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Abstract

Background: Stroke has a major impact on global health, causing long-term disability and straining health care resources.
Generative large language models (gLLMs) have emerged as promising tools to help address these challenges, but their applications
and reported performance in stroke care require comprehensive mapping and synthesis.

Objective: The aim of this scoping review was to consolidate a fragmented evidence base and examine the current landscape,
shortcomings, and future directions in the design, reporting, and evaluation of gLLM-based interventions in stroke care.

Methods: In this scoping review, which adhered to the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and
Meta-Analyses extension for Scoping Reviews) guidelines and the Population, Concept, and Context (PCC) framework, we
searched 6 major scientific databases in December 2024 for gLLM-based interventions across the stroke care pathway, mapping
their key characteristics and outcomes.

Results: A total of 25 studies met the predefined eligibility criteria and were included for analysis. Retrospective designs
predominated (n=16, 64%). Key applications of gLLMs included clinical decision-making support (n=10, 40%), administrative
assistance (n=9, 36%), direct patient interaction (n=5, 20%), and automated literature review (n=1, 4%). Implementations mainly
used generative pretrained transformer models accessed through task-prompted chat interfaces. In total, 5 key challenges were
identified from the included studies during the implementation of gLLM-based interventions: ensuring factual alignment,
maintaining system robustness, enhancing interpretability, optimizing efficiency, and facilitating clinical adoption.

Conclusions: The application of gLLMs in stroke care, while promising, remains relatively new, with most interventions
reflecting early-stage or relatively simple implementations. Against this backdrop, critical gaps in research and clinical translation
persist. To support the development of clinically impactful and trustworthy applications, we propose an actionable framework
that prioritizes real-world evidence, mandates transparent technical reporting, broadens evaluation beyond output accuracy,
strengthens validation of advanced task adaptation strategies, and investigates mechanisms for safe and effective human-gLLM
interaction.

(JMIR Med Inform 2025;13:e76636) doi: 10.2196/76636
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Introduction

Background
Stroke represents a leading cause of global morbidity and
long-term disability [1], imposing a substantial burden on health
care systems through its high incidence and the complex,
prolonged care needs of survivors of stroke [2]. The effective
management of stroke treatment and rehabilitation is limited
by persistent challenges in postacute care, notably fragmented
follow-up, insufficient community-based professional support,
the heterogeneity of patient requirements, and frequently
inadequate health literacy [3]. Despite significant progress in
prevention strategies, acute treatments, and rehabilitation
technologies, critical gaps persist in providing personalized,
continuous, and accessible long-term support for individuals
recovering from stroke [4]. These unmet needs highlight a
critical opportunity for transformative technological innovation
in the delivery and management of stroke care.

The analysis of clinical documentation presents an important
strategic avenue for addressing stroke care challenges.
Unstructured narratives within electronic health records,
including clinical notes, discharge summaries, and other free-text
entries, contain rich yet often underused patient information.
Systematic analysis of these data can significantly support risk
stratification, inform treatment planning, and improve care
coordination [5]. This recognition has led to advancements in
natural language processing (NLP) techniques designed to
extract insights from complex clinical text. Fundamental to
many clinical NLP applications are transformer-based models
pretrained on extensive biomedical and general-domain corpora.
Specifically, encoder-only architectures, which leverage
bidirectional encoder representations from transformers and its
derivatives, demonstrate proficiency in structured information
extraction tasks such as named entity recognition [6] and
temporal relation identification [7]. These models typically rely
on domain-specific pretraining and task-specific fine-tuning.
Nevertheless, they possess inherent limitations related to their
generative capabilities and broader generalizability [8], with
models often struggling with open-ended clinical reasoning
tasks and understanding long contexts, indicating the need for
architectures with enhanced generative potential.

Generative large language models (gLLMs), including
decoder-only and encoder-decoder architectures (eg, the Llama
[9], GPT-4 [10], and bidirectional and auto-regressive
transformers [BART] [11] families), represent a significant
advancement over previous NLP models. These gLLMs broaden
clinical application possibilities by framing diverse tasks within
a unified text generation paradigm [8,12]. Key enabling
techniques include prompt-based learning, which enables task
generalization without parameter updates [13], and
inference-time controls (eg, decoding strategies) that modulate
output characteristics, which are crucial when access to models
is limited [14]. In addition, retrieval-augmented generation
(RAG), often integrated with custom medical knowledge bases,
enhances factual accuracy and performance for
knowledge-intensive clinical applications [15,16]. Together,
these advancements present important opportunities for stroke

treatment and rehabilitation services [17], potentially improving
efficiency through intelligent automation (eg, triage and
administration); enhancing patient care through personalization
and improved resource access; and accelerating research
workflows, including evidence synthesis and writing.
Furthermore, the introduction of multimodal functionality, as
demonstrated by models such as GPT-4o [18] and the Gemini
family [19], marks a pivotal shift in the development of gLLMs.
By processing integrated textual, visual, and auditory inputs,
these newly introduced models can augment clinical reasoning
(eg, in medical image interpretation) and support more effective
analysis of real-world, cross-modal patient data, better aligning
digital tools with the complexities of stroke care delivery.

Objectives
While digital health technologies provide advancements for
stroke care [20], the unique capabilities and rapid evolution of
gLLMs require a focused investigation within this specific
clinical domain. Current reviews related to digital innovations
in stroke care predominantly examine technologies that predate
modern gLLMs, such as mobile health platforms [21,22], early
conversational agents [23], and conventional machine learning
or deep learning frameworks [24-26]. Moreover, although the
current literature has reviewed the general clinical utility of
gLLMs [17,27-29], there remains a critical gap in systematically
reviewing evidence specifically on gLLM-driven interventions
applied across the stroke care pathway. To address this critical
research gap, this scoping review aimed to map the current
landscape of gLLM applications throughout the common stages
of the stroke care pathway. Specifically, it identified their uses,
implementation characteristics, and reported outcomes and
outlined future research directions. The central research question
guiding this review was as follows: how, for what purposes,
and with what reported outcomes have gLLMs been applied in
stroke care? This review used the recommended guide of the
Population, Concept, and Context (PCC) framework [30], which
is guided by the following subquestions:

1. What study designs are used to evaluate gLLM-driven
interventions in stroke care, and what are the key
characteristics of the stroke populations involved?
(Population or participants)

2. What target tasks, implementation details (ie, tasks, dialogue
pattern, input data, and time stamps), evaluation approaches,
and outcomes are reported for gLLM-driven interventions
in stroke care? (Concept)

3. What cultural settings, specific stroke care stages (ie,
prevention, diagnosis, treatment, prognosis, and
rehabilitation), and technology adaptation strategies are
described in the evaluation of gLLM-driven interventions?
(Context)

4. What challenges are reported in implementing gLLMs in
stroke care, and what specific directions for future research
have been proposed? (Implementation challenges and
research directions)
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Methods

Study Guidelines and Registration
This review aimed to capture the available knowledge
concerning the intersection of stroke care and gLLM
technologies. Given the observed heterogeneity and breadth of
research in this field, a scoping review methodology was used
to summarize the current landscape and challenges associated
with gLLM-driven intervention use across the stroke care
pathway (ie, prediction, diagnosis, treatment, prognosis, and
rehabilitation). The main objective was to address 3 key research
questions predefined according to the PCC framework and
identify knowledge gaps within this interdisciplinary area. This
review was conducted and reported following the PRISMA-ScR
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses extension for Scoping Reviews) guidelines [31]
(Multimedia Appendix 1) and adhered to the methodological
framework of Arksey and O’Malley [32] for scoping reviews.
The review protocol was preregistered on the Open Science
Framework [33].

Search Strategy
A broad search strategy was considered necessary to capture
relevant citations in this relatively novel and rapidly evolving
field. The terminology associated with gLLMs currently lacks
consensus, requiring the use of diverse search terms. Key terms
included in the search were “pretrained language model,” “large
language model,” “natural language processing,” and
“generative artificial intelligence.” Moreover, recognizing the
important role of the generative pretrained transformer (GPT)
model family in gLLM development, related terms were also
incorporated into the search strategy. In addition, given the
potential integration of gLLMs within conversational agents,
relevant search terms for the latter were included to maximize
retrieval breadth.

