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Abstract

Background: Disease name recognition is a fundamental task in clinical natural language processing, enabling the extraction
of critical patient information from electronic health records. While recent advances in large language models (LLMs) have
shown promise, most evaluations have focused on English, and little is known about their robustness in low-resource languages
such as Japanese. In particular, whether these models can perform reliably on previously unseen in-hospital data, which differs
from training data in writing styles and clinical contexts, has not been thoroughly investigated.

Objective: This study evaluated the robustness of fine-tuned LLMs for disease name recognition in Japanese clinical notes,
with a particular focus on their performance on in-hospital data that was not included during training.

Methods: We used two corpora for this study: (1) a publicly available set of Japanese case reports denoted as CR, and
(2) a newly constructed corpus of progress notes, denoted as PN, written by ten physicians to capture stylistic variations
of in-hospital clinical notes. To reflect real-world deployment scenarios, we first fine-tuned models on CR. Specifically, we
compared a LLM and a baseline-masked language model (MLM). These models were then evaluated under two conditions: (1)
on CR, representing the in-domain (ID) setting with the same document type, similar to training, and (2) on PN, representing
the out-of-domain (OOD) setting with a different document type. Robustness was assessed by calculating the performance gap
(ie, the performance drop from in-domain to out-of-domain settings).

Results: The LLM demonstrated greater robustness, with a smaller performance gap in F'j-scores (ID-OOD = —8.6) compared
to the MLM baseline performance (ID-OOD = —-13.9). This indicated more stable performance across ID and OOD settings,
highlighting the effectiveness of fine-tuned LLMs for reliable use in diverse clinical settings.

Conclusions: Fine-tuned LLMs demonstrate superior robustness for disease name recognition in Japanese clinical notes, with
a smaller performance gap. These findings highlight the potential of LLMs as reliable tools for clinical natural language
processing in low-resource language settings and support their deployment in real-world health care applications, where
diversity in documentation is inevitable.
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Introduction

Clinical notes contain a vast amount of information that is
not captured in structured fields of electronic health records
(EHRs) [1,2]. Natural language processing (NLP) techniques
have become essential for unlocking this rich, unstructured
data [3].

Among these, named entity recognition (NER)—a task
that identifies clinical entities such as disease names in
text—plays a vital role in extracting key clinical informa-
tion, which is essential for understanding patients’ medical
conditions [4-6]. For instance, disease name recognition can
be leveraged to detect adverse drug reactions from EHRs for
post-marketing surveillance [7].

Recent advances leveraging fine-tuned masked language
models (MLMs) such as BERT, have achieved state-of-the-
art performance in clinical NER tasks, often outperforming
prompt-based in-context learning (ICL) of large language
models (LLMs) [8.,9]. However, MLMs fine-tuned for disease
name recognition tend to experience notable performance
drops on unseen in-hospital data [10,11]. Given that clinical
NLP systems are expected to operate reliably across diverse
clinical settings, understanding and improving robustness—
that is, whether models can perform reliably on previously
unseen clinical notes—is a critical research objective.

When fine-tuned, LLMs have shown competitive or
slightly superior performance compared to MLMs in NER
tasks [12]. Given their exposure to a broader and more
diverse range of linguistic patterns during pretraining, LLMs
are expected to exhibit resilience to stylistic variations.
However, the extent to which fine-tuning improves their
robustness over MLMs remains underexplored, particularly
in languages other than English [13]. One reason for this
research gap is the lack of corpora that reflect the realis-
tic documentation styles of in-hospital clinical notes. These
data are challenging to obtain due to privacy concerns and
institutional restrictions.

In this study, we investigate the robustness of fine-tuned
LLMs with a focus on disease name recognition in Jap-
anese clinical notes. To facilitate an evaluation of robust-
ness to unseen in-hospital data, we constructed a dedicated
clinical corpus comprising progress notes (PN) authored by
ten individual physicians from different clinical institutions,
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reflecting diverse in-hospital documentation styles. To reflect
real-world deployment scenarios, we trained the models on
publicly available case reports (CR) and evaluated them under
two conditions: (1) on CR, representing the in-domain (ID)
setting with the same document type as in training, and (2)
on PN, representing the out-of-domain (OOD) setting with
a different document type. This cross-document evaluation
allows us to assess the models’ robustness to real-world
variability in documentation styles, capturing the challenges
introduced by the diverse writing practices found in in-hospi-
tal clinical notes.

