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Abstract

Background: Stroke has a major impact on global health, causing long-term disability and straining health care resources.
Generative large language model s (gL L M s) have emerged as promising toolsto hel p address these challenges, but their applications
and reported performance in stroke care require comprehensive mapping and synthesis.

Objective: The aim of this scoping review was to consolidate a fragmented evidence base and examine the current landscape,
shortcomings, and future directionsin the design, reporting, and evaluation of gLLM-based interventionsin stroke care.

Methods: In this scoping review, which adhered to the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and
Meta-Analyses extension for Scoping Reviews) guidelines and the Population, Concept, and Context (PCC) framework, we
searched 6 major scientific databases in December 2024 for gL L M-based interventions across the stroke care pathway, mapping
their key characteristics and outcomes.

Results. A total of 25 studies met the predefined eligibility criteria and were included for analysis. Retrospective designs
predominated (n=16, 64%). Key applications of gLLMs included clinical decision-making support (n=10, 40%), administrative
assistance (n=9, 36%), direct patient interaction (n=5, 20%), and automated literature review (n=1, 4%). | mplementations mainly
used generative pretrained transformer models accessed through task-prompted chat interfaces. In total, 5 key challenges were
identified from the included studies during the implementation of gLLM-based interventions: ensuring factual alignment,
mai ntaining system robustness, enhancing interpretability, optimizing efficiency, and facilitating clinical adoption.
Conclusions: The application of gLLMs in stroke care, while promising, remains relatively new, with most interventions
reflecting early-stage or relatively simpleimplementations. Against thisbackdrop, critical gapsin research and clinical trandation
persist. To support the development of clinically impactful and trustworthy applications, we propose an actionable framework
that prioritizes real-world evidence, mandates transparent technical reporting, broadens evaluation beyond output accuracy,
strengthens validation of advanced task adaptation strategies, and investigates mechanisms for safe and effective human-gLL M
interaction.
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Introduction

Background

Stroke represents a leading cause of global morbidity and
long-term disability [1], imposing asubstantial burden on health
care systems through its high incidence and the complex,
prolonged care needs of survivors of stroke [2]. The effective
management of stroke treatment and rehabilitation is limited
by persistent challenges in postacute care, notably fragmented
follow-up, insufficient community-based professional support,
the heterogeneity of patient requirements, and frequently
inadequate health literacy [3]. Despite significant progress in
prevention strategies, acute treatments, and rehabilitation
technologies, critical gaps persist in providing personalized,
continuous, and accessible long-term support for individuals
recovering from stroke [4]. These unmet needs highlight a
critical opportunity for transformative technological innovation
in the delivery and management of stroke care.

The analysis of clinical documentation presents an important
strategic avenue for addressing stroke care challenges.
Unstructured narratives within electronic health records,
including clinical notes, discharge summaries, and other free-text
entries, contain rich yet often underused patient information.
Systematic analysis of these data can significantly support risk
stratification, inform treatment planning, and improve care
coordination [5]. This recognition has led to advancements in
natural language processing (NLP) techniques designed to
extract insights from complex clinical text. Fundamenta to
many clinical NLP applications are transformer-based models
pretrained on extensive biomedical and general-domain corpora.
Specifically, encoder-only architectures, which leverage
bidirectional encoder representationsfrom transformersand its
derivatives, demonstrate proficiency in structured information
extraction tasks such as named entity recognition [6] and
tempora relation identification [7]. These modelstypically rely
on domain-specific pretraining and task-specific fine-tuning.
Nevertheless, they possess inherent limitations related to their
generative capabilities and broader generalizability [8], with
models often struggling with open-ended clinical reasoning
tasks and understanding long contexts, indicating the need for
architectures with enhanced generative potential.

Generative large language models (gLLMs), including
decoder-only and encoder-decoder architectures (eg, the Llama
[9], GPT-4 [10], and bidirectional and auto-regressive
transformers [BART] [11] families), represent a significant
advancement over previous NLP models. These gL LMsbroaden
clinical application possibilities by framing diverse taskswithin
a unified text generation paradigm [8,12]. Key enabling
techniques include prompt-based learning, which enables task
generalization without parameter updates [13], and
inference-time controls (eg, decoding strategies) that modulate
output characteristics, which are crucial when accessto models
is limited [14]. In addition, retrieval-augmented generation
(RAG), often integrated with custom medical knowledge bases,
enhances factual accuracy and performance for
knowledge-intensive clinical applications [15,16]. Together,
these advancements present important opportunities for stroke
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treatment and rehabilitation services[17], potentially improving
efficiency through intelligent automation (eg, triage and
administration); enhancing patient care through personalization
and improved resource access, and accelerating research
workflows, including evidence synthesis and writing.
Furthermore, the introduction of multimodal functionality, as
demonstrated by models such as GPT-40 [18] and the Gemini
family [19], marksapivotal shift in the development of gLLMs.
By processing integrated textual, visual, and auditory inputs,
these newly introduced models can augment clinical reasoning
(eg, in medical imageinterpretation) and support more effective
analysisof real-world, cross-modal patient data, better aligning
digital tools with the complexities of stroke care delivery.

Objectives

While digital health technologies provide advancements for
stroke care [20], the unique capabilities and rapid evolution of
gLLMs require a focused investigation within this specific
clinical domain. Current reviews related to digital innovations
in stroke care predominantly examinetechnologiesthat predate
modern gL LMs, such as mobile health platforms[21,22], early
conversational agents [23], and conventional machine learning
or deep learning frameworks [24-26]. Moreover, athough the
current literature has reviewed the general clinical utility of
gLLMs[17,27-29], thereremainsacritical gap in systematically
reviewing evidence specifically on gLLM-driven interventions
applied across the stroke care pathway. To address this critical
research gap, this scoping review aimed to map the current
landscape of gL L M applicationsthroughout the common stages
of the stroke care pathway. Specifically, it identified their uses,
implementation characteristics, and reported outcomes and
outlined future research directions. The central research question
guiding this review was as follows. how, for what purposes,
and with what reported outcomes have gLLMs been applied in
stroke care? This review used the recommended guide of the
Population, Concept, and Context (PCC) framework [30], which
is guided by the following subquestions:

1. What study designs are used to evaluate gLLM-driven
interventions in stroke care, and what are the key
characteristics of the stroke populations involved?
(Population or participants)

2. What target tasks, implementation details (ie, tasks, dialogue
pattern, input data, and time stamps), eval uation approaches,
and outcomes are reported for gLLM-driven interventions
in stroke care? (Concept)

3. What cultural settings, specific stroke care stages (ie,
prevention, diagnosis, treatment, prognosis, and
rehabilitation), and technology adaptation strategies are
described in the evaluation of gLLM-driven interventions?
(Context)

4. What challenges are reported in implementing gLLMs in
stroke care, and what specific directionsfor future research
have been proposed? (Implementation challenges and
research directions)
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Methods

Study Guidelines and Registration

This review aimed to capture the available knowledge
concerning the intersection of stroke care and gLLM
technologies. Given the observed heterogeneity and breadth of
research in thisfield, a scoping review methodology was used
to summarize the current landscape and challenges associated
with gLLM-driven intervention use across the stroke care
pathway (ie, prediction, diagnosis, treatment, prognosis, and
rehabilitation). The main objective wasto address 3 key research
questions predefined according to the PCC framework and
identify knowledge gapswithin thisinterdisciplinary area. This
review was conducted and reported following the PRISMA-ScR
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses extension for Scoping Reviews) guidelines[31]
(Multimedia Appendix 1) and adhered to the methodological
framework of Arksey and O'Malley [32] for scoping reviews.
The review protocol was preregistered on the Open Science
Framework [33].

Search Strategy

A broad search strategy was considered necessary to capture
relevant citations in this relatively novel and rapidly evolving
field. The terminology associated with gLLMs currently lacks
consensus, requiring the use of diverse search terms. Key terms
included in the search were“ pretrained language model,” “large
language model,” “natural language processing,” and
“generative artificial intelligence” Moreover, recognizing the
important role of the generative pretrained transformer (GPT)
model family in gLLM development, related terms were also
incorporated into the search strategy. In addition, given the
potential integration of gLLMs within conversational agents,
relevant search terms for the latter were included to maximize
retrieval breadth.