The search targeted peer-reviewed, full-text original research
articles and was executed across 6 major scientific databases:
Ovid Embase, PubMed, Scopus, CINAHL Plus with Full Text,
Web of Science Core Collection, and IEEE Xplore. All database
searches were completed in December 2024, with the last search
performed on December 24, 2024. Search strategies were
individually tailored to the syntax and indexing of each database.
The complete search strategies for all databases are detailed in
Multimedia Appendix 2. No restrictions regarding publication
date, language, or study type were applied during the initial
search phase. Potential selection bias arising from the absence
of a standardized technical taxonomy or consensus definition
for gLLMs was acknowledged as a limitation in this review.
To mitigate this risk, snowballing techniques [34] were
systematically used following the initial search. This involved
both forward snowballing (ie, examining articles citing the
included studies) and backward snowballing (ie, reviewing the
reference lists of the included studies). However, this process
did not identify any additional studies meeting this review’s
inclusion criteria.

Inclusion and Exclusion Criteria
To be eligible for this review, studies had to assess a
gLLM-driven intervention relevant to advancing understanding
or practice in stroke prediction, diagnosis, treatment, prognosis,
or rehabilitation and report at least one metric or qualitative
perspective related to the performance evaluation of the
specified gLLM intervention. Studies were excluded if they met
one or more of the following conditions: they (1) were animal
trials or focused exclusively on animal models; (2) did not report
any performance outcomes or evaluation pertinent to the gLLM
intervention described; (3) were unrelated to the field of stroke
care or its advancement; (4) focused exclusively on managing
stroke risk factors (eg, diabetes mellitus, hypertension, or atrial
fibrillation) without directly addressing stroke management,
outcomes, or care processes; (5) had a full text that could not
be accessed or obtained; or (6) did not represent original
research (ie, were reflection articles, opinion pieces, editorials,
letters, conference abstracts without full results, or study
protocols).

Study Selection and Data Extraction
Following the literature search, all retrieved records were
imported into Zotero Reference Manager (version 7.0.15;
Corporation for Digital Scholarship) by one author (XZ), where
duplicates were identified and removed. Independent screening
of titles, abstracts, keywords, and publication types was then
conducted by 2 authors (XZ and WD) to identify potentially
eligible studies based on the predefined inclusion criteria. The
same 2 authors subsequently reviewed the full texts of these
potentially eligible studies to confirm final inclusion and conduct
data extraction (Multimedia Appendix 3). Any disagreements
regarding study inclusion during either screening phase were
resolved through discussion involving a third reviewer (ZL)
until consensus was reached. Any unresolved issues encountered
during feature extraction were documented as free-text notes;
clarification was sought from the original study authors via
email correspondence when necessary and feasible. All
reviewers possessed relevant expertise in clinical medicine or
medical informatics. Data extraction and synthesis activities
were conducted in Microsoft Excel (Microsoft Office Long
Term Service Channel 2021). Formal interrater agreement
metrics were not calculated for the screening or extraction
phases. This decision was made because the primary focus of
this scoping review was the synthesis of descriptive
characteristics, where minor formatting or phrasing differences
between reviewers could lead to low numerical agreement
despite substantive consensus on the content.

Guided by the PCC framework [35] and its predefined questions,
the descriptive characteristics of the included studies were
organized into structured tables. To confirm the methodological
landscape and current evidence base at this emerging
intersection of stroke care and gLLMs, this review commenced
with a summary of study features, including publication year
distribution and study design types. Then, consistent with the
PCC framework, the analysis focused sequentially on (1)
population (ie, characteristics relevant to intervention design
and implementation, such as sample size, sex and age
distributions, stroke phenotypes, and reported comorbidities);
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(2) concept (ie, key components describing the processes and
outcomes of the gLLM-driven interventions, including the main
use categories and specific tasks assigned to gLLMs; input data
types used; dialogue patterns and time stamps recorded [where
available]; and performance evaluation approaches based on
reference standards, evaluative perspectives, and reported
metrics); and (3) context, examining the broader cultural, care
setting, and technical contexts surrounding the gLLM-driven
interventions, including national and sociolinguistic
backgrounds, the specific stage within the stroke care pathway
addressed, models used, modes of gLLM access used, instruction
design strategies, and other technical adaptations. Finally, key
implementation challenges associated with applying gLLMs
across the stroke care pathway were identified based on reported
results and author discussions within the context of the included
studies.

Results

Overview
The literature search identified 8785 records across all databases.
Of these 8785 records, after the removal of 3976 (45.26%)

duplicates, 4809 (54.74%) titles and abstracts were screened
for eligibility. This initial screening led to the exclusion of
65.09% (3130/4809) of the records based on relevance and an
additional 1.02% (49/4809) due to inappropriate publication
types (eg, preprints, awarded grants, and conference abstracts).
Consequently, 33.89% (1630/4809) of the articles underwent
full-text assessment. During this stage, of the 1630 studies, 1605
(98.47%) were excluded for various reasons, including
irrelevance to the application of gLLMs or stroke care context
(n=1556, 96.95%), being review articles not meeting the
inclusion criteria (n=42, 2.62%), insufficient evidence of gLLM
use (n=5, 0.31%), being a duplicate publication identified across
different formats (n=1, 0.06%), and unresolved concerns
regarding stroke sample composition after author consultation
(n=1, 0.06%). Ultimately, 25 studies met the inclusion criteria
and were included in this scoping review. Figure 1 presents the
detailed PRISMA-ScR flowchart illustrating this study selection
process.

Figure 1. Flow diagram of the study selection process based on the PRISMA-ScR guidelines. gLLM: generative large language model.

General Characteristics
Table 1 summarizes the general characteristics of the 25
reviewed articles. A key characteristic was the recent publication
time frame, with all included studies published in 2023 or 2024,
reflecting the emerging nature of this research domain. With
regard to the methodologies used, most studies (16/25, 64%)
used retrospective designs analyzing existing data. A few studies
(4/25, 16%) adopted prospective designs, typically involving

the recruitment of healthy participants or the collection of
original data from patients with stroke. There were also some
observational studies (4/25, 16%), including one that used
gLLMs for literature discovery during systematic review
development [36], as well as a single comparative case study
[37]. It should be noted that this review identified no randomized
controlled trials assessing the clinical efficacy or impact of
gLLM-driven interventions in populations of patients with
stroke.
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Table 1. Overview of study designs and stroke populations.

Function scoring toolComorbiditiesStroke pheno-
type

Age (y)Sex
(male; %)

Sample sizeStudy designYearStudy

NIHSSi: 14.0 (9.0); AS-

PECTSj: 9.0 (2.0);

mRSk,l

AFb, HFc, HTNd,

DMe, DLPf, CADg,

and ACh

ISaMean 74
(SD 18)

39.3163Retrospec-
tive; pilot

2025Pedro et al
[38]

NIHSS: median 12 (IQR

NR)n; mRS: median 1

(IQR NR)n

HTN, HF, and ESRDpIS and HSoMedian 66

(IQR NR)n
NRm124 (22 simulat-

ed)
Retrospec-
tive

2024Chen et al
[39]

NRNRIS and HSNRNRUncertainqRetrospec-
tive

2024Strotzer et
al [40]

NRNRISNRNRUncertainrRetrospec-
tive

2025Kuzan et al
[41]

NRNRUnclarified
type

68.03 (3.74)6030sProspective;
cross-section-
al

2024Fei et al
[42]

NIHSS, mRS, MRCu

Scale for Muscle

HTN, DM, DLP, AF,

CAD, and othert
IS and HS56.7 (13.9)63.146Retrospec-

tive
2024Lee et al

[43]

Strength, GCSv, K-

MMSEw, FABx, and oth-

ert

NRNRUnclarified
type

NRNR30Retrospec-
tive

2024Haim et al
[44]

GCS: 12.5 (5); ICHy

score: 2 (2); H&Hz: 2.5
(2)

NRHS65.3 (11.0)5020 simulatedExperimen-
tal

2023Chen et al
[45]

NRAF and ACIS70.5 (4.5)502 simulatedObservation-
al

2024Blacker et
al [46]

SIASab,acDM and HTNIS62 (—aa)1001 textbook caseObservation-
al; compara-
tive case

2023Zhang et al
[37]

NRNRUnclarified
type

75 (16)4913,605adRetrospec-
tive

2024Sivarajku-
mar et al
[47]

NRNRIS and HS——UncertainaeRetrospec-
tive

2023Guo et al
[48]

NIHSS: median 8 (IQR
0-24); ASPECTS: medi-

an 9 (IQR 3-10)af

NRIS74.2 (13.2)50130 (derivation:
100; external
validation: 30)

