedia Appendix 4.

The comparative evaluation against state‐of‐the‐art
baselines (Table 7) demonstrated that LCoDR-KE delivered
substantial advances in both entity and triplet extraction.
Classical sequence learners, such as CRF, scored poorly
(entity F1=29.18%; triplet F1=14.51%), while general‐pur-
pose pretrained models (eg, BERT, BioBERT) achieved

modest gains (entity F1≈37%; triplet F1≈30%). The
Qwen2.5-7B variant improved entity extraction (F1=53.16%)
but remained weak on triplets (F1=18.04%). In contrast,
LCoDR-KE-0.5B reached 62.67% entity F1 and 35.05%
triplet F1, and the 7B model further advanced to 81.46% and
69.04%.

Notably, at 7B parameters, LCoDR-KE approached
DeepSeek-R1’s entity F1 (81.46% vs 84.64%) and margin-
ally exceeded its triplet F1 (69.04% vs 69.02%). Although
LCoDR-KE did not surpass DeepSeek-R1, it reached a
similar level of effectiveness under a smaller parameter scale
(7B vs 671B).

We further evaluated the OpenBioLLM-70B, which
achieved an entity F1 of 59.66% (precision: 56.63%; recall:
63.04%) and a triplet F1 of 16.52% (precision: 13.92%;
recall: 20.31%). In contrast, our LCoDR-KE-7B model
achieved notably higher performance with 81.46% (preci-
sion: 83.37%; recall: 79.64%) in entity extraction (21.8
percentage points increase) and 69.04% (precision: 72.43%;
recall: 65.96%) in triplet extraction (52.5 percentage points
increase).
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Table 7. Performance comparisons of different models.
Entity extraction Triplet extraction
Precision (%), mean
(SD)

Recall (%), mean
(SD) F1 (%), mean (SD)

Precision (%), mean
(SD)

Recall (%), mean
(SD)

F1 (%), mean
(SD)

Deepseek-R1 83.5 (0.082) 85.81 (0.065) 84.64a (0.034) 72.36 (0.040) 65.98 (0.079) 69.02b (0.096)
CRFc 35.65 (0.038) 24.7 (0.004) 29.18 (0.087) 18.21 (0.035) 12.06 (0.007) 14.51 (0.014)
BERTd 41.38 (0.085) 32.92 (0.095) 36.67 (0.084) 32.55 (0.014) 28.5 (0.004) 30.39 (0.061)
BioBERT 44.27 (0.097) 31.87 (0.019) 37.06 (0.050) 33.62 (0.004) 27.97 (0.016) 30.54 (0.004)
Qwen2.5-7B 51.75 (0.027) 54.64 (0.076) 53.16 (0.019) 16.15 (0.027) 20.44 (0.091) 18.04 (0.029)
LCoDR-KEe-0.5B 67.63 (0.072) 58.38 (0.046) 62.67 (0.024) 36.52 (0.083) 33.69 (0.051) 35.05 (0.018)
LCoDR-KE-1.5B 74.84 (0.055) 74.31 (0.038) 74.57 (0.085) 53.3 (0.062) 50.44 (0.007) 51.83 (0.037)
LCoDR-KE-3B 83.37 (0.006) 79.64 (0.069) 81.46f (0.018) 72.43 (0.067) 65.96 (0.043) 69.04g (0.094)
LCoDR-KE-7B 83.37 (0.024) 79.640.046) 81.46f (0.012) 72.43 (0.023) 65.96 (0.091) 69.04g (0.082)

aBest performance for entity extraction.
bSecond-best performance for relationship extraction.
cCRF: conditional random fields.
dBERT: Bidirectional Encoder Representations From Transformers.
eLCoDR-KE: long chain-of-thought for drug repositioning knowledge extraction.
fSecond-best performance for entity extraction.
gBest performance for relationship extraction.

