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Abstract

Background: Liver failure often results in significant coagulation dysfunction, which is a major complication. Artificial liver
support systems (ALSS) have been used to ameliorate coagulation parameters, but the dynamic nature of these improvements
and the development of predictive models remain insufficiently explored.

Objective: This study aimed to evaluate the effects of ALSS on coagulation function and to develop a dynamic prediction model
using machine learning techniques to predict the improvement trends of coagulation parameters.

Methods: A systematic search was conducted in PubMed, Embase, and other databases to identify relevant studies, resulting
in 18 studies comprising 1771 patients. A meta-analysis was performed to assess the impact of ALSS on coagulation parameters,
including international normalized ratio (INR), prothrombin time (PT), activated partial thromboplastin time (APTT), and
fibrinogen levels. In addition, clinical data from the Medical Information Mart for Intensive Care database were used to construct
prediction models using logistic regression, extreme gradient boosting, random forest, and long short-term memory networks.

Results: Meta-analysis results showed that ALSS significantly improved INR, PT, APTT, and fibrinogen levels (all P<.05),
with the treatment efficacy varying by modality. Among the machine learning models, the random forest model demonstrated
the best performance, achieving an area under the curve of 92.12%. Dynamic INR was identified as the key predictor for coagulation
abnormalities.

Conclusions: This study systematically evaluated the effects of ALSS on coagulation function in patients with liver failure,
demonstrating significant improvements in key parameters such as INR, PT, and APTT, with efficacy varying across different
treatment modalities. Simultaneously, a machine learning model built using intensive care unit clinical data exhibited strong
predictive capability for identifying the risk of coagulation dysfunction, particularly useful in supporting early-stage clinical
recognition of high-risk patients and guiding personalized coagulation management strategies. It is important to emphasize that
this model is positioned as a dynamic risk alert and assessment tool, intended to assist clinical baseline evaluation and nursing
interventions, rather than serving as direct validation of ALSS therapeutic efficacy.

(JMIR Med Inform 2025;13:e76348) doi: 10.2196/76348
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Introduction

Liver failure represents a critical clinical condition frequently
complicated by severe coagulopathy, which significantly
increases bleeding risk [1,2]. The disruption of coagulation
homeostasis may lead to life-threatening complications,

including gastrointestinal hemorrhage and intracranial bleeding,
while potentially triggering disseminated intravascular
coagulation that exacerbates multiorgan dysfunction [3,4]. As
a crucial therapeutic intervention, the artificial liver support
system (ALSS) demonstrates the potential for improving
coagulation parameters through its detoxification, synthetic,
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and metabolic substitution functions [5-8]. However, the
mechanisms underlying ALSS-mediated coagulation
improvement remain insufficiently investigated, particularly
regarding differential effects among various modalities (eg,
plasma exchange [PE] and molecular adsorbent recirculating
system [MARS]). Clinical decision-making is further challenged
by the lack of reliable dynamic monitoring indicators and
predictive tools for optimal treatment timing and duration
adjustment [9,10]. Furthermore, the highly individualized nature
of coagulation dynamics in patients with liver failure cannot be
adequately captured by conventional static tests (eg, prothrombin
time [PT] and activated partial thromboplastin time [APTT])
[11-13]. Therefore, a comprehensive investigation of
ALSS-induced dynamic coagulation changes and the
development of accurate predictive models are clinically
imperative for optimizing individualized treatment strategies.
Addressing this scientific challenge will directly impact bleeding
risk management and overall prognosis in patients with liver
failure.

Although several studies have investigated the effects of ALSS
on coagulation function in patients with liver failure, most suffer
from limitations, such as small sample sizes and single-center
designs, which compromise the reliability and generalizability
of their findings [14]. More notably, the majority of these studies
focus solely on short-term outcomes (eg, changes within 24
hours posttreatment), failing to capture the long-term dynamic
evolution of coagulation parameters [15]. Methodologically,
conventional statistical analyses (eg, t tests and ANOVA) are
inadequate for characterizing temporal trends in coagulation
indicators, limiting their utility for developing precise predictive
models [16-18]. While meta-analyses can synthesize evidence
from multiple studies to enhance statistical power [19], no study
to date has systematically evaluated the differential effects of
ALSS modalities on coagulation function. Advances in machine
learning have demonstrated significant potential for medical
data mining and predictive modeling [20,21]; however, their
application in monitoring coagulation dysfunction in liver failure
remains nascent. A critical gap persists in integrating
multisource heterogeneous clinical data (eg, electronic health
records, laboratory results, and vital signs), as existing studies
have yet to leverage the full potential of large-scale public
databases like Medical Information Mart for Intensive Care
(MIMIC). These methodological limitations hinder clinicians
and nurses from accurately predicting and promptly intervening
in coagulation function changes among patients with liver
failure.