Retrospec-
tive

2024Lehnen et
al [49]

PSOMaj: median 0.75
(IQR 0-1.5)

NRCAISag,

PAISah, and

CVSTai

Median 4.5
(IQR 0.75-
11)

6250Retrospec-
tive; pilot

2024Fiedler et
al [50]

NRNRIS72.23
(13.35)

54.45382Retrospec-
tive

2024Wang et al
[51]

NRAF, DM, and HTNIS76.1 (11.4)37.516Retrospec-
tive

2024Goh et al
[52]

NRNRUnclarified
type

NRNRUncertainakRetrospec-
tive

2025Baro et al
[53]

NRNRISNRNRUncertainalRetrospec-
tive

2025Meddeb et
al [54]

NIHSS: 2 (5); mRS: 2 (3)HTN, AF, DM, DLP,

CAD, AC, PADam,
and HF

IS68.17
(12.86)

58.836,922Retrospec-
tive

2025Kim et al
[55]
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Function scoring toolComorbiditiesStroke pheno-
type

Age (y)Sex
(male; %)

Sample sizeStudy designYearStudy

NIHSS: 18.1 (11.3);
mRS: 3.7 (1.9)

HTN, DM, DLP, and
obesity

IS47.1 (23.7)65.14798Retrospec-
tive

2024Argymbay
et al [56]

NRNRUnclarified
type

NRNR50Prospective;
mixed meth-
ods

2024Neo et al
[57]

——————anObservation-
al

2023Wu et al
[58]

NRNRUnclarified
type

NRNR1aoProspective;
experimental

2025Chen et al
[59]

NRNRUnclarified
type

NRNRUncertainapProspective;
experimental

2024Rifai et al
[60]
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Function scoring toolComorbiditiesStroke pheno-
type

Age (y)Sex
(male; %)

Sample sizeStudy designYearStudy

——————aqObservation-
al

2023Angheles-
cu et al
[36]

aIS: ischemic stroke.
bAF: atrial fibrillation.
cHF: heart failure.
dHTN: hypertension.
eDM: diabetes mellitus.
fDLP: dyslipidemia.
gCAD: coronary artery disease.
hAC: active cancer.
iNIHSS: National Institutes of Health Stroke Scale.
jASPECTS: Alberta Stroke Program Early Computed Tomography Score.
kmRS: modified Rankin Scale.
lA total of 121 patients had an mRS score of 0 or 1, and 42 had a score of 2 or 3.
mNR: not reported.
nDescription of real patients (n=102).
oHS: hemorrhagic stroke.
pESRD: end-stage renal disease.
qA total of 100 magnetic resonance and computed tomography images were included, comprising 50 with lesions (25 ischemic stroke, 25 brain
hemorrhage) and 50 normal controls (25 matched to each lesion group).
rA total of 266 radiological images from patients with acute stroke were included.
sA total of 90 participants were included, comprising 30 patients with stroke and 60 healthy controls.
tPublished case report heterogeneity led to reporting barriers.
uMRC: Medical Research Council.
vGCS: Glasgow Coma Scale.
wK-MMSE: Korean version of the Mini-Mental State Examination.
xFAB: Frontal Assessment Battery.
yICH: intracranial hemorrhage.
zH&H: Hunt and Hess scale.
aaNot applicable.
abSIAS: Stroke Impairment Assessment Set.
acA multicriteria assessment set included quantitative scores and qualitative descriptions.
adIn total, 50 annotated electronic health record sections were extracted from the records of 13,605 patients with stroke.
aeParts from triplets, subrelations, and unlabeled text from 3 Chinese stroke-related medical datasets were included.
afDescription of derivation (n=100).
agCAIS: childhood arterial ischemic stroke.
ahPAIS: perinatal arterial ischemic stroke.
aiCVST: cerebral venous sinus thrombosis.
ajPSOM: Pediatric Stroke Outcome Measure.
akAt least 4038 stroke-related hospitalizations of insured beneficiaries were included in the study.
alA total of 1050 mechanical thrombectomy reports from patients with acute ischemic stroke were included.
amPAD: peripheral arterial disease.
anTwo questions from the American Stroke Association website were included.
aoThree healthy participants were also involved in the test of the generative large language model–based hand exoskeleton controls.
apDid not report whether the 12 participants were patients with stroke.
aqSix questions on evidence synthesis during systematic reviews were included.

Distribution of Included Stroke Populations
The first question of this review related to the population
component of the PCC framework and asked for key
characteristics of the stroke populations involved in the

gLLM-driven interventions. Specifically, the review examined
the characteristics of the stroke populations involved in the
included studies. The analysis included sample size, sex
distribution, age range, stroke phenotypes, key comorbidities,
and reported functional scores as these elements can influence
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intervention design and applicability. Notably, 8% (2/25) of the
studies did not use patient data (real or simulated); instead, they
evaluated the gLLMs using predefined question sets related to
stroke care [36,57]. Among the remaining 92% (23/25) of the
studies, the level of detail provided for population characteristics
varied. A summary of these characteristics, including
clarifications obtained via author correspondence, is presented
in Table 1.

Reporting of specific population characteristics varied across
the 25 studies (see Table 1 for further details). Sample sizes of
involved patients were specified in most articles (17/25, 68%),
demonstrating considerable range from a single case to 36,922
patients. Data on gender were available in 52% (13/25) of the
studies, which indicated that male individuals comprised 56.9%
of the aggregate reported sample. A total of 56% (14/25) of the
studies provided age metrics (mean or median), which spanned
4.5 years (in a pediatric study) to 76.1 years. Stroke phenotype
details were available in 64% (16/25) of the studies, and
ischemic stroke (15/25, 60%) was found to be more commonly
studied than hemorrhagic stroke (5/25, 20%). Notably, 4%
(1/25) of the studies focused exclusively on pediatric patients
with stroke. In total, 32% (8/25) of the studies provided
information on patient comorbidities, often identified through
the main text, appendices, or associated datasets. Commonly
reported conditions included hypertension, diabetes mellitus,
atrial fibrillation, dyslipidemia, coronary artery disease, heart
failure, and active cancer. Furthermore, 36% (9/25) of the
studies documented baseline severity or functional outcomes
using clinical assessment tools. The most frequently used scales
were the National Institutes of Health Stroke Scale and the

modified Rankin Scale [38,39,43,55,56]. Other reported
instruments included the Glasgow Coma Scale [43,45], Pediatric
Stroke Outcome Measure [50], Stroke Impairment Assessment
Set [37], intracranial hemorrhage score [45], Hunt and Hess
scale [45], Medical Research Council Scale for Muscle Strength
[43], Korean version of the Mini-Mental State Examination
[43], and Frontal Assessment Battery [43].

Conceptual Considerations for Implementing and
Evaluating gLLM-Driven Interventions in Stroke Care
In response to the second subquestion related to the concept
component of the PCC framework, this review analyzed the
target tasks, implementation details (including models, prompts,
and data inputs), evaluation strategies, and reported outcomes
for gLLM applications in stroke care. In total, 4 key categories
of gLLM use were identified, as summarized in Table 2. The
main categories focused on supporting health care professionals
either through clinical decision-making assistance (10/25, 40%)
or administrative workflow automation (9/25, 36%). Other
identified applications included direct patient support through
interactive online platforms (5/25, 20%) and enabling the
discovery of evidence during systematic reviews (1/25, 4%).
With regard to the implementation of gLLMs, evaluations
mostly involved single-turn dialogues conducted under
controlled settings (15/25, 60%), whereas the reporting of
intervention time stamps was limited (5/25, 20%). Despite
considerable heterogeneity across studies in terms of task
objectives, input data sources, evaluation benchmarks, and
assessment metrics, common themes and approaches were found
within each application category.
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Table 2. Summary of the implementation and evaluation of generative large language model–driven interventions in stroke care.