Impact of Model Scale on Extraction
Performance
Across the LCoDR-KE series (Figure 2), increasing model
capacity from 0.5B to 1.5B, 3B, and 7B yielded consistent
performance improvements, with entity F1 rising from

62.67% to 72.91%, 74.57%, and 81.46%, triplet F1 rising
from 35.05% to 48.34%, 51.83%, and 69.04%, respectively.
These gains suggested that larger models better capture
the complex contextual dependencies required for accurate
biomedical knowledge extraction.

Figure 2. Performance of LCoDR-KE across different model scales (0.5B, 1.5B, 3B, 7B) on biomedical entity and triplet extraction tasks. Larger
models yielded better precision, recall, and F1-scores. LCoDR-KE: long chain-of-thought for drug repositioning knowledge extraction.

Ablation Studies
To evaluate the contributions of different components within
the LCoDR-KE model, we conducted ablation studies to
examine the impact of strongly SFT and the LCoT model
on knowledge extraction outcomes for drug repositioning.
We removed the 2 components of the LCoDR-KE model to
observe changes in performance.

As presented in Table 8, the ablation studies demonstrated
significant performance degradation when removing either
SFT or GRPO module. Removing GRPO reduced F1-scores
by 6.09% for entity extraction and 14.09% for triplet
extraction, indicating that GRPO substantially enhances
knowledge extraction. In comparison, removing SFT caused
sharper declines in precision (8.61% for entities and 20.70%
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for triplets), underscoring the critical role of task‐specific
supervision in adapting pretrained representations. Together,
these results demonstrated that both components contrib-
ute synergistically to the model’s knowledge extraction
capabilities, with GRPO enhancing reasoning and SFT

improving supervised alignment. Meanwhile, the absence of
SFT caused more pronounced degradation in both entity and
triplet extraction, indicating its broader influence on model
performance (Figure 3).

Table 8. Ablation study results: precision, recall, and F1-scores for different components of LCoDR-KEa.
Ablation models Entity extraction Triplet extraction

Precision (%) Recall (%) F1 (%) Precision (%) Recall (%) F1 (%)
LCoDR-KE-w/o GRPOb 76.53 74.25 75.37 54.58 55.33 54.95
LCoDR-KE-w/o SFTc 73.80 71.93 72.85 49.35 47.38 48.34
LCoDR-KE 83.37 79.64 81.46 72.43 65.96 69.04

aLCoDR-KE: long chain-of-thought for drug repositioning knowledge extraction.
bGRPO: Group Relative Policy Optimization.
cSFT: supervised fine-tuning.

Figure 3. Radar chart comparing the full LCoDR-KE model with its ablation variants (without Group Relative Policy Optimization [GRPO] and
without supervised fine-tuning [SFT]) across 6 evaluation metrics. Both the GRPO and SFT modules significantly enhanced performance, with SFT
contributing more broadly across precision and F1-scores, especially for triplet extraction. LCoDR-KE: long chain-of-thought for drug repositioning
knowledge extraction.

External Benchmark Evaluation
To further assess generalizability beyond our in-domain
DrugReC corpus, we evaluated LCoDR-KE directly on
the widely used BC5CDR benchmark, which comprises
500 PubMed abstracts manually annotated for chemical
(drug) and disease entities and their binary associations.
OpenBioLLM-70B achieved entity F1 of 47.39% and

relation F1 of 25.52%, while DeepSeek-R1 scored 60.93%
and 38.33%, respectively. Without additional fine-tuning,
LCoDR-KE obtained an entity F1 of 59.17% (precision:
85.92%; recall: 45.12%) and a triplet F1 of 35.16% (preci-
sion: 33.84%; recall: 36.59%), closely matching DeepSeek-
R1 and substantially outperforming OpenBioLLM-70B. Thus,
our method demonstrated generalizability beyond in-domain
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abstracts, achieving robust performance on external biomedi-
cal corpora such as BC5CDR.
Effect of K-Shot Examples on Model
Performance
To evaluate the impact of prompt on corpus generating, we
conducted a small-scale experiment comparing 0- to 5-shot
prompting settings. As shown in Figure 4, k-shot prompting