The search targeted peer-reviewed, full-text original research
articles and was executed across 6 major scientific databases:
Ovid Embase, PubMed, Scopus, CINAHL Pluswith Full Text,
Web of Science Core Collection, and |EEE Xplore. All database
searcheswere completed in December 2024, with thelast search
performed on December 24, 2024. Search strategies were
individually tailored to the syntax and indexing of each database.
The complete search strategies for all databases are detailed in
Multimedia Appendix 2. No restrictions regarding publication
date, language, or study type were applied during the initial
search phase. Potential selection bias arising from the absence
of a standardized technical taxonomy or consensus definition
for gLLMs was acknowledged as a limitation in this review.
To mitigate this risk, snowballing techniques [34] were
systematically used following the initial search. This involved
both forward snowballing (ie, examining articles citing the
included studies) and backward snowballing (ie, reviewing the
reference lists of the included studies). However, this process
did not identify any additional studies meeting this review’s
inclusion criteria
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Inclusion and Exclusion Criteria

To be eligible for this review, studies had to assess a
gL LM-driven intervention relevant to advancing understanding
or practicein stroke prediction, diagnosis, treatment, prognosis,
or rehabilitation and report at least one metric or qualitative
perspective related to the performance evaluation of the
specified gLLM intervention. Studieswere excluded if they met
one or more of the following conditions: they (1) were animal
trialsor focused exclusively on animal models; (2) did not report
any performance outcomesor evaluation pertinent tothegLL M
intervention described; (3) were unrelated to the field of stroke
care or its advancement; (4) focused exclusively on managing
strokerisk factors (eg, diabetes mellitus, hypertension, or atrial
fibrillation) without directly addressing stroke management,
outcomes, or care processes; (5) had a full text that could not
be accessed or obtained; or (6) did not represent original
research (ie, were reflection articles, opinion pieces, editorials,
letters, conference abstracts without full results, or study
protocols).

Study Selection and Data Extraction

Following the literature search, all retrieved records were
imported into Zotero Reference Manager (version 7.0.15;
Corporation for Digital Scholarship) by one author (XZ), where
duplicateswereidentified and removed. Independent screening
of titles, abstracts, keywords, and publication types was then
conducted by 2 authors (XZ and WD) to identify potentially
eligible studies based on the predefined inclusion criteria. The
same 2 authors subsequently reviewed the full texts of these
potentially eligible studiesto confirm final inclusion and conduct
data extraction (Multimedia Appendix 3). Any disagreements
regarding study inclusion during either screening phase were
resolved through discussion involving a third reviewer (ZL)
until consensuswas reached. Any unresolved issues encountered
during feature extraction were documented as free-text notes;
clarification was sought from the original study authors via
email correspondence when necessary and feasible. All
reviewers possessed relevant expertise in clinical medicine or
medical informatics. Data extraction and synthesis activities
were conducted in Microsoft Excel (Microsoft Office Long
Term Service Channel 2021). Formal interrater agreement
metrics were not calculated for the screening or extraction
phases. This decision was made because the primary focus of
this scoping review was the synthesis of descriptive
characteristics, where minor formatting or phrasing differences
between reviewers could lead to low numerica agreement
despite substantive consensus on the content.

Guided by the PCC framework [35] and its predefined questions,
the descriptive characteristics of the included studies were
organized into structured tables. To confirm the methodol ogical
landscape and current evidence base at this emerging
intersection of stroke careand gLLMs, thisreview commenced
with a summary of study features, including publication year
distribution and study design types. Then, consistent with the
PCC framework, the analysis focused sequentially on (1)
population (ie, characteristics relevant to intervention design
and implementation, such as sample size, sex and age
distributions, stroke phenotypes, and reported comorbidities);
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(2) concept (ie, key components describing the processes and
outcomes of the gL L M-driven interventions, including themain
use categories and specific tasks assigned to gLL Ms; input data
types used; dialogue patterns and time stamps recorded [where
available]; and performance evaluation approaches based on
reference standards, evaluative perspectives, and reported
metrics); and (3) context, examining the broader cultural, care
setting, and technical contexts surrounding the gLLM-driven
interventions, including national and sociolinguistic
backgrounds, the specific stage within the stroke care pathway
addressed, model s used, modes of gL LM accessused, instruction
design strategies, and other technical adaptations. Finally, key
implementation challenges associated with applying gLLMs
acrossthe stroke care pathway wereidentified based on reported
results and author discussionswithin the context of theincluded
studies.

Results

Overview

Theliterature search identified 8785 records across all databases.
Of these 8785 records, after the removal of 3976 (45.26%)
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duplicates, 4809 (54.74%) titles and abstracts were screened
for eligibility. This initial screening led to the exclusion of
65.09% (3130/4809) of the records based on relevance and an
additional 1.02% (49/4809) due to inappropriate publication
types (eg, preprints, awarded grants, and conference abstracts).
Consequently, 33.89% (1630/4809) of the articles underwent
full-text assessment. During this stage, of the 1630 studies, 1605
(98.47%) were excluded for various reasons, including
irrelevance to the application of gLLMs or stroke care context
(n=1556, 96.95%), being review articles not meeting the
inclusion criteria(n=42, 2.62%), insufficient evidence of gLLM
use (n=5, 0.31%), being aduplicate publication identified across
different formats (n=1, 0.06%), and unresolved concerns
regarding stroke sample composition after author consultation
(n=1, 0.06%). Ultimately, 25 studies met the inclusion criteria
and were included in this scoping review. Figure 1 presents the
detailed PRISMA-ScR flowchart illustrating this study selection
process.

Figure 1. Flow diagram of the study selection process based on the PRISMA-ScR guidelines. gLLM: generative large language model.

General Characteristics

Table 1 summarizes the general characteristics of the 25
reviewed articles. A key characteristic wasthe recent publication
timeframe, with all included studies published in 2023 or 2024,
reflecting the emerging nature of this research domain. With
regard to the methodologies used, most studies (16/25, 64%)
used retrospective designs analyzing existing data. A few studies
(4/25, 16%) adopted prospective designs, typically involving
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the recruitment of healthy participants or the collection of
original data from patients with stroke. There were also some
observational studies (4/25, 16%), including one that used
gLLMs for literature discovery during systematic review
development [36], as well as a single comparative case study
[37]. 1t should be noted that this review identified no randomized
controlled trials assessing the clinical efficacy or impact of
gLLM-driven interventions in populations of patients with
stroke.

JMIR Med Inform 2025 | vol. 13 | €76636 | p. 4
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR MEDICAL INFORMATICS

Table 1. Overview of study designs and stroke populations.
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Study Year  Studydesign Samplesize Sex Age(y) Stroke pheno- Comorbidities Function scoring tool
(male; %) type
Pedroeta 2025 Retrospec- 163 39.3 Mean 74 12 AFb, HFC, HTNd, NI HSSI 14.0 (9.0); AS
38 tive; pilot (SD 18) DMe DLF, CADY,  PECTS: 9.0 (2.0);
and AC" mRs!

Chenetal 2024 Reftrospec-  124(22smula- g™ Median66 |5 gnd HS® HTN, HF, andESRDP NIHSS: median 12 (IQR

[39] tive ed) (IQRNR)" NR)"™; mRS: median 1
(IQRNR)"

Strotzer et 2024  Retrospec-  yncertaind NR NR ISand HS NR NR

al [40] tive

Kuzanetal 2025 Retrospec-  ypeertain' NR NR 1S NR NR

[41] tive

Fei eta 2024 Prospective; 308 60 68.03 (3.74) Unclarified NR NR

[42] cross-section- type

a

Leeetd 2024 Retrospec- 46 63.1 56.7 (139) ISand HS HTN, DM, DLP, AF, NIHSS, mRS, MRCU

[43] tive CAD, and other' Scale for Muscle
Strength, GCS', K-
MMSEY, FAB, and oth-
ort

Haimeta 2024 Retrospec- 30 NR NR Unclarified NR NR

[44] tive type

Cheneta 2023 Experimen- 20 simulated 50 65.3(11.0) HS NR GCS: 12,5 (5); ICHY

(4] e score: 2 (2); H&H% 2.5
@)

Blacker et 2024  Observation- 2 simulated 50 70.5 (4.5) IS AFand AC NR

al [46] a

Zhangetal 2023  Observation- 1 textbook case 100 62 (—2) IS DM and HTN gl ASac

[37] a; compara-

tive case

Sivargiku- 2024  Retrospec- 13,605""1 49 75 (16) Unclarified NR NR

mear et & tive type

[47]

Guoetal 2023  Refrospec-  yncertain® — — ISand HS NR NR

[48] tive

Lehnenet 2024  Retrospec- 130 (derivation: 50 742(132) IS NR NIHSS: median 8 (IQR

a [49] tive 100; external 0-24); ASPECTS: medi-

validation: 30) an 9 (IQR 3-10)¥
Fiedleret 2024  Retrospec- 50 62 Median45 cpjs™, NR PSOM3: median 0.75
a [50] tive; pilot QSR 0.75- PAISah, and (IQR 0-1.5)
cvsr?