This study uses a multidimensional and multimethod research
strategy to achieve 3 key objectives. First, we conduct a
systematic review and meta-analysis to comprehensively
evaluate the effects of ALSS on coagulation parameters (eg,
international normalized ratio [INR], PT, APTT, and fibrinogen)
in patients with liver failure, while comparing the efficacy of
different treatment modalities. Second, leveraging large-scale
clinical data from the MIMIC database, we apply advanced
machine learning algorithms to develop a dynamic, time-series
predictive model for assessing coagulation function. Third,
using interpretability techniques (eg, Shapley Additive
Explanations [SHAP] value analysis), we identify key predictive

factors influencing coagulation dynamics, providing a theoretical
foundation for clinical interventions. From a scientific
perspective, this study is the first to elucidate the dynamic
mechanisms by which ALSS modulates coagulation function
in liver failure, deepening our understanding of coagulopathy
in this context and advancing precision medicine in the field.
Clinically, our findings offer three major practical applications:
(1) an objective, data-driven decision-support tool to optimize
individualized ALSS treatment strategies; (2) early detection
of coagulation abnormalities, enabling timely interventions to
reduce bleeding complications; and (3) improved allocation of
nursing resources, enhancing health care efficiency and
ultimately patient outcomes. These innovations will significantly
elevate the standard of care for patients with liver failure and
serve as a methodological reference for research on other organ
support therapies.

This study adopts a dual-track integrative strategy, combining
meta-analysis with machine learning modeling, aiming to
comprehensively elucidate the interventional value of ALSS
on coagulation function in patients with liver failure and to
uncover the underlying mechanisms of coagulation risk
prediction across multiple levels. The meta-analysis, based on
18 clinical studies, systematically evaluated the short-term and
long-term improvement effects of different ALSS
modalities—including PE, MARS, and double plasma perfusion
(PP)—on key coagulation indicators, such as INR, PT, APTT,
and fibrinogen. The results confirmed the clinical benefits of
ALSS in reducing the risk of coagulation dysfunction and
provided an evidence-based foundation for subsequent predictive
modeling. However, due to the limited number of patients who
received ALSS treatment in the MIMIC database, the training
population for the machine learning model focused on a broader
cohort of patients with liver failure. The goal was to construct
a generalizable and efficient dynamic coagulation risk
assessment tool applicable to real-time bedside alerts and
optimized resource allocation. We consider this model a
“baseline tool” for risk stratification and timing judgment before
ALSS initiation in clinical practice, laying a methodological
foundation for the development of specialized models based on
larger, ALSS-specific datasets in the future. Therefore, this
study achieves an organic integration from high-level evidence
synthesis to individualized risk prediction, not only enhancing
the understanding of the clinical benefits of ALSS but also
providing a practical path for the precise implementation of
personalized interventional strategies in liver failure
management.

Accordingly, the primary aim of this study is to systematically
evaluate the short-term and long-term effects of ALSS on
coagulation function in patients with liver failure and to further
construct a clinically valuable dynamic risk prediction model
for coagulation dysfunction. The specific objectives are as
follows: (1) to quantify, through systematic review and
meta-analysis, the improvement effects of different ALSS
modalities (such as PE, MARS, and PP) on major coagulation
parameters (INR, PT, APTT, and fibrinogen); (2) to use
real-world clinical data from the MIMIC database and apply
multiple machine learning algorithms to develop predictive
models for early identification of coagulation dysfunction within
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the next 24 hours; and (3) to integrate model interpretability
techniques (eg, SHAP analysis) to identify key predictive
variables associated with changes in coagulation function,
thereby providing theoretical support for personalized treatment
and nursing interventions. Through this integrated strategy, the
study seeks to promote the advancement of precision ALSS
therapy and offers a novel pathway for bleeding risk
management and prognosis improvement in patients with liver
failure.