consistently outperformed the 0-shot baseline in both entity
and triplet extraction. Entity F1 rose from 80.01 (0 shot)
to 82.63 (5 shots), while triplet F1 increased from 67.16
to 70.48. Performance steadily improved as the number of
examples increased, particularly between 1 shot and 3 shots.
Notably, the model achieved stable and high performance
in the 3- to 5-shot range, suggesting that moderate prompt
context enhances annotation quality.

Figure 4. Effect of k-shot prompting on entity and triplet extraction performance. F1-scores for entity and triplet extraction across 0- to 5-shot
settings. Performance improved with more shots and stabilizes between 3 shots and 5 shots.

Reward Parameter Optimization
To optimize the reward function for knowledge extraction
and structured reasoning, we used a progressive tuning
strategy through multiple rounds of controlled experiments.
The reward formulation includes a hierarchical accuracy
component where the coefficients for entity recognition (α),
triplet extraction (β), and rare entity/relation enhancement
(γ) satisfy the constraint α + β + γ = 1. Given the high
computational cost of jointly searching in a 3D space, we
adopted a 2-stage approach. We first optimized α and β under
the constraint α + β = 1 to balance entity- and relation-level
performance. Once optimal base weights were identified, we
introduced γ by gradually adjusting the proportion of reward
allocated to rare cases. Subsequently, we adjusted the weights
associated with structured reasoning, namely tag integrity
(δ) and reasoning length (ε), to ensure syntactic validity
and controlled verbosity in the model’s output. Finally,
we calibrated the overall balance between accuracy-related
rewards and format-related rewards by modifying the global
weight of accuracy reward and format reward parameters.

In addition, we introduced 2 top-level coefficients (ie,
accuracy reward weight and format reward weight) to control
the relative contribution of accuracy-based and format-based

rewards in the overall objective. These weights were jointly
tuned to ensure a trade-off between extraction performance
and output structure quality.

Throughout the process, evaluation was based on both
entity and relation F1-scores, as well as the structural
completeness of generated outputs (Multimedia Appendix 5).
The final parameter configuration, with α=.45, β=.45, γ=0.1,
δ=0.7, ε=0.3, accuracy reward=0.5, and format reward=0.5,
demonstrated optimal performance in terms of extraction
accuracy, robustness, and output interpretability and was
therefore adopted in subsequent experiments.
Interpretable CoT Reasoning Patterns
To evaluate whether the model engaged in structured
reasoning, we examined its CoT outputs during knowledge
extraction. We gave an example (Table 9) to demonstrate
that the model performed structured, schema-aware reasoning
beyond pattern matching. It explicitly validated entity types,
rejected schema-incompatible relations, and enforced output
constraints, ultimately generating a compliant JSON structure.
The complete example of CoT is summarized in Multimedia
Appendix 6.
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Table 9. Structured chain-of-thought reasoning example from LCoDR-KEa.
Reasoning step Model output (excerpt)
Task framing “Alright, I’m approaching this task as a biomedical knowledge extraction assistant. I need to systematically identify

entities and relationships from the predefined types.”
Entity identification “cetuximab’ clearly fits the Drug definition as a therapeutic agent; ‘colorectal cancer’ → Disease; ‘infusion reactions’

→ Side Effect; ‘ER visit’ → Treatment...”
Entity filtering “‘medical intervention’ is too vague–not entity material;...”
Relation reasoning “‘cetuximab’ causes ‘infusion reactions’ → is_side_effect_of; ‘cetuximab’ treats ‘colorectal cancer’ → treat...”
Schema constraints “Rejected is_examination_for between ER and IRs – not diagnostic; did not create invented relations like

‘discontinued_due_to’...”
Formatting awareness “Ensured JSON format with two root keys (Entities and Relationships); original casing preserved; no explanatory text

embedded...”
aLCoDR-KE: long chain-of-thought for drug repositioning knowledge extraction.