Wangetal 2024  Retrospec- 382 54.45 72.23 IS NR NR

[51] tive (13.35)

Goheta 2024 Retrospec- 16 375 76.1(11.4) IS AF, DM, and HTN NR

[52] tive

Baoeta 2025 Retrospec-  ypeertain® NR NR Unclarified NR NR

[53] tive type

Meddebet 2025  Retrospec-  pcertaind NR NR IS NR NR

al [54] tive

Kimetal 2025 Retrospec- 36,922 58.8 68.17 IS HTN, AF, DM, DLP, NIHSS: 2(5); mRS: 2(3)

[55] tive (12.86) CAD, AC, PADam,

and HF
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Study Year  Studydesign Samplesize Sex Age(y) Stroke pheno- Comorbidities Function scoring tool
(male; %) type

Argymbay 2024  Retrospec- 4798 65.1 471(237) IS HTN, DM, DLP,and NIHSS: 18.1 (11.3);

et a [56] tive obesity mRS: 3.7 (1.9)

Neo et a 2024  Prospective; 50 NR NR Unclarified NR NR

[57] mixed meth- type

ods

Wueta 2023  Observation- __an — — — — —

[58] a

Chenetal 2025  Prospective; 4@ NR NR Unclarified NR NR

[59] experimental type

Rifai etal 2024  Prospective; pcertain®® NR NR Unclarified NR NR

[60] experimental type
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Study Year  Studydesign Samplesize Sex Age(y) Stroke pheno- Comorbidities Function scoring tool
(male; %) type

Angheless 2023  Observation- __ag — — — — _

cueta a

[36]

84S ischemic stroke.

BAF: atrial fibrillation.

°HF: heart failure.

9HTN: hypertension.

€DM: diabetes mellitus.

'DLP: dydipidemia.

9CAD: coronary artery disease.

hAC: active cancer.

INIHSS: National Institutes of Health Stroke Scale.

IASPECTS: Alberta Stroke Program Early Computed Tomography Score.
KmRs: modified Rankin Scale.

IA total of 121 patients had an mRS score of 0 or 1, and 42 had a score of 2 or 3.
MNR: not reported.

"Description of real patients (n=102).

®HS: hemorrhagic stroke.

PESRD: end-stage renal disease.

9A total of 100 magnetic resonance and computed tomography images were included, comprising 50 with lesions (25 ischemic stroke, 25 brain
hemorrhage) and 50 normal controls (25 matched to each lesion group).

"A total of 266 radiological images from patients with acute stroke were included.

SA total of 90 participants were included, comprising 30 patients with stroke and 60 healthy controls.

'Published case report heterogeneity led to reporting barriers.

UMRC: Medical Research Council.

YGCS: Glasgow Coma Scale.

WK -MMSE: Korean version of the Mini-Mental State Examination.

XFAB: Frontal Assessment Battery.

YICH: intracranial hemorrhage.

“H&H: Hunt and Hess scale.

%Not applicable.

g|AS: Stroke Impairment Assessment Set.

A multicriteria assessment set included quantitative scores and qualitative descriptions.

ajp total, 50 annotated el ectronic health record sections were extracted from the records of 13,605 patients with stroke.
% parts from triplets, subrelations, and unlabeled text from 3 Chinese stroke-related medical datasets were included.
afDeﬂ:ripti on of derivation (n=100).

#ICAIS: childhood arterial ischemic stroke.

Apals: perinatal arterial ischemic stroke.

ACVST: cerebral venous sinus thrombosis.

3PSOM: Pediatric Stroke Outcome Measure.

At |east 4038 stroke-related hospitalizations of insured beneficiaries were included in the study.

aA total of 1050 mechanical thrombectomy reports from patients with acute ischemic stroke were included.
@MpAD: peripheral arterial disease.

@ Two questions from the American Stroke Association website were included.

#Three healthy participants were also involved in the test of the generative large language model—based hand exoskeleton controls.
%Did not report whether the 12 participants were patients with stroke.

#Six questions on evidence synthesis during systematic reviews were included.

T . gLLM-driven interventions. Specifically, the review examined
Distribution of Included Stroke Populations the characteristics of the stroke populations involved in the
The first question of this review related to the population jncluded studies. The analysis included sample size, sex
component of the PCC framework and asked for key distribution, age range, stroke phenotypes, key comorbidities,
characteristics of the stroke populations involved in the  and reported functional scores as these elements can influence
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intervention design and applicability. Notably, 8% (2/25) of the
studiesdid not use patient data (real or simulated); instead, they
evaluated the gL LMs using predefined question sets related to
stroke care [36,57]. Among the remaining 92% (23/25) of the
studies, thelevel of detail provided for population characteristics
varied. A summary of these characteristics, including
clarifications obtained via author correspondence, is presented
in Table 1.

Reporting of specific population characteristics varied across
the 25 studies (see Table 1 for further details). Sample sizes of
involved patients were specified in most articles (17/25, 68%),
demonstrating considerable range from a single case to 36,922
patients. Data on gender were available in 52% (13/25) of the
studies, which indicated that male individual s comprised 56.9%
of the aggregate reported sample. A total of 56% (14/25) of the
studies provided age metrics (mean or median), which spanned
4.5 years (in apediatric study) to 76.1 years. Stroke phenotype
details were available in 64% (16/25) of the studies, and
ischemic stroke (15/25, 60%) was found to be more commonly
studied than hemorrhagic stroke (5/25, 20%). Notably, 4%
(1/25) of the studies focused exclusively on pediatric patients
with stroke. In total, 32% (8/25) of the studies provided
information on patient comorbidities, often identified through
the main text, appendices, or associated datasets. Commonly
reported conditions included hypertension, diabetes mellitus,
atrial fibrillation, dyslipidemia, coronary artery disease, heart
faillure, and active cancer. Furthermore, 36% (9/25) of the
studies documented baseline severity or functional outcomes
using clinical assessment tools. The most frequently used scales
were the National Institutes of Health Stroke Scale and the

https://medinform.jmir.org/2025/1/€76636

Zhu et a

modified Rankin Scale [38,39,43,55,56]. Other reported
instrumentsincluded the Glasgow Coma Scale[43,45], Pediatric
Stroke Outcome Measure [50], Stroke Impairment Assessment
Set [37], intracranial hemorrhage score [45], Hunt and Hess
scale[45], Medica Research Council Scalefor Muscle Strength
[43], Korean version of the Mini-Mental State Examination
[43], and Frontal Assessment Battery [43].

Conceptual Considerationsfor Implementing and
EvaluatinggL L M-Driven Interventionsin StrokeCare