Evaluation met-
rics

Evaluation perspec-
tives

Gold-standard
providers or bench-
marks

Reported
time
stamp

Dialogue
patterns

Input data or sourcesTask objectivesStudy

Clinical decision-making support (n=10)

Cohen κ; mean
difference and

AGSc for true exact
and dichotomized

Stroke unit clini-
cians

YesSingle turnPatient H&Pb, neu-
roimaging, and me-

Predict the

mRSa score at 3

Pedro et al
[38]

95% limits of

agreement; NDd
mRS scores; bias;
comparison with
MT-DRAGON

chanical thrombecto-
my procedure notes

mo after me-
chanical
thrombectomy

Counts and rateAGS for mechanical
thrombectomy deci-

Neurology special-
ists

NoSingle turnPatient H&P and
neuroimaging notes

Make clinical
decisions for
mechanical
thrombectomy

Chen et al
[39]

sion; different error
analysis

Agreement rate;
interrun consis-

AGS for free-report
items; interrun con-

Radiologists and
nonradiologist in
training

YesSingle turnMRI and CT imagesInterpret MRIe

and CTf images
and generate

Strotzer et al
[40]

tency rate and
the Randolph

sistency; AGS for
binary pathological

free-text reports
in stroke cases

free-marginal κ;
accuracy, sensi-

findings; impact on
nonradiologist

tivity, and
specificity; rate
(distribution
across cate-
gories)

Rate; TPi, TNj,

FPk, FNl, sensi-

AGS for stroke and
normal or all-image
interpretation

RadiologistsNoMultiturnDWI and ADC mapsInterpret DWIg

and ADCh

maps in acute
stroke cases

Kuzan et al
[41]

tivity, specifici-

ty, PPVm,

NPVn, and accu-
racy

Intraclass corre-
lation coeffi-

Intermodel and
model-physician
agreement

Rehabilitation
physicians

NoMultiturnPatient responses to

selected RBMT-IIo,

MMSEp, and Mo-

CAq items

Evaluate cogni-
tive perfor-
mance in stroke
cases

Fei et al [42]

cient and P val-
ue

Specificity, sen-
sitivity, preci-

AGS for trial- and
case-based lesion lo-

Location description
from original pub-
lished case report

YesSingle turnPatient H&P notesLocate lesions
based on patient
H&P

Lee et al [43]

sion, and
F1-score; ND

calization; different
error analysis

Cohen κ and P
value; AUC-

ROCt

Intermodel and
model-physician
agreement; predic-
tive validity

Emergency depart-
ment physicians

NoSingle turnEMRs periodsCalculate the

NIHSSr score
and predict the
use of tissue

Haim et al
[44]

plasminogen ac-
tivator

Average error
rate and average
error magnitude

AGS for scoring; re-
peatability; effect of
varied case complex-
ity and prompting
design

Scores in original
neuroexamination
notes

NoSingle turnPatient neuroexami-
nation notes without
scores

Calculate

GCSu, H&Hv,

and ICHw

scores

Chen et al
[45]

NDHQR identification;
correct reference ci-

AnesthesiologistsYesMultiturnPatient H&P notesUse of

SNACCx
Blacker et al
[46]

tation; potentially
harmful informationHQRsy to an-

swer questions
on perioperative
stroke and en-
dovascular
treatment anes-
thesia
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Evaluation met-
rics

Evaluation perspec-
tives

Gold-standard
providers or bench-
marks

Reported
time
stamp

Dialogue
patterns

Input data or sourcesTask objectivesStudy

NDContent exhaustive-
ness and clinical ap-
plicability; inference
logic

Physical medicine
and rehabilitation
physicians

NoMultiturnPatient H&P notesGenerate reha-
bilitation pre-
scriptions and

ICFz codes in a
stroke case

Zhang et al
[37]

Administrative assistance (n=9)

Accuracy, preci-
sion, recall, and
F1-score

AGS for extracted
items

Physical therapy ex-
perts

NoSingle turnEHRaa sections with
physical therapy in-
formation

Extract and cate-
gorize physical
rehabilitation
exercise infor-
mation from
stroke cases

Sivarajkumar
et al [47]

F1-score; rateAGS for total and
overlapping triple
extraction; perfor-
mance improve-
ments over baseline
models

Relevant items from
datasets and perfor-
mance of the Cas-

CLNaf benchmark
models

No—aeStroke-related medi-
cal text from SEM-

RCab, CVDEM-

RCac, and CMeIEad

Extract triples
by fine-tuning
and integrating
a relation classi-
fication module

Guo et al [48]

Correct rate and
Cohen κ; count
and rate; correct
rate and P value

AGS for extracted
items; different error
analysis; intermodel
extraction perfor-
mance comparison

Interventional neuro-
radiologists

NoSingle turnMechanical
thrombectomy
records

Extract key in-
formation for
mechanical
thrombectomy

Lehnen et al
[49]

RateAGS for extracted
items

Clinical investiga-
tors

NoMultiturnOutpatient notesExtract IPSSag

format informa-
tion and infer
disease severity

Fiedler et al
[50]

Accuracy, sensi-
tivity, specifici-

ty, AUCah, and
mean squared
error; P value;
average case
processing time

AGS for extracted
and inferred items;
agreement with ju-
nior neuroradiolo-
gists; processing effi-
ciency

Interventional and
junior neuroradiolo-
gists

NoSingle turn
and multi-
turn for
correct for-
mat re-
sponse

Mechanical
thrombectomy
records

Extract and in-
fer key informa-
tion for mechan-
ical thrombecto-
my surgery

Wang et al
[51]

Counts and rate;
ND

AGS for extracted
items; model-clini-
cian comparison in
AGS; inference error
analysis

Relevant items from
original discharge
summaries

NoSingle turnDischarge sum-
maries

Extract stroke
audit data

Goh et al [52]

F1-score, sensi-
tivity, specifici-
ty, and AUC

AGS across time
windows using the
general fine-tuned
models; AGS com-
parison between
general and stroke-
specific fine-tuned
models

Relevant items from
original health insur-
ance data

No—Chronological health
insurance data with
aggregated medical
events

Predict stroke
hospitalization
by fine-tuning
and integrating
classification
layers

Baro et al [53]

Precision, re-
call, and
F1-score; aver-
age case time
savings

AGS for extracted
items; efficiency im-
provement with

EITLai

Radiologists and
clinical medical stu-
dents

NoSingle turnMechanical
thrombectomy
records

Extract key in-
formation for
mechanical
thrombectomy
items

Meddeb et al
[54]

NDReliability and effi-
ciency of EITL
workflow and clini-
cal knowledge align-
ment

NeurologistsNoMultiturnMetadata from the

CRCS-Kaj dataset
and neurologist
queries

Perform data
wrangling on a
large dataset of
patients with
stroke

Kim et al [55]

Direct patient interaction (n=5)
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Evaluation met-
rics

Evaluation perspec-
tives

Gold-standard
providers or bench-
marks

Reported
time
stamp

Dialogue
patterns

Input data or sourcesTask objectivesStudy

NDStroke risk factor re-
view, personalized
health recommenda-
tion provision, and
anxiety alleviation

CliniciansNoMultiturnStroke risk values,
medical literature,
and patient queries

Provide person-
alized stroke
risk insights and
answer medical
queries based
on patient data

Argymbay et
al [56]

3-point Likert
scale; Fleiss κ
and Cohen κ;
ND

Content correctness,
safety, relevance,
and readability; inter-
rater agreement; free
comments for re-
sponses

CliniciansYesSingle turn280 unique ques-
tions

Answer rehabil-
itation ques-
tions for pa-
tients with
stroke and their
caregivers

Neo et al [57]

Word counts,

GFSal,

SMOGam in-

dex, DCSan,

FKRTao, and P
value; keyword
matching
counts

Readability com-
pared with the
Google Assistant;
content relevance

Answers available
on the ASA website

NoSingle turn2 questions about
stroke prevention

from the ASAak

website

Provide non-
medical profes-
sionals with
stroke-related
health informa-
tion

Wu et al [58]

Success rate
across trials and
time; ND

Executability and ef-
ficiency of tasks
among models; re-
sponse process in
free scenarios

Rehabilitation
physicians

NoSingle turnRecognized user
voice commands

Interpret com-
mands and gen-
erate Python
code for hand
exoskeleton
control

Chen et al
[59]

ND; user experi-
ence question-
naire; success
rate across trials
and ND

Executability of path
to targets compared
with joystick con-
trol; intuitive han-
dling; success and
stable control

Predefined targetsNoSingle turnRecognized user
voice commands

Interpret com-
mands and gen-
erate target coor-
dinates for up-
per-limb robot
control

Rifai et al [60]

Automated literature review (n=1)
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Evaluation met-
rics

Evaluation perspec-
tives

Gold-standard
providers or bench-
marks

Reported
time
stamp

Dialogue
patterns

Input data or sourcesTask objectivesStudy

NDGeneral and in-depth
answer correctness;
citation applicabili-

ty; PRISMAap-based
evidence synthesis
results

Review contributorsNoMultiturn6 queries on
medicine, review
conduction, litera-
ture exploration, and
evidence synthesis