Methods

Literature Search and Screening
This meta-analysis and systematic review were conducted in
accordance with the PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) guidelines [22]. A
comprehensive literature search was performed across multiple
databases, including PubMed, Embase, Web of Science, and
the Cochrane Library, using a combination of Medical Subject
Headings terms and free-text keywords to ensure thoroughness
and precision. The search strategy incorporated key terms such
as liver failure, artificial liver support (ALS), blood coagulation,
and hemostasis, optimized with Boolean operators (AND and
OR) to balance sensitivity and specificity (refer to Table S1 in
Multimedia Appendix 1 for detailed search queries). To account
for variations in database syntax, the search strategy was tailored
to each platform. In addition, manual screening of reference
lists from included studies was performed to identify potentially
eligible articles not captured by the initial database search. To
confirm the novelty of this study, a search for registered
systematic reviews was conducted in the PROSPERO database.

The screening process was independently carried out by 2
researchers (HW and TH) using EndNote (Clarivate) for
reference management. The selection procedure consisted of
two phases: (1) initial screening based on titles and abstracts to
exclude clearly irrelevant studies, followed by (2) full-text
review of potentially eligible articles, with documented reasons
for exclusion. Any discrepancies between reviewers were
resolved through discussion or adjudication by a third researcher
(LR) to ensure objectivity. Interrater agreement was assessed
using Cohen κ coefficient to quantify screening consistency.
To enhance transparency, the study selection process was
visualized using a PRISMA flow diagram, providing a clear
and reproducible overview of the screening stages.

Inclusion and Exclusion Criteria
Inclusion criteria consisted of (1) study design: randomized
controlled trials, cohort studies, or case-control studies; (2)
participants: patients diagnosed with liver failure according to
international or national guidelines (eg, Asian Pacific
Association for the Study of the Liver, European Association
for the Study of the Liver, and American Association for the
Study of Liver Diseases); (3) intervention: use of ALSS,
including but not limited to PE, double PE, MARS, or
continuous blood purification, either alone or in combination
with standard therapies (eg, medications or supportive care);
(4) outcome reporting: studies must report coagulation
parameters at multiple time points; and (5) key outcomes: at

least one of the following coagulation-related indicators: PT,
APTT, D-dimer, INR, or fibrinogen.

Exclusion criteria included (1) publication type: reviews,
conference abstracts, book chapters, or case reports without
original data suitable for meta-analysis; (2) language:
non-English or non-Chinese publications; and (3) data
limitations: studies that did not report changes in coagulation
function before and after treatment, reported only single
time-point measurements, or provided incomplete or
nonextractable data.

Risk of Bias Assessment
This study used the Newcastle-Ottawa scale (NOS) to
systematically evaluate the risk of bias in the included studies,
ensuring the reliability and scientific validity of the
meta-analysis results. The NOS assesses study quality across
three domains with a maximum score of 9 points: (1) selection
(maximum 4 points)—evaluates whether cases and controls
were clearly defined, representative of the target population,
and selected using an appropriate study design; (2) comparability
(maximum 2 points)—assesses whether key confounding factors
were accounted for through matching or statistical adjustment;
and (3) outcome or exposure assessment (maximum 3
points)—examines the reliability of outcome or exposure
measurement, adequacy of follow-up duration, and handling of
attrition. Based on the NOS scores, study quality was
categorized as follows: ≥7 points=high quality (low risk of bias);
5-6 points=moderate quality (moderate risk of bias); ≤4
points=low quality (high risk of bias).

Two independent reviewers (HW and TH) conducted bias
assessments, with cross-verification of results. Discrepancies
were resolved through discussion or adjudication by a third
reviewer (LR). The risk of bias was visualized using a risk of
bias graph, and a detailed summary was provided in Multimedia
Appendix 1. All assessments and graphical representations were
generated using Review Manager (RevMan 5.4 [Cochrane
Collaboration]).

Data Extraction
The following data were extracted from each included study:
(1) study characteristics: first author, publication year, study
design (randomized controlled trial, cohort study, or case-control
study), country, and journal; (2) participant characteristics:
patient type (viral hepatitis-related liver failure), sample size,
sex ratio, mean age, baseline disease severity (Child-Pugh score
and model for end-stage liver disease score), and coagulation
function (PT, APTT, D-dimer, INR, and fibrinogen); (3)
methodological features: type of ALS therapy (PE,
hemoperfusion, MARS, continuous renal replacement therapy
[CRRT]) and treatment protocol (single vs multiple sessions,
treatment duration); and (4) outcome measures: the primary
outcomes included changes in coagulation parameters (PT,
APTT, INR, and fibrinogen before and after treatment). If a
study reported multiple follow-up measurements, the longest
follow-up data were extracted to assess long-term effects. For
missing data, the original authors were contacted for
clarification. If unavailable, multiple imputations were applied.
Two researchers (LR and TJ) independently extracted all data,
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with cross-verification to resolve discrepancies; a third
researcher (HW) adjudicated unresolved disagreements. The
final dataset was entered into Microsoft Excel and
double-checked to ensure accuracy and consistency.