In response to the second subquestion related to the concept
component of the PCC framework, this review analyzed the
target tasks, implementation detail s (including model s, prompts,
and data inputs), evaluation strategies, and reported outcomes
for gLLM applicationsin stroke care. In total, 4 key categories
of gLLM use were identified, as summarized in Table 2. The
main categories focused on supporting health care professionals
either through clinical decision-making assistance (10/25, 40%)
or administrative workflow automation (9/25, 36%). Other
identified applications included direct patient support through
interactive online platforms (5/25, 20%) and enabling the
discovery of evidence during systematic reviews (1/25, 4%).
With regard to the implementation of gLLMs, evaluations
mostly involved single-turn dialogues conducted under
controlled settings (15/25, 60%), whereas the reporting of
intervention time stamps was limited (5/25, 20%). Despite
considerable heterogeneity across studies in terms of task
objectives, input data sources, evaluation benchmarks, and
assessment metrics, common themes and approacheswerefound
within each application category.
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Table 2. Summary of the implementation and evaluation of generative large language model—driven interventionsin stroke care.
Study Task objectives  Input dataor sources Diadlogue  Reported Gold-standard Evaluation perspec-  Evaluation met-
patterns time providers or bench-  tives rics
stamp marks
Clinical decision-making support (n=10)
Pedro et a Predict the Patient H& pb, neu- Singleturn Yes Stroke unit clini- AGSE for true exact  Cohenk; mean
(38] mRS?scoreat 3 roimaging, and me- clans and dichotomized ~ differenceand
mo after me- chanical thrombecto- mRS scores; bias: 9% limits of
chanical my procedure notes comparison with agreement; NDd
thrombectomy MT-DRAGON
Cheneta Make clinical Patient H& P and Singleturn  No Neurology special-  AGSfor mechanical Counts and rate
[39] decisions for neuroimaging notes ists thrombectomy deci-
mechanical sion; different error
thrombectomy analysis
Strotzer et |pterpret MRI®© MRIandCTimages Singleturn  Yes Radiologists and AGSfor free-report  Agreement rate;
[40] dctfi nonradiologist in items; interrun con-  interrun consis-
an d w;ages training sistency; AGS for tency rate and
fan ?enter € i binary pathological  the Randolph
. re;n e:i reports findings; impact on  free-margind K;
I Stroke cases nonradiologist accuracy, sensi-
tivity, and
specificity; rate
(distribution
across cate-
gories)
Kuzan et al Interpret DWI19 DWIandADCmaps Multiturn ~ No Radiologists AGSfor stroke and Rate: TP, TN/,
[41] h normal or al-image I .
ad ADC interpretation FPk FN’, sensi-
maps in acute tivity, specifici-
stroke cases ty, PPV,
NPV", and accu-
racy
Fel eta [42] Evauatecogni- Patient responsesto  Multiturn ~ No Rehabilitation Intermodel and Intraclass corre-
tive perfor- selected RBMT-11°, physicians model-physician lation coeffi-
mancein stroke agreement cient and P val-
p -
cases MMSEF, and Mo e
CA%items
Leeeta [43] Locatelesions Patient H&Pnotes Singleturn Yes Locationdescription AGSfor trial- and  Specificity, sen-
based on patient from original pub-  case-basedlesionlo- sitivity, preci-
H&P lished case report calization; different  sion, and
error analysis F1-score; ND
Haimeta Calculate the EMRS periods Singleturn  No Emergency qlepart- Intermodel gn_d Cohenk and P
[44] NIHSS' score ment physicians model-physician value; AUC-
and predict the agreement; predic-  poct
use of tissue tive vaidity
plasminogen ac-
tivator
Cheneta Calculate Patient neuroexami- Singleturn  No Scoresin origina AGSfor scoring; re-  Average error
[45] GCSY, H& HY, nation notes without neuroexamination  peatability; effect of rateand average
dicHY scores notes varied casecomplex-  error magnitude
an ity and prompting
scores design
Blackeretal  Useof Patient H& P notes ~ Multiturn ~ Yes Anesthesiol ogists HQR identification; ND
[46] SNACCK correct reference ci-
tation; potentially
y -
HQRs’ to an harmful information
swer questions
on perioperative
stroke and en-
dovascular
treatment anes-
thesia
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Study Task objectives  Input dataor sources Diadlogue  Reported Gold-standard Evaluation perspec-  Evaluation met-
patterns time providers or bench-  tives rics
stamp marks
Zhang et a Generatereha-  Patient H&Pnotes  Multiturn - No Physical medicine  Content exhaustive- ND
[37] bilitation pre- and rehabilitation nessand clinical ap-
scriptions and physicians plicability; inference
ICF* codesina logic
stroke case
Administrative assistance (n=9)
Sivargikumar  Extractandcate- pHR®gectionswith Sihgleturn  No Physical therapy ex- AGSfor extracted ~ Accuracy, preci-
et d [47] gorize physical physical therapy in- perts items sion, recall, and
rehabilitation  formation F1-score
exerciseinfor-
mation from
stroke cases
Guo et a [48] Extract triples  Stroke-related medi- __ze No Relevant itemsfrom AGSfor total and F,-score; rate
by fine-tuning  cal text from SEM- datasets and perfor-  overlapping triple
andintegrating rc® cyDEM- mance of the Cas-  extraction; perfor-
arelation classi- < ad af mance improve-
fication module C + ad CMelE %Z'e, sbenchmark ments over baseline
models
Lehneneta  Extractkey in- Mechanica Singleturn  No Interventional neuro- AGSfor extracted  Correct rateand
[49] formationfor ~ thrombectomy radiologists items; different error  Cohen k; count
mechanical records analysis, intermodel  and rate; correct
thrombectomy extraction perfor- rateand P value
mance comparison
Fiedler et a Extract |IPSS?®  Outpatient notes Multiturn -~ No Clinica investiga=  AGSfor extracted  Rate
(50] format informa tors items
tion and infer
disease severity
Wang et al Extract andin-  Mechanical Singleturn  No Interventional and ~ AGSfor extracted ~ Accuracy, sens-
[51] ferkey informa-  thrombectomy and multi- junior neuroradiolo- and inferred items;  tivity, specifici-
tionfor mechan- records turn for gists agreement with ju- ty, AUCah, and
ical thrombecto- correct for- nior neuroradiolo-  mean squared
my surgery mat re- gists; processing effi- error: P value:
sponse ciency average case
processing time
Goheta [52] Extract stroke  Discharge sum- Singleturn No Relevantitemsfrom AGSfor extracted  Countsandrate;
audit data maries original discharge  items; model-clini- ND
summaries cian comparisonin
AGS; inferenceerror
analysis
Baroetal [53] Predict stroke  Chronologica hedth — No Relevantitemsfrom AGS acrosstime F4-score, sensi-
hospitalization  insurance data with original healthinsur-  windowsusingthe  tivity, specifici-
by fine-tuning  aggregated medical ance data general fine-tuned  ty, and AUC
and integrating events models; AGS com-
classification parison between
layers genera and stroke-
specific fine-tuned
models
Meddebetal  Extract key in-  Mechanical Singleturn  No Radiologists and AGSfor extracted  Precision, re-
[54] formationfor  thrombectomy clinical medical stu- items; efficiency im- call, and
mechanical records dents provement with F1-score; aver-
thrombectomy El TLaj age case time
items savings
Kimetal [55] Perform data Metadatafromthe  Multiturn ~ No Neurologists Reliability and effi- ND
wranglingona crcs-K3 dataset ciency of EITL
large dataset of g neurologist workflow and clini-
patients with queries cal knowledgeadign-
stroke ment

Direct patient interaction (n=5)
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Study Task objectives  Input dataor sources Diadlogue  Reported Gold-standard Evaluation perspec-  Evaluation met-
patterns time providers or bench-  tives rics
stamp marks
Argymbay et Provideperson- Strokerisk values,  Multiturn~ No Clinicians Strokerisk factor re-  ND
al [56] alized stroke medical literature, view, personalized
riskinsghtsand and patient queries health recommenda-
answer medical tion provision, and
queries based anxiety aleviation
on patient data
Neoeta [57] Answerrehabil- 280 unique ques- Singleturn  Yes Clinicians Content correctness, 3-point Likert
itation ques- tions safety, relevance, scale; Fleiss K
tions for pa- and readability; inter- and Cohenk;;
tients with rater agreement; free  ND
stroke and their comments for re-
caregivers sponses
Wueta [58] Provide non- 2 questions about Singleturn No Answersavailable  Readability com- Word counts,
medical profes- stroke prevention on the ASA website pared with the GFs?,
sionals with from the ASA® Google Assistant; SMOG in-
stroke-related  \yepgite content relevance
health informa- dex, DCS™,
tion FKRT®, and P
value; keyword
matching
counts
Cheneta Interpret com-  Recognized user Singleturn  No Rehabilitation Executability and ef- Successrate
[59] mandsand gen-  voice commands physicians ficiency of tasks acrosstrialsand
erate Python among models; re-  time; ND
code for hand Sponse processin
exoskeleton free scenarios
control
Rifai etal [60] Interpret com-  Recognized user Singleturn  No Predefined targets ~ Executability of path  ND; user experi-
mandsand gen-  voice commands to targets compared  ence question-
eratetarget coor- with joystick con- naire; success
dinates for up- trol; intuitive han- rateacrosstrials
per-limb robot dling; successand  and ND
control stable control

Automated literaturereview (n=1)
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Study Task objectives  Input dataor sources Diadlogue  Reported Gold-standard Evaluation perspec-  Evaluation met-
patterns time providers or bench-  tives rics
stamp marks
Anghelescuet  Assistinobtain- 6 querieson Multiturn -~ No Review contributors General andin-depth  ND
al [36] ing evidenceon medicine, review answer correctness,
Actovegin'seffi- conduction, litera- citation applicabili-
cacy foris- tureexploration, and ty; PRISMA®-based
chemic stroke  evidence synthesis evidence synthesis
results

8mRS: modified Rankin Scale.

bH&.P: history and neurological physical examination.