Assist in obtain-
ing evidence on
Actovegin’s effi-
cacy for is-
chemic stroke

Anghelescu et
al [36]

amRS: modified Rankin Scale.
bH&P: history and neurological physical examination.
cAGS: agreement with the gold standard.
dND: narrative description.
eMRI: magnetic resonance imaging.
fCT: computed tomography.
gDWI: diffusion-weighted imaging.
hADC: apparent diffusion coefficient.
iTP: true positive.
jTN: true negative.
kFP: false positive.
lFN: false negative.
mPPV: positive predictive value.
nNPV: negative predictive value.
oRBMT-II: Rivermead Behavioral Memory Test–II.
pMMSE: Mini-Mental State Examination.
qMoCA: Montreal Cognitive Assessment.
rNIHSS: National Institutes of Health Stroke Scale.
sEMR: electronic medical record.
tAUC-ROC: area under the receiver operating characteristic curve.
uGCS: Glasgow Coma Scale.
vH&H: Hunt and Hess scale.
wICH: intracranial hemorrhage.
xSNACC: Society for Neuroscience in Anesthesiology and Critical Care.
yHQR: high-quality recommendation.
zICF: International Classification of Functioning, Disability, and Health.
aaEHR: electronic health record.
abSEMRC, stroke EMR entity and entity-related corpus.
acCVDEMRC: cardiovascular EMR entity and entity relationship–labeling corpus.
adCMeIE: Chinese Medical Information Extraction dataset.
aeNot applicable.
afCas-CLN: cascade binary pointer tagging network with conditional layer normalization.
agIPSS: International Pediatric Stroke Study.
ahAUC: area under the curve.
aiEITL: expert in the loop.
ajCRCS-K: Clinical Research Collaboration for Stroke in Korea.
akASA: American Stroke Association.
alGFS: Gunning fog score.
amSMOG: Simple Measure of Gobbledygook.
anDCS: Dale-Chall score.
aoFKRT: Flesch-Kincaid readability test.
apPRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses.

gLLM-driven systems categorized as clinical decision-making
support were mainly used to analyze clinical documentation to
inform medical diagnosis, treatment planning, prognosis
estimation, or rehabilitation strategies in stroke care. While

textual inputs such as the medical history of patients,
neurological examination results, and neuroimaging reports
were common, only 8% (2/25) of the studies analyzed computed
tomography or magnetic resonance imaging scans directly as
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primary input [40,41]. Such gLLM-driven systems were applied
across the stroke care pathway, assisting with neurological
function scoring during triage (eg, the National Institutes of
Health Stroke Scale [44], Glasgow Coma Scale, Hunt & Hess
scale, and intracranial hemorrhage score [45]) and supporting
diagnosis through direct image interpretation [40,41] or lesion
mapping from textual descriptions [43]. In addition, they were
used to inform acute intervention decisions, including eligibility
for thrombectomy [39] or thrombolysis [44] and anesthesia
planning [46]. Moreover, they facilitated rehabilitation through
outcome prediction (eg, 3-month modified Rankin Scale [38]),
cognitive assessment [42], or generation of personalized
rehabilitation plans [37]. Performance evaluation mainly
involved clinician assessment or comparison against predefined
benchmarks derived from the original clinical records.
Additional validation methods often included cross-comparison
against the outputs of clinicians or functionally similar tools
using identical inputs [38,39,42,44], as well as repeatability
checks across multiple models [40,43,45]. Some studies (5/25,
20%) investigated human-computer interaction factors,
examining aspects such as the impact on junior clinicians [40]
or examining the reasoning processes behind model-generated
conclusions [37,39,43,46]. Across these varied approaches,
quantitative metrics (eg, accuracy, rate, F1-score, k value, and
P value), particularly those assessing factual accuracy and output
consistency, were the primary focus of most evaluations.

gLLM-driven systems categorized as administrative support
predominantly focused on alleviating clinician documentation
workload and improving the management and use of clinical
information. The primary functions involved extracting
structured information from clinical text and generating
summaries or other abstract representations to facilitate
downstream use by other health care workers. These tasks used
a variety of clinical data sources, including electronic health
records [47], electronic medical records [48], specialized
procedural records (eg, thrombectomy reports) [49,51,54],
discharge summaries [52], outpatient notes [50], health insurance
claim data [53], and stroke registries [55]. Evaluation methods
for these administrative tasks were similar to those used for
decision support tools. Most often, the alignment of gLLM
outputs with gold-standard annotations was measured [47-55],
or performance was compared against that of human experts or
other specialized systems that were used to analyze identical
data [48,49,51-53]. Quantitative metrics were used most
frequently during performance assessments [47-54]. Beyond
accuracy and alignment, a few studies (3/25, 12%) explicitly
evaluated efficiency. For example, 4% (1/25) of the studies
reported the average time required for automated data extraction
from thrombectomy operative notes [51], whereas another 8%
(2/25) demonstrated significant time reductions using
expert-in-the-loop (EITL) workflows involving gLLMs for
extracting procedural details [54] and processing large-scale
registry data [55].

gLLM-driven systems involving direct patient interaction were
developed primarily to support personalized out-of-hospital
stroke care, reduce patient uncertainty regarding medical

information, and promote adherence to preventive and
rehabilitative behaviors. The main tasks performed by gLLMs
in this regard included (1) answering general stroke-related
queries using embedded knowledge [57,58], (2) generating
individualized preventive guidance by interpreting patient
profiles with relevant literature [56], and (3) translating natural
language commands to control upper-limb exoskeleton robots
during rehabilitation [59,60]. Consequently, study designs
focused on addressing patient needs, either through simulating
responses to public-facing queries [57,58] or by developing
systems intended specifically for lay users [56,59,60].
Assessment strategies for these systems considered both
technical output performance (eg, factual alignment [56-60]
and comparative analyses against alternative methods [59,60])
and key patient-centered outcomes. The latter included metrics
such as readability [57,58], safety [57], personalized support
[57,58], potential for anxiety reduction [56], and overall user
experience [60]. As a result, the open-ended and dialogue-driven
nature of these systems required diverse evaluation
methodologies. These ranged from clinician-led narrative
assessments or reviews [56,57,59,60] and independent scoring
protocols [57] to user feedback questionnaires [60] and standard
quantitative metrics computed by the research teams [58-60].

Only 4% (1/25) of the included studies [36] investigated the
application of gLLM systems to support literature review tasks.
This study involved asking 6 questions to the gLLM, ranging
from general medical knowledge and systematic review
methodology inquiries to specific queries about evidence
synthesis concerning Actovegin’s efficacy for ischemic stroke.
A qualitative evaluation of the gLLM-generated answers
assessed their correctness and applicability for the review
context. The study concluded that all responses generated by
the gLLM were unreliable, resulting in their exclusion from the
final systematic review conducted by the research team. Table
2 provides a summary of the target tasks, implementation
characteristics, and evaluation approaches reported across the
included studies.

Contextual Focus on gLLM-Driven Intervention
Design in Stroke Care
In response to the third subquestion and the context component
of the PCC framework, this review examined the settings
surrounding the design and implementation of the evaluated
gLLM interventions, with further information presented in Table
3. This review considered 3 primary contextual dimensions:
cultural, care, and technical settings. Cultural context referred
to the study location (country) and relevant national and
sociolinguistic backgrounds of the participants (eg, health care
professionals, patients, and caregivers). The care dimension
referred to the specific phase of the stroke care pathway (ie,
prevention, diagnosis, treatment, prognosis, or rehabilitation)
targeted by the intervention and associated data sources. The
technical dimension involved the diverse adaptation choices
evident in intervention development, including approaches used
in instruction design (prompt engineering), inference-time
parameter configurations, and underlying model-level
adaptations.
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Table 3. Summary of generalized large language model–driven intervention design in stroke care.