Step of Training Iterations
We also monitored the performance across 30 training
iterations (from 100 to 3000 steps) using F1 metrics (Fig-
ure 5) and showed a steady and stable improvement in
Entity F1, which reached a peak of 81.46% at the level
of 1700. Notably, Entity F1 remained consistently high
beyond 2000 iterations without significant decline, indicat-
ing robust and stable convergence in the entity recognition
task. Triplet F1 reached its highest value of 69.34% at step
1500 and exhibited a slight decrease in subsequent iterations;

however, it consistently stayed above 65%, suggesting that
the model maintained a strong baseline for triplet extraction.
This relatively stable performance postpeak indicated the
potential for further optimization with continued training or
minor adjustments. Overall, these results demonstrated the
effectiveness and stability of the training approach, particu-
larly for entity recognition while also highlighting a promis-
ing and resilient trajectory for triplet extraction performance.
Detailed performances across training iterations are provided
in Multimedia Appendix 7.

Figure 5. Entity and triplet F1 performance across 30 training iterations (100‐3000 steps). Entity F1 steadily improved and peaked at 81.46% (step
1700), maintaining stability thereafter. Triplet F1 reached a maximum of 69.34% (step 1500) and remained consistently above 65%, indicating robust
and stable model convergence for both extraction tasks.

Error Analysis
We conducted an error analysis by manually reviewing
100 randomly selected sentences from the model outputs to

identify common types of mistakes and areas for improve-
ment.
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Error Examples
The errors were classified into 4 main types of entity
extraction (ie, incorrect extraction, incorrect type, boundary

errors, and missing entities) and 2 main types of triplet
extraction (incorrect entity type and cross-sentence errors),
with examples summarized in Table 10.

Table 10. Main error types in LCoDR-KEa.
Error types Definition Sentences Truth extraction LCoDR-KE extraction
Entity extraction
  Incorrect extraction Nonentity terms were

incorrectly identified as
entities

Available therapies are
effective, associated with
severe side effects.

NULL [severe side effects, side
effect]

  Incorrect type Entities were correctly
identified but assigned the
wrong entity type

In nearly half of cancer cells,
there is an overexpression of
MDM2 and MDMX, which
inhibit p53 activity.

[p53, gene] [p53, target]

  Boundary errors Which involved incorrect
determination of the start
and end positions of entities

The expression of BRCA1
and BRCA2 mutations was
analyzed in the cohort.

[BRCA2, gene] [BRCA2 mutations, gene]

  Missing entities Entities present in the text
were not identified by the
model

Other lung findings were ...
or extensive hemorrhage.

[extensive hemorrhage,
complication]

NULL

Triplet extraction
  Incorrect entity type Relationships were

correctly identified but
assigned the wrong entity
type

Docetaxel and gemcitabine
might result in fewer adverse
events.

NULL [adverse events, side
effect, is side effect of,
Docetaxel, drug]

  Cross- sentence error Unable to recognize logical
relationships across
sentences

62% of subjects exhibited
recurrent gastrointestinal
distress (eg, nausea).
Subsequent serological
testing confirmed elevated
anti-tTG antibodies, a
hallmark of celiac disease.

[nausea, symptom, is
symptom of, celiac disease,
disease]

NULL

aLCoDR-KE: long chain-of-thought for drug repositioning knowledge extraction.

Error Statistics
We further quantified the frequency of each error type to
assess their impact and guide future improvement strategies.

For entity extraction:
1. Incorrect extraction (n=10, 38.46%): This was the

most common error, typically caused by semantically
ambiguous phrases. For example, generic terms such as
“severe side effects” were incorrectly extracted due to
superficial similarity to defined entity types.