Meta-Analysis Statistical Methods
This study used the “meta” package in R software (version 4.2;
R Core Team) to conduct a meta-analysis evaluating the
dynamic changes in coagulation function during ALS therapy
in patients with liver failure. Heterogeneity across studies was

assessed using the I2 statistic and Q-test. A fixed-effects model

was applied when I2<50% and P>.05, indicating negligible

heterogeneity. In cases of significant heterogeneity (I2≥50%
and P≤.05), a random-effects model was used, followed by an
exploration of potential heterogeneity sources. The pooled effect
size was calculated based on data type: standardized mean
difference or mean difference with 95% CIs for continuous
variables, and odds ratios or risk ratios with 95% CIs for
dichotomous variables. Results were visualized using forest
plots to illustrate individual and pooled effect estimates.

To further investigate the key factors influencing coagulation
function, we conducted subgroup analyses based on the
following variables: type of ALS (PE vs hemoperfusion vs
MARS vs CRRT), liver failure classification (acute liver failure
[ALF], acute-on-chronic liver failure [ACLF], and chronic liver
failure), and etiology of liver failure (viral hepatitis-induced vs
cirrhosis-induced liver failure).

To assess the robustness of the findings, a sensitivity analysis
was performed using the leave-one-out method, in which each
study was systematically excluded before rerunning the
meta-analysis. This approach allowed us to evaluate whether
any single study disproportionately influenced the overall
results. A significant change in the pooled effect size following
the exclusion of a particular study would suggest that it was a
key driver of the meta-analytic findings.

Publication bias was preliminarily assessed using funnel plots
and further examined through Egger linear regression test and
Begg test. A statistically significant result (Egger test P<.05)
was considered indicative of potential publication bias.

Data Extraction and Cleaning From Public Databases
This study used the MIMIC-IV-3.1 database, released by the
Massachusetts Institute of Technology (MIT), which contains
clinical data from patients admitted to the intensive care unit
(ICU) at Beth Israel Deaconess Medical Center (BIDMC)
between 2008 and 2019. Data extraction was performed using
Navicat Premium (v15.0.12; PremiumSoft CyberTech Ltd) and
structured query language. The inclusion criteria were (1)
first-time ICU admission, (2) ICU stay duration exceeding 48
hours, and (3) a diagnosis of liver failure based on International
Classification of Diseases codes (K704, K7040, K7041, K72,
K720, K7200, K7201, K721, K7210, K7211, K729, K7290,
K7291, and K9182).

The extracted clinical variables comprised 3 categories:
demographic and admission characteristics, vital signs, and
laboratory results. Demographic data included age, sex, race,
admission time, ICU admission and discharge time, and hospital

ID. Vital signs, such as heart rate, respiratory rate, oxygen
saturation, body temperature, systolic blood pressure (BP), and
diastolic BP, were recorded based on the first measurement after
ICU admission. Laboratory tests covered liver and kidney
function (alanine aminotransferase, aspartate aminotransferase,
total bilirubin [TBIL], creatinine, urea, and albumin), complete
blood count (white blood cell count, platelet count, hemoglobin,
and hematocrit), inflammatory markers (C-reactive protein),
and coagulation parameters, including the INR (PT), partial
thromboplastin time (PTT), and functional fibrinogen. All
coagulation-related measurements during the ICU stay were
extracted for dynamic predictive modeling, whereas static
features were derived from the first recorded value after ICU
admission. Data cleaning and imputation followed established
protocols [23].

The clinical data used in this study were derived from the
publicly available MIMIC-IV database (version 4.0), jointly
developed by MIT and BIDMC. The database has been approved
by the Institutional Review Board of BIDMC and the ethics
committee of MIT and is accessible to qualified researchers
who have completed the required credentialing course. All
authors of this study completed the Collaborative Institutional
Training Initiative program data usage training and obtained
PhysioNet Credentialed Access to MIMIC. This study strictly
adhered to the data usage agreement and did not involve any
personally identifiable patient information, thus complying with
ethical standards and requiring no additional ethical approval.