CAGS: agreement with the gold standard.

IND: narrative description.

®MRI: magnetic resonance imaging.

feT: computed tomography.

9DWI: diffusion-weighted imaging.

haDC: apparent diffusion coefficient.

"TP: true positive.

ITN: true negative.

KEp: false positive.

IEN: false negative.

MPpPV: positive predictive value.

"NPV: negative predictive value.

ORBMT-I1: Rivermead Behavioral Memory Test-.

PMMSE: Mini-Mental State Examination.

IMoCA: Montreal Cognitive Assessment.

'NIHSS: National Institutes of Health Stroke Scale.

SEMR: electronic medical record.

'AUC-ROC: area under the receiver operating characteristic curve.
UGCS: Glasgow Coma Scale.

YH&H: Hunt and Hess scale.

YWICH: intracranial hemorrhage.

XSNACC: Society for Neuroscience in Anesthesiology and Critical Care.
YHQR: high-quality recommendation.

Z|CF: International Classification of Functioning, Disability, and Health.
#BEHR: electronic health record.

DSEM RC, stroke EMR entity and entity-related corpus.

%CVDEMRC: cardiovascular EMR entity and entity relationship-labeling corpus.
acMel E: Chinese Medical Information Extraction dataset.

#*Not applicable.

& Cas-CLN: cascade bi nary pointer tagging network with conditional layer normalization.
%) PSS: International Pediatric Stroke Study.

AAUC: areaunder the curve.

ag|TL: expert in the loop.

3CRCSK: Clinical Research Collaboration for Stroke in Korea.
*ASA: American Stroke Association.

AGFS: Gunni ng fog score.

aMg\MOG: Simple Measure of Gobbledygook.

apCs: Dale-Chall score.

®FKRT: Flesch-Kincaid readability test.

®PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses.

gL LM-driven systems categorized as clinical decision-making textual inputs such as the medical history of patients,
support were mainly used to analyze clinical documentationto  neurological examination results, and neurcimaging reports
inform medical diagnosis, treatment planning, prognosis werecommon, only 8% (2/25) of the studies analyzed computed
estimation, or rehabilitation strategies in stroke care. While tomography or magnetic resonance imaging scans directly as
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primary input [40,41]. Such gL LM-driven systemswere applied
across the stroke care pathway, assisting with neurological
function scoring during triage (eg, the Nationa Institutes of
Health Stroke Scale [44], Glasgow Coma Scale, Hunt & Hess
scale, and intracranial hemorrhage score [45]) and supporting
diagnosis through direct image interpretation [40,41] or lesion
mapping from textual descriptions [43]. In addition, they were
used to inform acute intervention decisions, including digibility
for thrombectomy [39] or thrombolysis [44] and anesthesia
planning [46]. M oreover, they facilitated rehabilitation through
outcome prediction (eg, 3-month modified Rankin Scale [38]),
cognitive assessment [42], or generation of personalized
rehabilitation plans [37]. Performance evaluation mainly
involved clinician assessment or comparison against predefined
benchmarks derived from the original clinical records.
Additional validation methods often included cross-comparison
against the outputs of clinicians or functionally similar tools
using identical inputs [38,39,42,44], as well as repeatability
checks across multiple models [40,43,45]. Some studies (5/25,
20%) investigated human-computer interaction factors,
examining aspects such as the impact on junior clinicians [40]
or examining the reasoning processes behind model-generated
conclusions [37,39,43,46]. Across these varied approaches,
guantitative metrics (eg, accuracy, rate, F,-score, k value, and
P value), particularly those assessing factual accuracy and output
consistency, were the primary focus of most evaluations.

gLLM-driven systems categorized as administrative support
predominantly focused on alleviating clinician documentation
workload and improving the management and use of clinical
information. The primary functions involved extracting
structured information from clinical text and generating
summaries or other abstract representations to facilitate
downstream use by other health care workers. These tasks used
a variety of clinical data sources, including electronic health
records [47], electronic medical records [48], specialized
procedural records (eg, thrombectomy reports) [49,51,54],
discharge summaries[52], outpatient notes[50], healthinsurance
claim data[53], and stroke registries [55]. Evaluation methods
for these administrative tasks were similar to those used for
decision support tools. Most often, the alignment of gLLM
outputs with gold-standard annotations was measured [47-55],
or performance was compared against that of human experts or
other specialized systems that were used to analyze identical
data [48,49,51-53]. Quantitative metrics were used most
frequently during performance assessments [47-54]. Beyond
accuracy and alignment, a few studies (3/25, 12%) explicitly
evaluated efficiency. For example, 4% (1/25) of the studies
reported the average time required for automated data extraction
from thrombectomy operative notes [51], whereas another 8%
(2/25) demonstrated significant time reductions using
expert-in-the-loop (EITL) workflows involving gLLMs for
extracting procedural details [54] and processing large-scale
registry data[55].

gL LM-driven systemsinvolving direct patient interaction were
developed primarily to support personalized out-of-hospital
stroke care, reduce patient uncertainty regarding medical
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information, and promote adherence to preventive and
rehabilitative behaviors. The main tasks performed by gLLMs
in this regard included (1) answering general stroke-related
queries using embedded knowledge [57,58], (2) generating
individualized preventive guidance by interpreting patient
profileswith relevant literature [56], and (3) translating natural
language commands to control upper-limb exoskeleton robots
during rehabilitation [59,60]. Consequently, study designs
focused on addressing patient needs, either through simulating
responses to public-facing queries [57,58] or by developing
systems intended specifically for lay users [56,59,60].
Assessment strategies for these systems considered both
technical output performance (eg, factual alignment [56-60]
and comparative analyses against alternative methods [59,60])
and key patient-centered outcomes. The latter included metrics
such as readability [57,58], safety [57], personalized support
[57,58], potential for anxiety reduction [56], and overall user
experience[60]. Asaresult, the open-ended and dial ogue-driven
nature of these systems required diverse evauation
methodologies. These ranged from clinician-led narrative
assessments or reviews [56,57,59,60] and independent scoring
protocols[57] to user feedback questionnaires[60] and standard
guantitative metrics computed by the research teams [58-60].

Only 4% (1/25) of the included studies [36] investigated the
application of gLLM systemsto support literature review tasks.
This study involved asking 6 questions to the gLLM, ranging
from general medical knowledge and systematic review
methodology inquiries to specific queries about evidence
synthesis concerning Actovegin’s efficacy for ischemic stroke.
A qualitative evaluation of the gLLM-generated answers
assessed their correctness and applicability for the review
context. The study concluded that al responses generated by
thegLLM wereunreliable, resulting in their exclusion from the
final systematic review conducted by the research team. Table
2 provides a summary of the target tasks, implementation
characteristics, and evaluation approaches reported across the
included studies.