2. Incorrect type (n=6, 23.08%): These errors occurred
when the model misclassified closely related concepts,
such as mislabeling “p53” as a target instead of a gene.

3. Boundary errors (n=4, 15.38%): Often caused by
inclusion of modifiers like “mutations” in entity spans,
resulting in misaligned entity boundaries.

4. Missing entities (n=6, 23.08%): Frequently occurred
when entities were embedded in complex phrases or
lacked explicit semantic cues, leading to omission.

For triplet extraction:
1. Incorrect entity type (n=5, 38.46%): The relationship

was correctly identified, but the entity types were

misclassified (eg, “adverse events” mislabeled as side
effect instead of a nonentity).

2. Cross-sentence error (n=8, 61.54%): The model failed
to capture logical relationships spanning multiple
sentences, especially when the subject and object were
not co-located in the same sentence.

To further investigate the model’s behavior on entity
classification, we constructed a confusion matrix (Multime-
dia Appendix 8) based on entity predictions. The results
(Figure 6) showed strong diagonal dominance, indicating high
accuracy across most entity types. However, misclassifica-
tions persist among semantically similar categories. Specifi-
cally, the biomarker was confused with the target (2 cases)
and gene (1 case), while gene was misclassified as the target
twice. In addition, 1 side effect instance was incorrectly
labeled as a complication. These errors reflected the model’s
difficulty in distinguishing biologically related concepts with
overlapping semantics. In contrast, core categories, such as
drug and disease, were classified with perfect accuracy.
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Figure 6. Confusion matrix of entity type classification results (log-normalized). This log-scaled confusion matrix illustrated the model's entity
classification performance across 11 biomedical entity types. Diagonal dominance indicated high overall accuracy, while off-diagonal cells highlight
common misclassifications. Notably, errors were concentrated among semantically similar categories, such as biomarker, gene, and target.

Comparisons Between LCoDR-KE and
DeepSeek-R1
Meanwhile, LCoDR-KE demonstrated comparable perform-
ance with DeepSeek-R1. Specifically, LCoDR-KE surpassed
DeepSeek-R1 in the categories of incorrect type (6 vs 8),
missing entity (6 vs 7), and incorrect entity type (5 vs 6). This
advantage can be attributed to our meticulous definition of
entities and relations for the drug repurposing task, as well
as the provision of accurate examples during model train-
ing. Conversely, LCoDRKE performed slightly worse in the
Incorrect Extraction (10 vs 8) and CrossSentence Error (8 vs
7) categories, indicating that its complex contextual under-
standing and reasoning capabilities warrant further improve-
ment.

Discussion
Principal Findings
In this study, we introduced LCoDR-KE, a novel framework
for drug repositioning knowledge extraction that significantly
enhanced the adaptive learning capabilities of LLMs.

The effectiveness of our approach stemmed from 2 key
innovations.

• First, we developed a refined semantic representation
framework and used it to curate a high-quality training
corpus, DrugReC, comprising 1000 expertly annotated

abstracts. These annotations covered diverse drug
repositioning entities and captured complex semantic
relationships, providing a robust foundation for the
model to learn accurate semantic understanding and
contextual reasoning.

• Second, we proposed a long reasoning chain strategy:
an iterative, multistep inference process reinforced
through reward mechanisms and RL. By delivering
explicit feedback at each reasoning step, this strat-
egy enabled the model to progressively optimize its
decision-making process, resulting in more accurate and
coherent inference.

Collectively, these innovations contributed to the improved
performance of LCoDR-KE in extracting drug repositioning
knowledge.