Experimental results demonstrated that the fine-tuned
LLM —specifically LLaMA-3.1 [14]—outperforms the MLM
baseline (Bidirectional Encoder Representations from
Transformers, BERT) [15], not only in the ID setting but
also under OOD conditions. The LLM also exhibits a smaller
performance gap between ID and OOD settings, indicating
stronger robustness compared to the MLM. Further analysis
reveals that LLMs are more resilient to stylistic diversity
among clinicians, showing reduced performance fluctuation
across different physicians. These findings underscore the
potential of fine-tuned LLMs as more reliable tools for
real-world clinical applications, particularly where robustness
to diverse and previously unseen clinical notes is essential.

Methods

Overview

Our primary research question was to evaluate whether
fine-tuned LLMs remain robust when applied to previously
unseen clinical notes. To address this, we compared the
performance gap, defined as the performance difference
between ID setting and OOD settings between a fine-tuned
LLM and a fine-tuned MLM, which serves as a state-of-the-
art baseline for clinical NER.

The overview of the evaluation pipeline is shown in Figure
1. We evaluated model performance on the task of disease
name recognition in Japanese clinical notes. Both LLMs and
MLMs are first fine-tuned on a training set sampled from one
document type (eg, case reports). Evaluation is then conduc-
ted on two distinct test sets: one ID set sampled from the
same document type as the training data and one OOD set
sampled from a different document type (eg, progress notes).

JMIR Med Inform 2025 | vol. 13 1e76773 | p. 2
(page number not for citation purposes)


https://medinform.jmir.org/2025/1/e76773

JMIR MEDICAL INFORMATICS Shimizu et al

Figure 1. Overview of the evaluation pipeline. Models were fine-tuned on CR and evaluated on both CR, representing in-domain (ID) and PN,
representing out-of-domain (OOD) test sets for disease name recognition in Japanese clinical notes. BERT: Bidirectional Encoder Representations
from Transformers; HER2: human epidermal growth factor receptor 2; ICI: Immune checkpoint inhibitor; LLM: large language model; MLM:

masked language model; SOX: SRY-related HMG-box.
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(nivolumab and ipilimumab combination) for
<d>pleural metastasis recurrence</d> of <d> renal
cell carcinoma </d>. Although he received four doses,
the treatment was discontinued due to disease
progression. ..

Example of case report (CR)

# Gastric body cancer, type 3, HER2-negative

# Lung metastasis

2024/7/1 - SOX

7/1 Admitted for further evaluation and SOX induction
7/14 Discharged

The only adverse event was <d> mild peripheral
neuropathy </d> caused by oxaliplatin...

Evaluation

Materials

To represent ID and OOD settings, we used two datasets: an
existing publicly available corpus of case reports and a newly
constructed corpus comprised of progress notes.

1. Case reports (CR): A publicly available dataset
consisting of Japanese case reports comprising 1898
sentences across 148 documents annotated with clinical
entities [16].

2. Progress notes (PN): A dedicated, newly constructed
corpus of progress notes, comprising 1094 sentences
across 100 documents annotated with disease entities.

For the construction of PN, we first curated 10 diverse board
exam-style cases. To reflect real-world clinical documenta-
tion, these cases were then rewritten by ten physicians,
each contributing ten unique documents. The physicians
were instructed to adapt the cases to authentic in-hospital
clinical note styles from their clinical practice, emphasizing
realistic writing styles and varying levels of readability. In

Example of progress note (PN)

total, 1094 sentences (100 documents) across 10 physicians
and 10 clinical cases were created. The created PN were
then annotated for disease name entities by two experienced
annotators, following the same annotation guidelines as CR
[17]. We summarize the titles of the board exam-style cases
and the top 3 most frequent disease entities per case in Table
1.

We assessed the annotation quality of PN by calculating
interannotator agreement using two criteria: exact and partial
span matching. Exact matching required both annotators to
identify the same entity with identical span boundaries, while
partial matching allowed for overlapping spans, acknowl-
edging minor variations in boundary selection. Based on
a comparison of annotations from 10 randomly sampled
documents, the agreement between annotators was 0.70
(61/87) for exact matching and 0.82 (71/87) for partial
matching, suggesting a high level of consistency and reliable
annotation quality.

Table 1. Titles of the curated board exam-style cases and top 3 frequent disease entities.