Other adaptation
strategies

Instruction designAccessFoundation model
or model series

Stage in the stroke
care continuum

CountryStudy

NoneZero shotWeb-based chat in-
terface (ChatGPT)

GPT-3.5PrognosisPortugalPedro et al [38]

NoneZero shot, role
based, context en-

Web-based chat in-
terface (ChatGPT)

GPT-4TreatmentUnited StatesChen et al [39]

hanced, and format
constrained

NoneZero shot, role
based, context en-

Official APIa (via
OpenAI platform)

GPT-4-1106-vi-
sion-preview

DiagnosisGermanyStrotzer et al [40]

hanced, and format
constrained

NoneZero shot and con-
text enhanced

Web-based chat in-
terface (ChatGPT)

GPT-4 VisionDiagnosisTurkeyKuzan et al [41]

NoneZero shot, role
based, and context
enhanced

Web-based chat in-
terface (ChatGPT)

GPT-3.5 and GPT-
4

RehabilitationChinaFei et al [42]

NoneZero shot, chain of
thought, context

UnclarifiedGPT-4Diagnosis—bLee et al [43]

enhanced, and for-
mat constrained

NoneZero shot and con-
text enhanced

Web-based chat in-
terface (ChatGPT)

GPT-3.5 and GPT-
4

Diagnosis and treat-
ment

IsraelHaim et al [44]

NoneZero shot, role
based, and context
enhanced

Web-based chat in-
terface (Bing chat)

GPT-4DiagnosisUnited StatesChen et al [45]

NoneZero shot and con-
text enhanced

Web-based chat in-
terface (ChatGPT)

GPT-4TreatmentUnited StatesBlacker et al [46]

NoneZero shotWeb-based chat in-
terface (ChatGPT)

GPT-4RehabilitationJapanZhang et al [37]

NoneZero shot, few
shot, role based,

Official API (via
Microsoft Azure)

GPT-3.5-turboRehabilitationUnited StatesSivarajkumar et al
[47]

and format con-
strained

Fine-tuning, con-
strained decoding,

—UnclarifiedBARTc-base-Chi-
nese and BART-
large-Chinese

Diagnosis and treat-
ment

ChinaGuo et al [48]

encoding representa-
tion reuse, beam
search, feature fu-
sion, and shared en-
coder weights

NoneZero shot, format
constrained, and
context enhanced

Web-based chat in-
terface (ChatGPT)

GPT-3.5 and GPT-
4

TreatmentGermanyLehnen et al [49]

Temperature set to 0Zero shot, role
based, format con-

Official API (via
Microsoft Azure)

GPT-3.5-turbo-16kDiagnosis, treatment,
prognosis, and rehabil-
itation

United StatesFiedler et al [50]

strained, and con-
text enhanced

NoneZero shot, format
constrained, and
context enhanced

Official APIs (via
unclarified plat-
forms)

GPT-3.5-turbo,
GPT-4, Gemini
Pro, GLM-4, Spark
3, and Qwen-Max

TreatmentChinaWang et al [51]

Temperature set to 0Zero shot, role
based, and format
constrained

Local inferenceLlama 3-70BDiagnosis and treat-
ment

AustraliaGoh et al [52]

Low-rank adaptation
tuning

—UnclarifiedopenCabrita 3BPreventionBrazilBaro et al [53]
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Other adaptation
strategies

Instruction designAccessFoundation model
or model series

Stage in the stroke
care continuum

CountryStudy

NoneZero shot, format
constrained, and
context enhanced

Local inferenceQwen-72B, Mix-
tral 8x7B, and
BioMistral-7B

TreatmentGermanyMeddeb et al [54]

Low-temperature
setting

Few shot, format
constrained, and
context enhanced

Official API (via
unclarified plat-
form)

GPT-4-32kDiagnosis, treatment,
and prognosis

South KoreaKim et al [55]

Temperature set to
0.3

Few shot and con-
text enhanced

Private API (via
Hugging Face on
Amazon SageMak-
er)

BioMistral-7BPreventionCanadaArgymbay et al [56]

NoneZero shot and con-
text enhanced

Web-based chat in-
terfaces (ChatGPT
and Google Bard)

GPT-3.5-turbo and
PaLM 2

RehabilitationSingaporeNeo et al [57]

NoneZero shotWeb-based chat in-
terface (ChatGPT)

GPT-3.5PreventionUnited StatesWu et al [58]

NoneFew shot, role
based, format con-
strained, and con-
text enhanced

Official APIs (via
unclarified plat-
forms)

GPT-4, GPT-3.5-
turbo, and GLM-
130B

RehabilitationChinaChen et al [59]

Temperature set to
0.5; token genera-
tion minimized

Zero shot, format
constrained, and
context enhanced

Official API (via
unclarified plat-
forms)

GPT-4oRehabilitationIndonesiaRifai et al [60]

NoneZero shotWeb-based chat in-
terface (ChatGPT)

Unclarified GPTdTreatment—Anghelescu et al
[36]

aAPI: application programming interface.
bNot applicable.
cBART: bidirectional and auto-regressive transformers.
dGPT: generative pretrained transformer.

Analysis of the cultural dimension identified the geographic
settings for most of the included studies (23/25, 92%). The
studies originated from diverse global locations, with the United
States (6/25, 24%), China (4/25, 16%), and Germany (3/25,
12%) being the most represented countries. Other studies
represented individual contributions from Canada, Australia,
Singapore, Japan, South Korea, Turkey, Portugal, Brazil,
Indonesia, and Israel. With regard to the care dimension, most
gLLM interventions (11/25, 44%) focused on the treatment
phase, where systems were typically used to support clinical
decisions, integrate therapeutic guidelines, or extract specific
treatment data (eg, surgical procedures and medication
regimens) from documentation. The diagnostic phase was the
second most common focus (9/25, 36%), with applications
including lesion localization support, assistance with diagnostic
reasoning, and extraction of pertinent diagnostic details from
clinical records. Considerably fewer studies focused on stroke
prevention (3/25, 12%) or prognosis (3/25, 12%).
Prevention-focused interventions mainly aimed to reduce
subsequent stroke-related hospitalizations or expand public
access to preventive resources. Prognostic applications focused
on assisting clinicians primarily by calculating prognostic scores
or interpreting relevant information documented within clinical
notes.

Regarding the technical dimension, adaptation strategies for the
gLLM-driven systems varied across the included studies. These
choices often reflected trade-offs between computational cost

and task demands, aiming to align model behavior with
task-specific constraints while maintaining stable output control.
For relatively straightforward tasks, a plug-and-play strategy
using standard interfaces was frequently adopted. This involved
accessing closed-source models using web-based chat interfaces
(12/25, 48%) or application programming interface (API) end
points (8/25, 32%) without further model customization. As
task complexity increased or baseline performance proved
inadequate, studies often adopted multiprompt strategies to
better guide model behavior. Established methods included
zero-shot (20/25, 80%), few-shot (4/25, 16%), and
chain-of-thought (1/25, 4%) prompting. Beyond these
approaches, specific prompting techniques were used to improve
control—role-based prompting assigned domain-specific
personas (eg, You are a neurologist); format-constrained
prompting enforced structured outputs (eg, JSON, CSV,
standardized terminologies, and executable code); and
context-enhanced prompting incorporated background
knowledge, task decomposition steps, or self-reflection
instructions to improve response quality.

These prompting strategies were sometimes used alongside
inference-time configurations, among which temperature
adjustment was the most frequently reported technique (5/25,
20%) for modulating output diversity versus coherence. In a
small subset of studies requiring deeper customization (2/25,
8%), locally deployed open-source models underwent
model-level adaptations. These included techniques such as
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parameter-efficient fine-tuning and architectural modifications
to customize the model more closely to the specific clinical
application. A variety of gLLM families were used across the
included studies. The GPT series (OpenAI) was mainly used in
80% (20/25) of the studies. Other models used in multiple
studies included the Mixtral (and its variant, BioMistral) series
(Mistral AI; 3/25, 12%), the PaLM 2 (and its successor, Gemini)
series (Google DeepMind; 2/25, 8%), the Qwen series (Alibaba
Cloud; 2/25, 8%), and the GLM series (Zhipu AI; 2/25, 8%).
Models identified in single studies included Llama 3-70B
(Meta), BART base and BART-large-Chinese (Fudan NLP
Lab), Spark 3 (iFLYTEK), and openCabrita 3B (22h).

Challenges Identified During the Implementation of
gLLM-Driven Interventions in Stroke Care
Through a comprehensive review of the findings of the included
studies, five key challenges were identified in applying gLLMs
across the stroke care pathway: (1) ensuring factual alignment,
(2) maintaining system robustness, (3) enhancing model
interpretability, (4) optimizing operational efficiency, and (5)
facilitating adoption into clinical practice.