Contextual Focuson gLLM-Driven Intervention
Design in Stroke Care

In response to the third subguestion and the context component
of the PCC framework, this review examined the settings
surrounding the design and implementation of the evaluated
gLLM interventions, with further information presented in Table
3. This review considered 3 primary contextual dimensions:
cultural, care, and technical settings. Cultural context referred
to the study location (country) and relevant national and
sociolinguistic backgrounds of the participants (eg, health care
professionals, patients, and caregivers). The care dimension
referred to the specific phase of the stroke care pathway (ie,
prevention, diagnosis, treatment, prognosis, or rehabilitation)
targeted by the intervention and associated data sources. The
technical dimension involved the diverse adaptation choices
evident in intervention devel opment, including approaches used
in instruction design (prompt engineering), inference-time
parameter configurations, and underlying model-level
adaptations.
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Table 3. Summary of generalized large language model—driven intervention design in stroke care.
Study Country Stage in the stroke Foundation model ~ Access Instruction design ~ Other adaptation
care continuum or model series strategies
Pedro et al [38] Portugal Prognosis GPT-3.5 Web-based chatin-  Zero shot None
terface (ChatGPT)
Chen et al [39] United States ~ Treatment GPT-4 Web-based chatin-  Zero shot, role None
terface (ChatGPT) based, context en-
hanced, and format
constrained
Strotzer et a [40] Germany Diagnosis GPT-4-1106-vi-  Official API?(via Z€roshot, role None
sion-preview OpenAl platform) based, context en-
hanced, and format
constrained
Kuzan et al [41] Turkey Diagnosis GPT-4 Vision Web-based chatin- Zero shot and con- None
terface (ChatGPT) text enhanced
Fei et a [42] China Rehabilitation GPT-3.5 and GPT- Web-based chatin- Zero shot, role None
4 terface (ChatGPT) based, and context
enhanced
Leeeta [43] _b Diagnosis GPT-4 Unclarified Zero shot, chainof None
thought, context
enhanced, and for-
mat constrained
Haim et al [44] Israel Diagnosisand treat-  GPT-3.5and GPT- Web-based chatin- Zero shot and con- None
ment 4 terface (ChatGPT) text enhanced
Chen et a [45] United States ~ Diagnosis GPT-4 Web-based chatin-  Zero shot, role None
terface (Bing chat) based, and context
enhanced
Blacker et al [46] United States ~ Treatment GPT-4 Web-based chatin- Zero shot and con- None
terface (ChatGPT) text enhanced
Zhang et a [37] Japan Rehabilitation GPT-4 Web-based chatin-  Zero shot None
terface (ChatGPT)
Sivargkumar etal  United States ~ Rehabilitation GPT-3.5-turbo Official API (via  Zero shot, few None
[47] Microsoft Azure)  shot, role based,
and format con-
strained
Guo et al [48] China Diagnosisand treat-  gaARTC.pase-Chi- Unclarified — Fine-tuning, con-
ment nese and BART- strai n_ed decoding,
large-Chinese encoding representa
tion reuse, beam
search, feature fu-
sion, and shared en-
coder weights
Lehnen et a [49] Germany Treatment GPT-3.5and GPT- Web-based chatin- Zero shot, format  None
4 terface (ChatGPT) constrained, and
context enhanced
Fiedler et a [50] United States  Diagnosis, treatment, GPT-3.5-turbo-16k Official APl (via  Zero shot, role Temperaturesetto 0
prognosis, and rehabil- Microsoft Azure)  based, format con-
itation strained, and con-
text enhanced
Wang et a [51] China Treatment GPT-3.5-turbo, Official APIs(via Zeroshot, format  None
GPT-4, Gemini unclarified plat- constrained, and
Pro, GLM-4, Spark  forms) context enhanced
3, and Qwen-Max
Goh et a [52] Australia Diagnosisand treat-  Llama 3-70B Local inference Zero shot, role Temperaturesetto O
ment based, and format
constrained
Baro et a [53] Brazil Prevention openCabrita 3B Unclarified — Low-rank adaptation

tuning
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Study Country Stage in the stroke Foundation model  Access Instruction design ~ Other adaptation
care continuum or model series strategies
Meddeb et al [54] Germany Treatment Qwen-72B, Mix-  Local inference Zero shot, format  None
tral 8x7B, and constrained, and
BioMistral-7B context enhanced
Kimet a [55] South Korea Diagnosis, treatment, GPT-4-32k Official API (via  Few shot, format  Low-temperature
and prognosis unclarified plat- constrained, and Setting
form) context enhanced
Argymbay et al [56] Canada Prevention BioMistral-7B Private APl (via  Few shot and con- Temperature set to
Hugging Faceon  text enhanced 0.3
Amazon SageMak-
er)
Neo et a [57] Singapore Rehabilitation GPT-3.5-turboand Web-based chatin- Zero shot and con- None
PaLM 2 terfaces (ChatGPT  text enhanced
and Google Bard)
Wu et al [58] United States ~ Prevention GPT-3.5 Web-based chatin-  Zero shot None
terface (ChatGPT)
Chenetal [59] China Rehabilitation GPT-4, GPT-3.5-  Official APIs(via Few shot, role None
turbo, and GLM-  unclarified plat- based, format con-
130B forms) strained, and con-
text enhanced
Rifai et al [60] Indonesia Rehabilitation GPT-40 Official APl (via ~ Zeroshot, format  Temperature set to
unclarified plat- constrained, and  0.5; token genera-
forms) context enhanced  tion minimized
Anghelescu et al — Treatment Unclarified gPTY  Web-based chatin-  Zero shot None
[36] terface (ChatGPT)

8API: application programming interface.

BNot applicable.

®BART: bidirectional and auto-regressive transformers.
dGPT: generative pretrained transformer.

Analysis of the cultural dimension identified the geographic
settings for most of the included studies (23/25, 92%). The
studies originated from diverse global |ocations, with the United
States (6/25, 24%), China (4/25, 16%), and Germany (3/25,
12%) being the most represented countries. Other studies
represented individual contributions from Canada, Australia,
Singapore, Japan, South Korea, Turkey, Portugal, Brazil,
Indonesia, and Israel. With regard to the care dimension, most
gLLM interventions (11/25, 44%) focused on the treatment
phase, where systems were typically used to support clinical
decisions, integrate therapeutic guidelines, or extract specific
treatment data (eg, surgical procedures and medication
regimens) from documentation. The diagnostic phase was the
second most common focus (9/25, 36%), with applications
including lesion localization support, assistance with diagnostic
reasoning, and extraction of pertinent diagnostic details from
clinical records. Considerably fewer studies focused on stroke
prevention (3/25, 12%) or prognosis (3/25, 12%).
Prevention-focused interventions mainly aimed to reduce
subsequent stroke-related hospitalizations or expand public
accessto preventive resources. Prognostic applicationsfocused
on assisting clinicians primarily by cal culating prognostic scores
or interpreting relevant information documented within clinical
notes.

Regarding the technical dimension, adaptation strategiesfor the
gLLM-driven systemsvaried acrosstheincluded studies. These
choices often reflected trade-offs between computational cost

https://medinform.jmir.org/2025/1/€76636

and task demands, aiming to align model behavior with
task-specific constraints while maintaining stable output control.
For relatively straightforward tasks, a plug-and-play strategy
using standard interfaces was frequently adopted. Thisinvolved
accessing closed-source model s using web-based chat interfaces
(12/25, 48%) or application programming interface (API) end
points (8/25, 32%) without further model customization. As
task complexity increased or baseline performance proved
inadequate, studies often adopted multiprompt strategies to
better guide model behavior. Established methods included
zero-shot (20/25, 80%), few-shot (4/25, 16%), and
chain-of-thought (1/25, 4%) prompting. Beyond these
approaches, specific prompting techniqueswere used to improve
control—role-based prompting assigned domain-specific
personas (eg, You are a neurologist); format-constrained
prompting enforced structured outputs (eg, JSON, CSV,
standardized terminologies, and executable code); and
context-enhanced  prompting incorporated  background
knowledge, task decomposition steps, or self-reflection
instructions to improve response quality.

These prompting strategies were sometimes used alongside
inference-time configurations, among which temperature
adjustment was the most frequently reported technique (5/25,
20%) for modulating output diversity versus coherence. In a
small subset of studies requiring deeper customization (2/25,
8%), locally deployed open-source models underwent
model-level adaptations. These included techniques such as
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parameter-efficient fine-tuning and architectural modifications
to customize the model more closely to the specific clinical
application. A variety of gLLM families were used across the
included studies. The GPT series (OpenAl) was mainly used in
80% (20/25) of the studies. Other models used in multiple
studies included the Mixtral (and its variant, BioMistral) series
(Mistral Al; 3/25, 12%), the PaLM 2 (and its successor, Gemini)
series (Google DeepMind; 2/25, 8%), the Qwen series (Alibaba
Cloud; 2/25, 8%), and the GLM series (Zhipu Al; 2/25, 8%).
Models identified in single studies included Llama 3-70B
(Meta), BART base and BART-large-Chinese (Fudan NLP
Lab), Spark 3 (iFLY TEK), and openCabrita 3B (22h).

Challenges I dentified During the I mplementation of
gLLM-Driven Interventionsin Stroke Care

Through acomprehensivereview of the findings of theincluded
studies, five key challengeswereidentified in applying gLLMs
across the stroke care pathway: (1) ensuring factua alignment,
(2) maintaining system robustness, (3) enhancing model
interpretability, (4) optimizing operationa efficiency, and (5)
facilitating adoption into clinical practice.