Title and top 3 disease entities

Frequency (n)

“ZMRERX" (Acute appendicitis)
“ZMREFER (Acute appendicitis)
“BE%E" (Abdominal pain)

“ZZF, B (Perforation or abscess)
“EITBE DA (Advanced gastric cancer)
“EITE D A (Advanced gastric cancer)
“IFIREEE (Dyspnea)

“BFERFE (Liver metastasis)

“BFBRE (Liver abscess)

“FFRAEIE“ (Liver abscess)

“HRI= (Abscess)

“fERR (Fatigue)

11
6

https://medinform.jmir.org/2025/1/e76773

JMIR Med Inform 2025 | vol. 13 1e76773 | p. 3
(page number not for citation purposes)


https://medinform.jmir.org/2025/1/e76773

JMIR MEDICAL INFORMATICS

Shimizu et al

Title and top 3 disease entities

Frequency (n)

“ARRBBZICH S B (Anemia due to menorrhagia)
“FEFHFE (Uterine fibroids)

“&M*“ (Anemia)

“RB#%@%* (Menorrhagia)

“ffiht A (Lung cancer)

“BFERFE* (Liver metastasis)

“Hifi/VBRESE (Small cell lung cancer)

“K Na MYE" (Hyponatremia)

“IE (RRMDORFER) « (Infective endocarditis)

“{ HER T (Subarachnoid hemorrhage)

SAH (Subarachnoid hemorrhage)

“PEE (Vegetation - cardiac)

“SRERMEAH A+ COPD? (Aspiration Pneumonia with COPD)
COPD

“EREEMEAT A (Aspiration pneumonia)

M (Infiltrates)

“7 EFR FHIM“ (Subarachnoid hemorrhage)

SAH (Subarachnoid hemorrhage)

“FF* (Headache)

“< HERTHIM (Subarachnoid hemorrhage)
“KBEBH A (Colorectal cancer)

“Is 7R 1) — 2 (Is polyp)

“KEFH A (Colorectal cancer)

Well-differentiated tubular adenocarcinoma in tubular adenoma
AMI (acute myocardial infarction)

“B@9E* (Chest pain)

AMI

“BEBBHNE T (Wall motion abnormality)

20
12

12
12

14

15

4COPD: chronic obstructive pulmonary disease

Models and Baselines

We evaluate fine-tuned MLMs and LLMs on the task of
disease name recognition in Japanese clinical notes, com-
paring their performance under ID and OOD settings. In
addition, we evaluated LLMs using in-context learning (ICL)
through zero-shot and few-shot prompting to assess the
contribution of fine-tuning to improving LLM performance.

Fine-Tuning: We fine-tuned two models for the NER task:
(1) “bert-base-japanese-v3” [18], based on BERT [15] as a
strong MLM baseline, and (2) Swallow-Instruct-v0.2 [19],
based on LLaMA-3.1 (version 8B; Meta) [14], which is
a Japanese-instruction-tuned LLM. Both were subsequently
fine-tuned on the ID training set. “bert-base-japanese-v3” was
chosen as a strong and widely used baseline for Japanese-
language tasks, providing a representative benchmark for
traditional transformer—based MLMs that had been validated
in clinical NLP [20]. In contrast, “Swallow-Instruct-v0.2”
(version 0.2; Tokyo Institute of Technology) was selected
to evaluate the potential of recent instruction—tuned LLMs,
which are designed to better follow task-specific instructions
and generalize across diverse inputs. Built on Llama 3.1 8B

https://medinform.jmir.org/2025/1/e76773

through continual pretraining, it was trained on a curated
instruction corpus featuring multiturn dialogue and multilin-
gual tasks with a particular focus on enhancing Japanese
language capabilities.

For BERT, we adopted a standard sequence labeling
approach, using the “CLS” token representations followed by
a linear classification layer to predict BIO-tagged labels for
disease entities. In contrast, for LLaMA-3.1, we followed a
generation-based NER framework: the model was prompted
with an instruction and clinical note, and it generated the
same sentence with inline entity tags, enabling span-level
extraction in a natural language generation format. To adapt
LLaMA-3.1 to the NER task efficiently, we applied addi-
tional fine-tuning using Low-Rank Adaptation (LoRA) [21],
allowing parameter-efficient fine-tuning without modifying
the full set of model weights.