Factual alignment was the most frequently discussed concern
[36-55,57-60], reflecting persistent difficulties in ensuring
consistency among system outputs, established clinical
knowledge, and input data. Documented issues included
inaccurate or incomplete responses, hallucinated content, and
output failures. Several studies (11/25, 44%) noted
nondeterministic behavior across repeated runs [41,43,45,51],
failure to retrieve pretrained knowledge [36,40,46,57], limited
inclusion of up-to-date evidence [37,38], and inconsistencies
between the model’s reasoning steps and its final outputs
[39,43]. Robustness issues were mainly associated with
variability in output quality due to changes in input data or
instructions. Data-related concerns included difficulty in
handling rare or complex cases [38-41,43,45,50,54,55,59,60];
managing human-induced input noise such as incompleteness,
ambiguity, or internal contradiction [38-40,44,45,49,51,52,54];
and adapting to distributional discrepancies between training
and deployment data [40,41,43,48,57]. Instruction-level fragility
was also observed as small prompt modifications led to
substantial variations in output [37,40,42,43,46,47,49,50,54,58],
demonstrating the sensitivity of gLLM-driven systems to prompt
design.

Adoption, interpretability, and efficiency were also deemed
potential concerns in applying gLLMs across the stroke care
pathway. Adoption-related challenges involved the need for
EITL oversight  when applying gLLMs
[36,37,39-41,44,45,49,50,52,58]; ongoing efforts to integrate
gLLMs into clinical workflows [40,42,43,45,50,52,55,57,60];

and unresolved issues related to legal compliance, data privacy,
and patient safety [43,50,57]. Interpretability challenges were
associated with the opaque and uncontrollable nature of gLLM
reasoning [41,43,46,55,57], the limited readability of gLLM
responses [57,58], and variations in how individuals understood
the same content [46,57]. Efficiency-related concerns included
token processing constraints [38,39] and trade-offs between
model performance and computational cost [53,59].

Discussion

Principal Findings
This study presented a timely scoping review mapping the
intersection of stroke care and gLLMs, providing practical
insights into current applications within this rapidly evolving
domain. The substantial heterogeneity identified across the
included studies, spanning objectives, methodologies, contexts,
and outcomes, precluded meta-analysis, confirming the
suitability of the chosen scoping review approach. The analysis
classified gLLM-driven interventions into 4 key applications,
as presented in Table 2. Examination within each category
focused on the target tasks assigned to gLLMs, types of input
data used, reported dialogue patterns and intervention timing,
and performance evaluation methods. The findings of this review
demonstrate that existing research has mainly used gLLMs with
clinical document inputs for retrospective tasks such as
supporting clinical decision-making or extracting data relevant
to stroke diagnosis, treatment, prognosis, and rehabilitation. A
smaller subset of studies (5/25, 20%) adopted a more
patient-centered perspective, either by integrating gLLMs with
upper-limb exoskeleton systems to potentially support motor
recovery or by applying them to address open-ended patient
questions regarding stroke prevention. The single study
investigating gLLM use for academic writing support concluded
that the outputs were unreliable for practical use, highlighting
limitations in that specific application context. Given the breadth
of stroke care tasks addressed, considerable diversity in the
technical implementation of these gLLM interventions was
observed, as shown in Table 3. Common technical approaches
involved using GPT-series models, typically accessed through
web-based chat interfaces or API calls and guided primarily by
task-specific prompt engineering strategies. Moreover, this
review identified five critical challenges pertinent to applying
gLLMs effectively and safely across the stroke care pathway:
(1) ensuring factual alignment, (2) maintaining system
robustness, (3) enhancing model interpretability, (4) optimizing
operational efficiency, and (5) facilitating adoption into clinical
practice. Figure 2 illustrates the current landscape of
gLLM-based interventions across the stroke care pathway.
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Figure 2. Current landscape of interventions driven by generative large language models in stroke care.

Need for Rigorous Real-World Evidence to Support
Clinical Translation
gLLMs represent a novel addition to digital health [14,61,62],
creating new avenues for neurological care [17] and offering
significant potential to improve stroke prevention and bridge
gaps in care access. Despite this promise, the evidence base for
gLLMs specifically in stroke care currently relies heavily on
retrospective analyses of clinical documentation and
experimental studies conducted in simulated settings. This
cautious approach likely reflects valid concerns regarding the
potential impact of these nascent technologies on patient safety
and clinical decision-making [63]. Highlighting the feasibility
of real-world assessment in other domains, a recent
cluster-randomized trial in China demonstrated that a
gLLM-driven chatbot effectively improved parental health
literacy concerning human papillomavirus vaccination for
adolescent girls [64]. In contrast, most of the stroke care studies
included in this review (24/25, 96%) did not involve integrating
gLLM-based systems into actual clinical workflows or
conducting real-time interactions with patients. Consequently,
the real-world effects of these systems on health care delivery
efficiency, clinical outcomes, and patient health literacy within
the context of stroke care remain largely unverified. This
significant evidence gap highlights an urgent need within the
stroke research community. Future efforts must prioritize
clarifying evidence requirements and systematically generating

robust real-world data on the feasibility, safety, clinical impact,
and cost-effectiveness of gLLM applications to provide essential
support for clinical translation.

Toward Balanced Process and Outcome Evaluation
For stroke care tasks that depend on interaction between human
users (eg, health care professionals, administrative staff, or
patients and their caregivers) and gLLM-based tools, evaluation
needs to extend beyond outcome-oriented performance metrics.
Incorporating assessments of model reasoning processes and
the dynamics of human-gLLM interaction is critical for
providing a complete understanding. While 8% (2/25) of the
included studies focused solely on noninteractive tasks,
including advanced text representation [48,53], the remaining
studies (23/25, 92%) relied on human-gLLM interaction to
complete stroke care tasks. Among these, more than half (12/23,
52% of the studies) assessed gLLM performance solely based
on how well model outputs aligned with clinical expectations
or predefined gold standards without assessing human-gLLM
interaction processes or model reasoning behavior. While some
of these studies (15/25, 60%) aimed to produce correct responses
in single-turn dialogues, this narrow, outcome-focused
evaluation perspective is insufficient for interventions that rely
on gLLMs’capabilities for open-ended reasoning and interactive
engagement [62]. Several studies (11/25, 44%) acknowledged
simple process-related metrics in logical coherence, efficiency
improvement, and user interaction experience and observed
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effects. It is also important to examine how well gLLM-driven
tools can identify and collect task-relevant information through
multiturn interactions, especially in patient-facing contexts [62].
Fully understanding and ensuring the real-world applicability
and safety of gLLM-based systems in health care settings
requires broadening performance evaluation frameworks to
rigorously include these dynamic processes alongside static
outcomes.

Correction of Technical Reporting Deficiencies
Significant issues were raised regarding the normative reporting
of gLLM intervention designs within the included studies. A
common oversight appeared to be neglecting the fact that
different access methods (eg, web-based chat interfaces) may
use customized configurations or variants of the same underlying
model. This lack of specificity was particularly evident when
models were accessed using web chat interfaces. These often
used restricted-access [65] or proprietary, fine-tuned,
chat-optimized variants [66] (frequently branded as specific
products, eg, ChatGPT) that are not directly equivalent to the
base models released by developers. Despite researchers’
attempts to specify the underlying models, their precise identity
often remained ambiguous. As a result, conflating branded chat
products with broader foundation model families (eg, ChatGPT
with the GPT series) can lead to conceptual confusion and
should be avoided in reporting. Furthermore, this review
identified instances in which API-based access to closed-source
models was inaccurately characterized, for example, as static
version use or analogous to offline deployment [50]. In reality,
such access depends on remote servers where the underlying
models can be updated by the provider without explicit version
notification, challenging assumptions of both offline use and
version stability. Given the rapid iteration cycles common to
gLLMs, consistently time-stamping the input and output stages
during use could aid researchers in documenting and interpreting
the specific model versions or operational states encountered.
However, this practice was uncommon in the reviewed literature,
with only 20% (5/25) of the studies reporting time-stamped
interaction events [38,40,43,46,57]. To maintain analytical rigor
amid these reporting ambiguities, this review adopted a strategy
of consistently referring to general model series (eg, the GPT-4
family) when exact versions or configurations could not be
definitively ascertained from the studies. The observed
heterogeneities and frequent lack of precision in technical
reporting highlight a critical need for the development and
adoption of standardized, transparent guidelines for describing
gLLM-driven intervention designs. Such standards are important
for ensuring accurate interpretation, enabling reproducibility,
and facilitating meaningful cross-study comparability in this
advancing field.