Compared to pretraining approaches specifically designed
for biomedical tasks, LCoDR-KE offered several advantages.
Traditional methods typically required extensive domain
adaptation, large annotated corpora, or multiple rounds of
fine-tuning to achieve competitive performance [55]. In
contrast, LCoDR-KE achieved performance optimization with
a relatively small training dataset—comprising only 1000
literature abstracts—thereby significantly reducing the human
and time costs associated with domain-specific annotation.
Furthermore, LCoT decomposed semantic understanding
into explicit and traceable reasoning steps. This approach
mitigated hallucinations and enhanced model transparency,
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addressing 2 major challenges in the application of LLMs.
Our ablation study further substantiated these findings.

Moreover, performance comparisons demonstrated that
LCoDR-KE based on the Qwen-2.5-7B model matched the
performance of the 671B -parameter DeepSeek-R1 in drug
repurposing knowledge extraction. Specifically, F1-scores
achieved 81.46% versus 84.64% for entity extraction and
69.04% versus 69.02% for triplet extraction. This advance
significantly narrowed the gap between large-scale models
and resource-constrained environments, making it a practi-
cal solution for research institutes and hospital information
centers with modest computing capabilities.

In addition to performance gains, LCoDR-KE enhanced
model interpretability through CoT prompting. By generat-
ing intermediate reasoning steps, such as entity justification,
schema validation, and relation filtering, the model made
its decision process more transparent and traceable. This
structured reasoning not only aided error diagnosis but also
aligned model behavior with domain knowledge constraints,
offering a more controllable and explainable framework for
biomedical knowledge extraction.

Our expanded error analysis provided a more nuanced
understanding of model behavior in biomedical knowledge
extraction. By categorizing common error types, quantify-
ing their frequency, and visualizing entity-level confusion
patterns, we identified key challenges such as semantic
ambiguity, long-range dependencies, and data sparsity. These
insights not only explained performance bottlenecks but
also informed future improvements, such as targeted data
augmentation and schema-aware prompt refinement to reduce
ambiguity and improve generalization.

LCoDR-KE demonstrated strong performance in low-
resource settings through its schema design, cold-start SFT,
and RL with a reward mechanism. It provides an efficient and
feasible solution for biomedical knowledge extraction under
resource-constrained conditions. In clinical research settings,
LCoDR-KE could be deployed to mine structured knowledge
from trial protocols, real-world evidence, or adverse event
reports, assisting clinicians in therapeutic decision-making
and safety monitoring. In early-stage drug development, it

can support target identification and biomarker discovery
by extracting mechanistic insights from scientific literature.
Its lightweight design makes it particularly well suited for
integration into domain-specific platforms where computa-
tional resources and labeled data are limited. Moreover,
its task-specific schema could be readily tailored by rede-
fining entities and relations, thereby accommodating new
domains, languages, and even alternative LLM backbones.
Its flexibility allowed LCoDR-KE to extend beyond drug
repositioning to a broad range of biomedical knowledge
extraction tasks.
Limitations
Despite the promising results, our study has some limitations.
First, we limited the task to drug repositioning in this study.
In the future, we will include other biomedical knowledge
extraction tasks, such as gene–disease association identifi-
cation and drug–drug interaction detection, thereby expand-
ing its application value in diverse scenarios. Second, the
model’s balance between reasoning depth and computational
efficiency remains suboptimal, particularly when process-
ing intricate biomedical contexts requiring multistep logical
inferences. Future optimizations will focus on lightweight
architectural improvements.
Conclusions
This study introduced LCoDR-KE, a framework that
enhanced LLMs’ domain-specific adaptability for drug
repositioning by integrating long-chain reasoning and RL. We
constructed a publicly available DrugReC and a lightweight
knowledge extraction model, offering critical resources for
accelerating drug discovery and knowledge inference. The
framework balances accuracy, interpretability, and computa-
tional efficiency, validated through stable training conver-
gence and competitive performance against state-of-the-art
models. Overall, LCoDR-KE not only advances drug
repositioning research but also provides a scalable, transfera-
ble methodology applicable to diverse biomedical knowledge
extraction tasks, knowledge reasoning, and even decision
support, bridging gaps in low-resource, specialized domains.
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