In-context learning (ICL): We evaluated LLaMA-3.1
and GPT-40 [22] under zero-shot and few-shot settings as
baselines. An example of a prompt used for ICL is presented
in Textbox 1. Recently, extensive efforts have been made
to optimize prompt design in the field of NLP [23-26]. In
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this experiment, we provide the models with an annotation
guideline that included entity definitions, task instructions,
and illustrative examples, following prior work on medical
NER [9]. For zero-shot learning, the model was provided with
task instructions and annotation guidelines only, without any
annotated examples. For few-shot learning, a single annota-
ted clinical note was randomly selected from the training

Textbox 1. Prompt example for ICL.

Shimizu et al

data and included in the prompt. Here, LLaMA-3.1 repre-
sents an open-source LLM with accessible model weights,
allowing evaluation across both fine-tuning and in-context
learning scenarios. In contrast, GPT-40 was evaluated only in
zero-shot and few-shot settings due to its proprietary nature,
serving as a reference for the in-context learning performance
of an LLM with the highest model capacity in our study.

### Annotation Guideline
Definition of disease names

3. ...
### Examples

### Task Instruction

1. When the lesion or symptom has actually been observed in the patient
2. When it is suspected that the patient may have the lesion or symptom (eg, proposed as a differential diagnosis)

Text: In November last year, pleural effusion appeared and increased, but decreased after starting furosemide.
Annotation: In November last year, <d pleural effusion </d>appeared and increased, but decreased after starting furosemide.

Based on the above explanation and examples, please annotate the following text

Text: The nodule shadow in the right upper lobe of the lung slightly increased.

Comparison Settings

We used our clinical corpora in a cross-domain evaluation
setup to assess both ID and OOD robustness:

ID: Samples from one document type were split 8:2 into
training and evaluation sets. This setting reflects standard
model development conditions, where training and test data
share similar clinical notes.

OOD: The corpus from another document type was used in
its entirety for evaluation. This reflects real-world deploy-
ment scenarios where models must process previously unseen
clinical notes with varying writing styles and vocabularies.

Table 2. Hyperparameters used for fine-tuning.

In addition to the setting where CR are used for training
and PN for evaluation, we also included the reverse sce-
nario. This resulted in four distinct evaluation configurations:
CR—-CR, CR=PN, PN=PN, and PN=CR. The difference
between ID and OOD performance (A) is calculated as
A=ID-OO0OD. This represents the performance gap, which
measures how well the model generalizes to unseen clinical
notes, compared to the data it was trained on. A smaller
difference indicates that the model is robust, even when
faced with clinical notes with different writing styles or from
different clinical cases. Hyperparameters used for fine-tuning
are summarized in Table 2.

Parameter description LLaMa-3.1 BERT?
Evaluation batch size per device b 8
Learning rate 2e-4 2e-5
LoRA€ dropout rate 0.05 -
LoRA rank (number of adaptation dims) 16 -
LoRA scaling factor 64 -
Maximum gradient norm (clipping) 0.3 -
Maximum sequence length 3000 512
Number of gradient accumulation steps 4 -
Number of training epochs 2 10
Optimizer used AdamW AdamW
Training batch size per device 4 8
Warmup ratio for learning rate 0.05 -
Weight decay for regularization - 00
Number of warmup steps - 0

4BERT: Bidirectional Encoder Representations from Transformers.
bNot applicable.
‘LoRA: Low-Rank Adaptation.
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Ethical Considerations

This study did not involve experiments with human subjects,
and no personally identifiable information was used at any
stage. The clinical notes were physician-authored, based on
board exam cases that are publicly available. Therefore, there
are no ethical concerns related to patient privacy or informed
consent in this research.

Results

Study Findings

Table 3 shows the findings of ID and OOD evaluation. All
models were evaluated using the microaveraged Fj-score,

Table 3. Evaluation results in micro F-scores with standard deviations.

Shimizu et al

focusing on exact span matches of disease name entities. All
results are averaged over three runs with different random
seeds. For GPT-40, we set the generation temperature to zero
to ensure deterministic outputs and only ran the evaluation
once due to annotation budget constraints.