Factual alignment was the most frequently discussed concern
[36-55,57-60], reflecting persistent difficulties in ensuring
consistency among system outputs, established clinical
knowledge, and input data. Documented issues included
inaccurate or incomplete responses, hallucinated content, and
output failures. Several studies (11/25, 44%) noted
nondeterministic behavior across repeated runs [41,43,45,51],
failure to retrieve pretrained knowledge [36,40,46,57], limited
inclusion of up-to-date evidence [37,38], and inconsistencies
between the model’s reasoning steps and its fina outputs
[39,43]. Robustness issues were mainly associated with
variability in output quality due to changes in input data or
instructions. Data-related concerns included difficulty in
handling rare or complex cases [38-41,43,45,50,54,55,59,60];
managing human-induced input noise such as incompl eteness,
ambiguity, or internal contradiction [38-40,44,45,49,51,52,54];
and adapting to distributional discrepancies between training
and deployment data[40,41,43,48,57]. Instruction-level fragility
was also observed as small prompt modifications led to
substantial variationsin output [37,40,42,43,46,47,49,50,54,58],
demonstrating the sensitivity of gL LM-driven systemsto prompt
design.

Adoption, interpretability, and efficiency were also deemed
potential concerns in applying gLLMs across the stroke care
pathway. Adoption-related challenges involved the need for
EITL oversight when applying gLLMs
[36,37,39-41,44,45,49,50,52,58]; ongoing efforts to integrate
gLLMs into clinical workflows [40,42,43,45,50,52,55,57,60];
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and unresolved issuesrelated to legal compliance, data privacy,
and patient safety [43,50,57]. Interpretability challenges were
associated with the opague and uncontrollable nature of gLLM
reasoning [41,43,46,55,57], the limited readability of gLLM
responses[57,58], and variationsin how individual s understood
the same content [46,57]. Efficiency-related concernsincluded
token processing constraints [38,39] and trade-offs between
model performance and computational cost [53,59].

Discussion

Principal Findings

This study presented a timely scoping review mapping the
intersection of stroke care and gLLMs, providing practical
insights into current applications within this rapidly evolving
domain. The substantial heterogeneity identified across the
included studies, spanning objectives, methodol ogies, contexts,
and outcomes, precluded meta-analysis, confirming the
suitability of the chosen scoping review approach. Theanalysis
classified gLLM-driven interventions into 4 key applications,
as presented in Table 2. Examination within each category
focused on the target tasks assigned to gLLMs, types of input
data used, reported dialogue patterns and intervention timing,
and performance eval uation methods. Thefindings of thisreview
demonstrate that existing research has mainly used gLLMswith
clinica document inputs for retrospective tasks such as
supporting clinical decision-making or extracting data relevant
to stroke diagnosis, treatment, prognosis, and rehabilitation. A
smaller subset of studies (5/25, 20%) adopted a more
patient-centered perspective, either by integrating gLLMswith
upper-limb exoskeleton systems to potentially support motor
recovery or by applying them to address open-ended patient
guestions regarding stroke prevention. The single study
investigating gL LM usefor academic writing support concluded
that the outputs were unreliable for practical use, highlighting
limitationsin that specific application context. Given the breadth
of stroke care tasks addressed, considerable diversity in the
technical implementation of these gLLM interventions was
observed, as shown in Table 3. Common technical approaches
involved using GPT-series models, typically accessed through
web-based chat interfaces or API calls and guided primarily by
task-specific prompt engineering strategies. Moreover, this
review identified five critical challenges pertinent to applying
gLLMs effectively and safely across the stroke care pathway:
(1) ensuring factual alignment, (2) maintaining system
robustness, (3) enhancing model interpretability, (4) optimizing
operationa efficiency, and (5) facilitating adoption into clinical
practice. Figure 2 illustrates the current landscape of
gL LM-based interventions across the stroke care pathway.
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Figure 2. Current landscape of interventions driven by generative large language modelsin stroke care.
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Need for Rigorous Real-World Evidence to Support
Clinical Trandation

gLLMsrepresent a novel addition to digital health [14,61,62],
creating new avenues for neurological care [17] and offering
significant potential to improve stroke prevention and bridge
gapsin care access. Despite this promise, the evidence base for
gLLMs specifically in stroke care currently relies heavily on
retrospective analyses of clinical documentation and
experimental studies conducted in simulated settings. This
cautious approach likely reflects valid concerns regarding the
potential impact of these nascent technol ogies on patient safety
and clinical decision-making [63]. Highlighting the feasibility
of real-world assessment in other domains, a recent
cluster-randomized trial in China demonstrated that a
gLLM-driven chatbot effectively improved parental health
literacy concerning human papillomavirus vaccination for
adolescent girls[64]. In contrast, most of the stroke care studies
included inthisreview (24/25, 96%) did not involveintegrating
gLLM-based systems into actua clinical workflows or
conducting real-time interactions with patients. Consequently,
the real-world effects of these systems on health care delivery
efficiency, clinical outcomes, and patient health literacy within
the context of stroke care remain largely unverified. This
significant evidence gap highlights an urgent need within the
stroke research community. Future efforts must prioritize
clarifying evidence requirements and systematically generating
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robust real-world data on the feasibility, safety, clinical impact,
and cost-effectiveness of gLLM applicationsto provide essential
support for clinical transglation.

Toward Balanced Process and Outcome Evaluation

For stroke caretasksthat depend on interaction between human
users (eg, health care professionas, administrative staff, or
patientsand their caregivers) and gL L M-based tools, evaluation
needsto extend beyond outcome-oriented performance metrics.
Incorporating assessments of model reasoning processes and
the dynamics of human-gLLM interaction is critica for
providing a complete understanding. While 8% (2/25) of the
included studies focused solely on noninteractive tasks,
including advanced text representation [48,53], the remaining
studies (23/25, 92%) relied on human-gLLM interaction to
compl ete stroke care tasks. Among these, more than half (12/23,
52% of the studies) assessed gLLM performance solely based
on how well model outputs aligned with clinical expectations
or predefined gold standards without assessing human-gLLM
interaction processes or model reasoning behavior. While some
of these studies (15/25, 60%) aimed to produce correct responses
in single-turn dialogues, this narrow, outcome-focused
evaluation perspective isinsufficient for interventions that rely
ongLLMSs capabilitiesfor open-ended reasoning and interactive
engagement [62]. Several studies (11/25, 44%) acknowledged
simple process-related metricsin logical coherence, efficiency
improvement, and user interaction experience and observed
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effects. It is also important to examine how well gLLM-driven
tools can identify and collect task-relevant information through
multiturn interactions, especially in patient-facing contexts[62].
Fully understanding and ensuring the real-world applicability
and safety of gLLM-based systems in health care settings
requires broadening performance evaluation frameworks to
rigorously include these dynamic processes alongside static
outcomes.

Correction of Technical Reporting Deficiencies

Significant issueswereraised regarding the normative reporting
of gLLM intervention designs within the included studies. A
common oversight appeared to be neglecting the fact that
different access methods (eg, web-based chat interfaces) may
use customized configurations or variants of the same underlying
model. This lack of specificity was particularly evident when
models were accessed using web chat interfaces. These often
used restricted-access [65] or proprietary, fine-tuned,
chat-optimized variants [66] (frequently branded as specific
products, eg, ChatGPT) that are not directly equivalent to the
base models released by developers. Despite researchers
attemptsto specify the underlying models, their preciseidentity
often remained ambiguous. Asaresult, conflating branded chat
productswith broader foundation model families (eg, ChatGPT
with the GPT series) can lead to conceptual confusion and
should be avoided in reporting. Furthermore, this review
identified instancesin which API-based accessto closed-source
models was inaccurately characterized, for example, as static
version use or analogous to offline deployment [50]. In reality,
such access depends on remote servers where the underlying
models can be updated by the provider without explicit version
notification, challenging assumptions of both offline use and
version stability. Given the rapid iteration cycles common to
gL LMs, consistently time-stamping theinput and output stages
during use could aid researchersin documenting and interpreting
the specific model versions or operational states encountered.
However, this practice was uncommon in the reviewed literature,
with only 20% (5/25) of the studies reporting time-stamped
interaction events[38,40,43,46,57]. To maintain analytical rigor
amid these reporting ambiguities, thisreview adopted a strategy
of consistently referring to general model series (eg, the GPT-4
family) when exact versions or configurations could not be
definitively ascertained from the studies. The observed
heterogeneities and frequent lack of precision in technical
reporting highlight a critical need for the development and
adoption of standardized, transparent guidelines for describing
gLLM-drivenintervention designs. Such standards areimportant
for ensuring accurate interpretation, enabling reproducibility,
and facilitating meaningful cross-study comparability in this
advancing field.