Simple and Homogeneous Task Adaptation Strategies
The design and refinement of gLLM-driven interventions
specifically for stroke care remain in their nascent stages.
Current approaches mainly rely on zero- or few-shot instruction
designs, enhanced using techniques such as context
augmentation, role-based prompting, or format constraints to
guide outputs. While prompt iteration was occasionally used to
improve factual alignment [42,46,50], generated outputs still

often contained inaccuracies or lacked desired nuance. Similarly,
although a small subset of the included studies (2/25, 8%)
investigated domain-specific fine-tuning of open-source models
for better task adaptability, both prompt engineering and basic
fine-tuning strategies appear insufficient for highly complex
clinical settings that require integrating robust logical reasoning
with precise numerical computation. Emerging architectures
such as RAG [55,57] and multiagent systems [52] show promise,
mirroring developments in other medical fields [67-69], but
their empirical validation within stroke care is currently
underexplored. Furthermore, the robustness of gLLM-based
stroke care interventions against unexpected inputs or variations
remains insufficiently examined. The underlying causes of
potential failures were often unexplored due to a lack of
proactive and systematic investigation strategies within the
reviewed studies.

Underexplored Dual Gap in Human-gLLM Interaction
Dynamics
Although intentionally introducing noise or adversarial inputs
is a standard method for stress testing and evaluating robustness
in machine learning [70], most studies (24/25, 96%) appeared
to respond reactively after poor performance was observed,
sometimes relying on subjective speculation regarding failure
modes rather than rigorous empirical analysis. Systematically
analyzing model responses to flawed, edge-case, or adversarial
inputs could yield crucial insights into failure mechanisms,
thereby informing the development of safer and more reliable
gLLMs for stroke care [45,71]. Finally, the rapid iteration cycles
and frequent updates of underlying models introduce significant
uncertainties regarding the long-term performance, reliability,
and transferability of the developed interventions. For example,
it remains unclear how effectively interventions initially
developed and validated on now deprecated models (eg, early
versions of ChatGPT) will function when deployed using
substantially updated successor models (such as GPT-4o) [72].
Therefore, this dynamic landscape requires ongoing evaluation,
validation, and potentially continuous adaptation strategies for
gLLMs intended for clinical use.

While a significant amount of research has focused on gLLM
intervention design and technical optimization, how humans
interact with such systems within the context of stroke care
remains largely underexplored. Although concerns about the
black box nature of gLLM reasoning processes are frequently
discussed, this review suggests that the heterogeneity in users’
subjective interpretations of gLLM outputs presents an equally
critical yet less examined challenge. There appears to be
emerging agreement on the value of EITL frameworks for
deploying gLLMs in real-world settings; however, evidence
from the included studies shows that clinicians can interpret the
exact same generated response quite differently [46,57]. Such
variability in human interpretation may significantly influence
downstream trust in the system; subsequent clinical
decision-making; and, ultimately, patient outcomes in stroke
care.

Beyond interpretation variability, safety concerns are extended
by potential user behaviors and governance gaps. For example,
follow-up reprompting was reportedly used in one study to
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bypass built-in safety restrictions designed to prohibit direct
radiological image interpretation [40], exposing risks related to
both inadequate technology governance and the potential for
deliberate misuse by individuals. Moreover, actionable
guidelines are urgently needed to address broader safety and
ethical concerns, including the legal ambiguities surrounding
artificial intelligence–driven interventions and potential conflicts
between commercial deployment objectives and established
clinical best practices [57].

Consequently, these underexplored dimensions point to a dual
gap that limits research and the clinical translation of gLLMs
in stroke care. The first gap concerns a limited understanding
of optimal gLLM-driven intervention design tailored to specific
stroke care tasks, including defining the operational boundaries
and failure modes of such systems. The second relates to
insufficient investigation into how diverse human users (eg,
health care professionals, patients with stroke, and caregivers)
actually interact with gLLM-based systems and how these
interactions dynamically shape both user understanding and
system outputs.

Future Directions
The application of gLLMs in stroke care, while promising, is
relatively new, with most current interventions representing
early-stage or relatively simple implementations. To enable the
responsible and effective integration of such tools into health
care settings, the development and adoption of formal,
multidimensional frameworks that promote rigorous evaluation
and informed oversight are critical. Future studies attempting
to bridge the gap between potential and practice would also
likely benefit from using mixed methods techniques to gain
deeper, more nuanced insights into how gLLMs actually operate
across diverse stroke care tasks and how they can be most
effectively and safely deployed in complex clinical
environments. In light of the considerations raised in this review,
several priorities emerge for guiding the safe, successful, and
ethical use of gLLMs across relevant stroke care domains,
including clinical work, direct patient support, administrative
tasks, and academic research.

First, real-world evidence should be prioritized. There is a
critical need for reliable prospective strategies guided by clearly
defined research questions and evidence priorities to generate
robust real-world data. Such studies should focus on the clinical
impact, safety, feasibility, and cost-effectiveness of specific
gLLMs implemented in stroke care settings.

Second, transparent technical reporting should be mandated.
The technical design and implementation details of
gLLM-driven systems must be reported with greater precision
and completeness. Standardized reporting should include
accurate naming of models or specific product versions used,
consistent time-stamping of key input and output events during
evaluation, and clear descriptions of how the systems are
accessed (eg, through chat interfaces, API, or local deployment).

Third, evaluation frameworks should be broadened beyond
output accuracy. Existing performance evaluation for gLLMs
requires expansion beyond technical metrics. Future frameworks
must incorporate rigorous methods for assessing critical aspects

of human-gLLM interaction dynamics, model reasoning
processes, context appropriateness, usability, and overall user
experience.

Fourth, validation of advanced task adaptation strategies should
be strengthened. Current task adaptation strategies in
stroke-focused gLLM systems remain simplistic and repetitive,
relying primarily on prompt design and inference-time controls.
These approaches have shown limitations in handling complex
tasks. Future research should develop and evaluate emerging
methods (eg, multiagent collaboration and RAG), which are
being explored for their feasibility in other areas of chronic
disease care.

Finally, mechanisms for safe and effective human-gLLM
interaction should be investigated. There is a critical need to
clarify the behavioral boundaries and failure modes of
gLLM-driven interventions tailored to specific stroke care tasks.
Equally important is the lack of empirical insight into how
diverse users (eg, health care professionals, patients with stroke,
and caregivers) interact with these systems in real-world settings.
Future research should elucidate how these interactions shape
user understanding and dynamically influence system outputs,
supporting the development of more responsive, trustworthy,
and context-aware gLLM applications in stroke care.

Limitations
This review has several limitations related to its scope and the
current state of the literature. First, the decision to exclude
preprints and focus solely on peer-reviewed publications, while
ensuring a certain quality standard, may have omitted important
nascent insights given the rapid technological iteration and
common use of preprint platforms for early dissemination in
the gLLM field. Second, the substantial heterogeneity identified
across the included studies precluded a quantitative synthesis
or meta-analysis of gLLM intervention performance. To mitigate
this, supplementary details summarizing individual study
findings are provided (Multimedia Appendix 4 [36-60]) to give
readers further granularity where possible. Despite these
limitations and the heterogeneity, most reported gLLM-driven
interventions demonstrated encouraging performance on their
specifically defined tasks within the study contexts. Lower
comparative performance was observed in applications focused
on extracting structured clinical data, which may reflect the
maturity and optimization of existing methods (eg, rule-based
systems, conventional machine learning, and earlier deep
learning models) already well suited for these specific tasks. In
studies targeting knowledge-intensive tasks (eg, lesion detection,
report drafting, and evidence integration), mixed or suboptimal
results were often reported, likely attributable more to the
specific study design used than to an inherent limitation of
gLLMs for such tasks generally. Nevertheless, these findings
highlight the need for caution regarding the immediate,
large-scale deployment or formal adoption of current
gLLM-driven interventions in real-world stroke care settings.

Conclusions
As highlighted throughout this review, current research has yet
to establish a coherent, evidence-based foundation addressing
robust intervention design, comprehensive multidimensional
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evaluation, and effective governance for these rapidly evolving
gLLM technologies in stroke care. Consequently, this study
contributes by clarifying the current complex research landscape
concerning gLLM applications in stroke care, providing an

updated review of the strengths and critical gaps in existing
investigations, and identifying key priorities and directions for
future research design and evaluation.
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