CR?, mean (SD)

PNP, mean (SD)

= CR?*(ID)*° - PNb (OOD)!
LLaMA-3.1 (Zero-shot) 27.4(0.3) 204 (0.1)
LLaMA-3.1 (Few-shot) 32.6 (1.6) 30.5(0.7)
GPT-40 (Zero-shot) 49.5(0.0) 47.7 (0.0)
GPT-40 (Few-shot) 53.4(0.0) 499 (0.0)
BERT®(Fine-tuned) 73.7(0.2) 59.8 (0.2)
LLaMA-3.1 (Fine-tuned) 784 (0.5) 69.8 (0.6)

ACR® = PN (ID) = CR(O0OD) APNf
-70 155 (0.4) 27.1 (0.1) 116
2.1 37.0 (4.8) 359 (0.5) -110
-1.38 420 (0.0) 50.8 (0.0) 8.8
-35 56.2 (0.0) 544 (0.0) -18
-13.9 797 (1.8) 555(1.7) 242
-8.6 81.9(0.7) 672 (0.5) -14.7

4CR: case reports.

bpN: progress reports.

‘ID: in-domain.

d0O0D: out-of-domain.

®ACR: difference in csse reports.

fAPN: difference in progress notes.

gBERT: Bidirectional Encoder Representations from Transformers.

Comparison Between Fine-Tuning and
ICL

The fine-tuned LLaMA-3.1 consistently outperformed its
zero-shot and few-shot counterparts, achieving the high-
est Fi-scores across all evaluation settings. These results
highlight the effectiveness of fine-tuning for clinical NER.
In contrast, vanilla LLaMA-3.1 exhibited limited performance
in zero-shot and few-shot scenarios. Notably, in the few-shot
setting, the model showed a decline in performance when
applied to OOD data.

GPT-40 demonstrated strong few-shot performance (ie,
534 on CR-CR and 562 on PN-PN) despite having
no access to training data, highlighting the robustness of
large-scale foundation models. However, these models still
underperformed compared to the fine-tuned BERT, consis-
tent with previous findings that task-specific fine-tuning
often outperforms in-context learning in specialized domains
like clinical NER [8,9]. These findings illustrate that while
ICL can provide a competitive baseline with minimal data,
fine-tuning remains essential.

Comparison Between MLM and LLM

The fine-tuned LLaMA-3.1 outperformed the BERT baseline
across all ID and OOD settings, demonstrating superior

https://medinform.jmir.org/2025/1/e76773

robustness to the previously unseen document type. Spe-
cifically, the fine-tuned LLaMA-3.1 exhibited a smaller
performance gap (ACR=-8.6and APN=-14.7) compared to
BERT (ACR=-13.9 and APN=-24.2), suggesting its greater
stability for practical use in diverse clinical settings.

Discussion

Principal Findings

Experimental results demonstrate that the fine-tuned LLM
exhibits strong robustness, maintaining relatively stable
performance even when applied to previously unseen
progress notes. To better understand the factors contribu-
ting to this robustness, we further decomposed it into two
aspects: (1) robustness to stylistic variation, (ie, variations
across physicians) and (2) robustness to variation across
clinical cases. Our analysis reveals that the LLM was
particularly robust to stylistic differences, while showing
greater sensitivity to the differences in clinical cases.

We also conducted an error analysis to examine the
qualitative improvements of the LLM over the MLM baseline
performance. Our findings suggest that the LLM benefits
from its generative approach, which allows it to mark entities
inline within the sentence, as opposed to relying on a
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classification head over token representations, as in MLMs.
This generative approach enables the LLM to more accurately
extract entity spans, especially in stylistically diverse clinical
notes.

Impact of Physician and Clinical Case
Variation

To examine the robustness of the fine-tuned LLM to
variations in writing styles and clinical cases, we stratified

Shimizu et al

the performance of the fine-tuned LLaMA-3.1 and BERT
in the CR=PN setting by physician and clinical case. The
stratification process is summarized in Figure 2.

Figure 2. Overview of the evaluation with stratification. Performance of fine-tuned LLaMA-3.1 and BERT was stratified by physician and clinical

case to assess robustness to writing style and clinical case variations.

Clinical case-based

Clinical case j Clinical case 10

Clinical case 1
- - -
Physician-
based GVD
Physician | PNy,
Physician i PN;;
Physician 10 PNjy

Physician-Based

Performance was evaluated for each physician, with ten
clinical notes authored per individual. For instance, the
performance of models is averaged across PN;; to PN g
for the i-th physician. The variation in these stratified results
allows us to assess the model’s sensitivity to variations in
individual writing styles.