Simpleand Homogeneous Task Adaptation Strategies

The design and refinement of gLLM-driven interventions
specifically for stroke care remain in their nascent stages.
Current approaches mainly rely on zero- or few-shot instruction
designs, enhanced using techniques such as context
augmentation, role-based prompting, or format constraints to
guide outputs. While prompt iteration was occasionally used to
improve factual alignment [42,46,50], generated outputs still
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often contained inaccuraciesor lacked desired nuance. Similarly,
although a small subset of the included studies (2/25, 8%)
investigated domain-specific fine-tuning of open-source models
for better task adaptability, both prompt engineering and basic
fine-tuning strategies appear insufficient for highly complex
clinical settingsthat requireintegrating robust logical reasoning
with precise numerical computation. Emerging architectures
such asRAG [55,57] and multiagent systems[52] show promise,
mirroring developments in other medical fields [67-69], but
their empirical validation within stroke care is currently
underexplored. Furthermore, the robustness of gLLM-based
stroke care interventions against unexpected inputs or variations
remains insufficiently examined. The underlying causes of
potential failures were often unexplored due to a lack of
proactive and systematic investigation strategies within the
reviewed studies.

Underexplored Dual Gap in Human-gLLM Interaction
Dynamics

Although intentionally introducing noise or adversaria inputs
isastandard method for stresstesting and eval uating robustness
in machine learning [70], most studies (24/25, 96%) appeared
to respond reactively after poor performance was observed,
sometimes relying on subjective speculation regarding failure
modes rather than rigorous empirical analysis. Systematically
analyzing model responsesto flawed, edge-case, or adversarial
inputs could yield crucial insights into failure mechanisms,
thereby informing the development of safer and more reliable
gLLMsfor stroke care[45,71]. Finally, therapid iteration cycles
and frequent updates of underlying modelsintroduce significant
uncertainties regarding the long-term performance, reliability,
and transferability of the devel oped interventions. For example,
it remains unclear how effectively interventions initially
developed and validated on now deprecated models (eg, early
versions of ChatGPT) will function when deployed using
substantially updated successor models (such as GPT-40) [72].
Therefore, this dynamic landscape requires ongoing eval uation,
validation, and potentially continuous adaptation strategies for
gLLMsintended for clinical use.

While a significant amount of research has focused on gLLM
intervention design and technical optimization, how humans
interact with such systems within the context of stroke care
remains largely underexplored. Although concerns about the
black box nature of gLLM reasoning processes are frequently
discussed, this review suggests that the heterogeneity in users
subjective interpretations of gLLM outputs presents an equally
critical yet less examined challenge. There appears to be
emerging agreement on the value of EITL frameworks for
deploying gLLMs in real-world settings; however, evidence
fromtheincluded studies showsthat clinicians can interpret the
exact same generated response quite differently [46,57]. Such
variability in human interpretation may significantly influence
downstream trust in the system; subsequent clinical
decision-making; and, ultimately, patient outcomes in stroke
care.

Beyond interpretation variability, safety concerns are extended
by potential user behaviors and governance gaps. For example,
follow-up reprompting was reportedly used in one study to
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bypass built-in safety restrictions designed to prohibit direct
radiological imageinterpretation [40], exposing risksrelated to
both inadequate technology governance and the potential for
deliberate misuse by individuals. Moreover, actionable
guidelines are urgently needed to address broader safety and
ethical concerns, including the legal ambiguities surrounding
artificia intelligence—driven interventions and potential conflicts
between commercial deployment objectives and established
clinical best practices [57].

Consequently, these underexplored dimensions point to a dual
gap that limits research and the clinical trandation of gLLMs
in stroke care. The first gap concerns a limited understanding
of optimal gL L M-driven intervention design tailored to specific
stroke caretasks, including defining the operational boundaries
and failure modes of such systems. The second relates to
insufficient investigation into how diverse human users (eg,
health care professionals, patients with stroke, and caregivers)
actually interact with gLLM-based systems and how these
interactions dynamically shape both user understanding and
system outputs.

Future Directions

The application of gLLMs in stroke care, while promising, is
relatively new, with most current interventions representing
early-stage or relatively simpleimplementations. To enable the
responsible and effective integration of such tools into health
care settings, the development and adoption of formal,
multidimensional frameworksthat promote rigorous evaluation
and informed oversight are critical. Future studies attempting
to bridge the gap between potential and practice would also
likely benefit from using mixed methods techniques to gain
deeper, more nuanced insightsinto how gLL Msactually operate
across diverse stroke care tasks and how they can be most
effectively and safely deployed in complex clinical
environments. Inlight of the considerationsraised in thisreview,
several priorities emerge for guiding the safe, successful, and
ethical use of gLLMs across relevant stroke care domains,
including clinical work, direct patient support, administrative
tasks, and academic research.

First, real-world evidence should be prioritized. There is a
critical need for reliable prospective strategies guided by clearly
defined research questions and evidence priorities to generate
robust real-world data. Such studies should focus on theclinical
impact, safety, feasibility, and cost-effectiveness of specific
gLLMsimplemented in stroke care settings.

Second, transparent technical reporting should be mandated.
The technical design and implementation details of
gL LM-driven systems must be reported with greater precision
and completeness. Standardized reporting should include
accurate naming of models or specific product versions used,
consistent time-stamping of key input and output events during
evaluation, and clear descriptions of how the systems are
accessed (eg, through chat interfaces, API, or local deployment).

Third, evaluation frameworks should be broadened beyond
output accuracy. Existing performance evaluation for gLLMs
requires expansion beyond technical metrics. Future frameworks
must incorporate rigorous methods for ng critical aspects
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of human-gLLM interaction dynamics, model reasoning
processes, context appropriateness, usability, and overall user
experience.

Fourth, validation of advanced task adaptation strategies should
be strengthened. Current task adaptation strategies in
stroke-focused gLLM systemsremain simplistic and repetitive,
relying primarily on prompt design and inference-time controls.
These approaches have shown limitationsin handling complex
tasks. Future research should develop and evaluate emerging
methods (eg, multiagent collaboration and RAG), which are
being explored for their feasibility in other areas of chronic
disease care.

Finally, mechanisms for safe and effective human-gLLM
interaction should be investigated. There is a critical need to
clarify the behavioral boundaries and failure modes of
gLLM-driveninterventionstailored to specific stroke care tasks.
Equally important is the lack of empirical insight into how
diverse users (eg, health care professionals, patientswith stroke,
and caregivers) interact with these systemsin real-world settings.
Future research should elucidate how these interactions shape
user understanding and dynamically influence system outputs,
supporting the development of more responsive, trustworthy,
and context-aware gLLM applications in stroke care.

Limitations

This review has several limitations related to its scope and the
current state of the literature. First, the decision to exclude
preprintsand focus solely on peer-reviewed publications, while
ensuring acertain quality standard, may have omitted important
nascent insights given the rapid technological iteration and
common use of preprint platforms for early dissemination in
thegL LM field. Second, the substantial heterogeneity identified
across the included studies precluded a quantitative synthesis
or meta-analysisof gLLM intervention performance. To mitigate
this, supplementary details summarizing individual study
findings are provided (Multimedia Appendix 4 [36-60]) to give
readers further granularity where possible. Despite these
limitations and the heterogeneity, most reported gL L M-driven
interventions demonstrated encouraging performance on their
specifically defined tasks within the study contexts. Lower
comparative performance was observed in applicationsfocused
on extracting structured clinical data, which may reflect the
maturity and optimization of existing methods (eg, rule-based
systems, conventional machine learning, and earlier deep
learning models) already well suited for these specific tasks. In
studiestargeting knowl edge-intensive tasks (eg, lesion detection,
report drafting, and evidenceintegration), mixed or suboptimal
results were often reported, likely attributable more to the
specific study design used than to an inherent limitation of
gLLMs for such tasks generally. Nevertheless, these findings
highlight the need for caution regarding the immediate,
large-scale deployment or formal adoption of current
gLLM-driven interventions in real-world stroke care settings.

Conclusions

As highlighted throughout this review, current research has yet
to establish a coherent, evidence-based foundation addressing
robust intervention design, comprehensive multidimensional
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evaluation, and effective governance for these rapidly evolving
gLLM technologies in stroke care. Consequently, this study
contributes by clarifying the current complex research landscape

Zhu et a

updated review of the strengths and critical gaps in existing
investigations, and identifying key priorities and directions for
future research design and evaluation.

concerning gLLM applications in stroke care, providing an
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Abbreviations

API: application programming interface

BART: bidirectional and auto-regressive transformer

EITL: expert-in-the-loop

gLLM: generative large language model

GPT: generative pretrained transformer

NLP: natural language processing

PCC: Population, Concept, and Context

PRISMA-ScR: Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping
Reviews

RAG: retrieval-augmented generation
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