Clinical Case-Based

Performance was also evaluated for each clinical case
modeled after board exam-style scenarios (eg, acute
appendicitis). The model’s performance was averaged over

https://medinform.jmir.org/2025/1/e76773

FJ‘:}J PA:'. il
PN PN 1
PN iy PN o

Progress notes (PN)

ten notes from different physicians, for example, PN, ; to
PNy, ; for the j-th clinical case. This stratification enables an
analysis of the model’s ability to generalize to clinical-case-
specific disease entities.

Figure 3 presents the distribution of F-scores stratified
by physician and clinical case in the CR=>PN setting for
both the fine-tuned LLaMa-3.1 and BERT. The spread of
each box and the range of whiskers reflect performance
variability, while dots indicate outliers beyond 1.5-times
the interquartile range. Narrower boxes and smaller ranges
indicate higher consistency, while outliers and wider spreads
highlight sensitivity to writing style or clinical case variation.
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Figure 3. Distribution of Fj-scores in CR=PN stratified by physician and clinical case. BERT: Bidirectional Encoder Representations from

Transformers; CR: case report; PN: progress note.

BERT

LLaMA-3.1
80

e —

=
60

=

1

Physician Clinical case

Physician Variance

The fine-tuned LLaMA-3.1 demonstrated consistently strong
performance across different physicians, with relatively low
variance in Fj-scores. This is indicated in the narrow range
between the maximum and minimum values in the box plot.
In contrast, BERT’s performance varied more widely, with
significant performance drops in some physicians’ notes,
as indicated by extreme outliers and low minimum values.
This suggests that the fine-tuned LLaMA-3.1 is more robust
to stylistic differences, potentially due to its exposure to a
broader and more diverse range of linguistic patterns during
pretraining.

Clinical Case Variance

When stratified by clinical case, both models showed greater
variability compared to writing style. This is evidenced by
wider boxes and larger ranges between the maximum and
minimum values in the box plots. These results highlight
the increased difficulty of generalizing to domain-specific
disease names. While the fine-tuned LLaMA-3.1 generally
achieved higher average Fp-score across clinical cases, it
also experienced sharp drops in certain cases, indicating that
it remains sensitive to clinical-case-specific variation. This
underscores the persistent challenge in processing previously
unseen clinical cases, even for large instruction-tuned models.

These findings underscore the relative strength of the
fine-tuned LLaMA-3.1 in handling clinical stylistic variation.
At the same time, they point to the need for further work in
addressing performance gaps in different clinical cases.

Error Analysis

To examine the qualitative improvements of the LLM over
the MLM baselines, we conducted error analysis in the
CR-PN setting. Based on the observation that the fine-
tuned BERT has lower precision (51.8) compared to the
fine-tuned LLaMA-3.1 (70.8), both models achieved similar
recall scores (70.7 for BERT and 68.9 for LLaMA-3.1), we
focused on false positive cases for the analysis.

Representative error examples are summarized in Table 4.
From a manual inspection, we observed that BERT frequently
misclassified nondisease clinical entities such as laboratory
tests and biomarkers as disease mentions. For instance, in
the sentence “Tumor markers also decreased gradually (¥R
R ICEBBE <Y —7—HIET L),” BERT incorrectly predicted
two spans: “tumor markers (B <Y —77”—)” and “decrease

https://medinform.jmir.org/2025/1/e76773

Physician Clinical case

({&).” Both terms describe laboratory findings rather than
disease entities. In another example, in the sentence “There-
fore, with regard to platelets (Z D7z M/MRICH L TIE),”
BERT erroneously extracted “platelets ([Ml/J\#),” which
refers to a blood cell type rather than a pathological condi-
tion. These examples illustrate that BERT often struggles to
distinguish diagnostically relevant clinical phrases from true
disease mentions, leading to false positive predictions.

In addition to entity type confusion, BERT also often
struggled to capture the complete span of disease mentions,
frequently producing boundary errors or partial matches
that failed to align with the gold-standard annotations.
For instance, in the sentence “Hb 8.1 g/dL and moderate
nutritional disorder were observed (Hb8.1g/dl & HHIZE D
REREZFROHT),” BERT incorrectly predicted only the
prefix of a laboratory value, “Hb8,” entirely missing the
actual disease mention “5REEE (nutritional disorder).” In
another example, “The drainage volume was excessive (HF
RENEZ TH o7c),” BERT extracted only the charac-
ter “% (excessive),” omitting the full phrase “HF/REH 1B
% (excessive drainage volume).” These examples illustrate
how slight shifts in input text can lead to misaligned token
representations in MLM’s embedding space, resulting in
fragmented or incomplete entity predictions.

In contrast, the LLM demonstrates greater flexibility
in capturing complete spans of disease mentions. Unlike
the MLM, which often struggles with partial matches, the
LLM’s generative approach allows entities to be marked
directly and seamlessly within the sentence. For exam-
ple, in the sentence “Hb8.1g/dl & FIZE D<d>REREE
</d>7%Z F8& 1= (translated as “Hb 8.1 g/dL and moder-
ate <d>nutritional disorder</d>were observed”), the disease
mention “3REFEZE (nutritional disorder)” is correctly and
fully captured within the sentence using inline entity tags.
This inline tagging strategy enables the model to stably
extract entire disease names, even when clinical notes vary
in writing style.

The LLM’s ability to overcome the errors observed in
BERT predictions likely stems from its different learning
paradigm: rather than relying solely on token-level classifica-
tion based on fixed input embeddings, the LLM generates
structured outputs conditioned on the full context of the input.
This generative approach allows the LLM to better main-
tain entity span prediction coherence over varying document
types and incorporate broader sentence-level semantics into
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prediction. Consequently, the LLM achieves more robust
and accurate extraction performance compared to the MLM
baseline, particularly in OOD settings.

Shimizu et al

Table 4. Examples of BERT prediction errors in the CR=PN setting. Each row shows a sentence (left), predicted entity spans (middle), and the

correct gold annotations (right).

Example sentence (English/Japanese) Prediction Gold annotation
Tumor markers also decreased gradually/fEE <~ —H—HMETL  tumor markers/fEE<Y—7  None
—, decrease/{f&E
Therefore, with regard to platelets/ Z O 7z & M/ MRICxT L Tl platelets//) ik None
Hb 8.1g/dL and moderate nutritional disorder were observed/ Hb8 nutritional disorder/’REES
Hb8.1g/dl L FIREDREEE RO
The drainage volume was excessive/BERENEZ TH o7 excessive/% excessive drainage volume/HEREH B Z

Limitations

This study has several limitations. First, due to the anno-
tation cost, our evaluation focused exclusively on disease
name recognition. While disease entities are fundamental to
clinical NLP tasks, real-world applications often require the
extraction of a wider range of entities such as medications,
procedures, and laboratory findings. Future research should
expand the scope of entity types to provide a more compre-
hensive evaluation of model capabilities in diverse clinical
information extraction tasks.

Second, we did not evaluate the computational efficiency
or resource demands of the models. This is particularly
relevant for LLMs, which often require substantial computa-
tional resources during both training and inference. Future
studies should include a systematic comparison of computa-
tional cost, memory usage, and inference latency to guide
more practical model deployment in clinical environments.

Lastly, we did not include comparisons with models
pretrained on large-scale medical corpora, such as Bio-BERT
[27] or its Japanese counterpart [28]. These models may
have inherent advantages in understanding domain-specific
terminology and context, and their inclusion could provide a
clearer upper bound on MLM-based methods. Future work
may incorporate medical-specific, pretrained models and a
broader range of domain adaptation techniques in Japanese
clinical settings.

Conclusions

This study evaluated the performance of fine-tuned LLMs on
disease name recognition in Japanese clinical notes, with a

focus on both ID and OOD robustness. Our results dem-
onstrate that fine-tuned LLMs, specifically the fine-tuned
LLaMA-3.1, consistently outperforms the strong baselines
across OOD settings, demonstrating superior robustness to
previously unseen clinical notes.

Stratified analyses revealed that the LLM exhibits
greater robustness to stylistic variation among physicians, as
reflected in its lower performance variance across physicians.
However, variations across clinical cases continue to pose
significant challenges, with both LLM and the baseline model
showing considerable fluctuations. Error analysis highlighted
the LLM’s ability to consistently capture complete entity
spans in stylistically diverse clinical notes. Its genera-
tive approach enables more context-aware span prediction,
contributing to stable performance over the baseline model.

Overall, our findings underscore the potential of fine-
tuned LLMs for clinical named entity recognition in low-
resource languages such as Japanese, particularly in contexts
with considerable variation in writing style. Nevertheless,
challenges in cross-clinical case robustness remain. Future
work should explore more targeted domain adaptation
techniques and integration of external medical knowledge
to further enhance robustness in real-world clinical NLP
applications.
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