Data Cleaning and Missing Value Handling
Before model construction, we conducted systematic cleaning
and preprocessing of the raw clinical data from the MIMIC-IV
v3.1 database. All data were merged based on the unique patient
identifier (subject_id), integrating demographic information,
vital signs, laboratory test results, and ICU admission and
discharge times across multiple tables. The analysis window
was limited to the first 24 hours following ICU admission.

To ensure the stability and interpretability of variables in the
model, only candidate features with high sampling frequency
and clear clinical relevance were included, and variables with
a missing rate greater than 20% were excluded. For features
with a missing rate between 5% and 20%, multiple imputation
was performed to preserve the covariate structure as much as
possible. For features with sporadic missing values, group-level
median or mean imputation was applied. Categorical variables
such as sex and race, which had low rates of missingness, were
imputed using the mode.

For dynamic time-series variables such as INR and PTT, we
applied intrasample linear interpolation or forward and backward
filling methods to handle missing data. In addition, the number
of missing values per variable was included as an auxiliary input
feature in the model to reflect potential uncertainty in the data.
To eliminate the influence of extreme outliers, we set clinically
reasonable cutoff thresholds based on existing literature and
expert knowledge, applying percentile truncation or direct
exclusion as appropriate.

All numerical variables were standardized using z score
normalization before model input to eliminate differences in
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measurement scale, while categorical variables were converted
into dummy variables using one-hot encoding.

Sliding Window Feature Extraction
For each coagulation function record, the collection time
(charttime) was treated as the current time point. We then
extracted data from the preceding 24-hour window to derive
statistical features for 3 key coagulation indicators: INR, PTT,
and functional fibrinogen. For each indicator, 6 statistical
measures were computed: mean, maximum (max), minimum
(min), standard deviation (SD), the most recent value (last),
and the slope of the linear regression trend (slope). This process
generated a total of 18 time-series dynamic features. To ensure
that the extracted features accurately reflected dynamic changes
during ICU stays, only valid in-ICU records were included,
thereby constructing an ICU-specific dynamic prediction dataset.

Label Construction
This study adopts a 24-hour observation window following the
current time point to construct a binary label variable. The label
is determined based on clinically established diagnostic
thresholds for coagulopathy. A patient is classified as having a
“coagulopathy event” (label=1) if any of the following abnormal
indicators occur within the observation window: INR>1.5,
PTT>60 seconds, or fibrinogen<150 mg/dL. Conversely, if none
of these criteria are met, the case is labeled as 0. Records with
insufficient laboratory data to determine abnormality are
assigned a missing label (label=NaN) and excluded before
modeling.

Static Model Construction
The static model incorporates patient features recorded upon
ICU admission, including demographic characteristics (eg, sex,
age, and race), liver and kidney function metrics, vital signs,
and statistical features (mean, maximum, minimum, SD, last
recorded value, and slope) of coagulation parameters (INR,
PTT, and fibrinogen). The target variable is defined as the
occurrence of a coagulation abnormality within 24 hours of the
current time point, where an abnormality is identified if any of
the following criteria are met: INR>1.5, PTT>60 seconds, or
fibrinogen<150 mg/dL. Three supervised learning
algorithms—logistic regression (LR), random forest (RF), and
extreme gradient boosting (XGBoost)—were used for model
development.

To prevent data leakage, the dataset was partitioned into training
and testing sets (80:20 ratio) using a group-based hold-out split,
ensuring that samples from the same patient (subject ID) were
exclusively allocated to either set. During model training,
stratified group k-fold cross-validation (5 folds, preserving class
balance and group separation) was applied to evaluate
performance metrics, including the mean area under the curve
(AUC), F1-score, accuracy, sensitivity, and specificity.
Subsequently, the final models were refit on the entire training
set and assessed for generalizability on the independent test set.

To prevent information leakage caused by the presence of the
same patient in both the training and test sets, we adopted a
group-based splitting strategy based on subject ID for static
model development. Patients were randomly assigned to the

training and test sets in an 80:20 ratio, resulting in 2764 patients
(80% of the total 3456) in the training set and 692 patients (20%)
in the test set. On the training set, we developed several static
models—including LR, RF, and XGBoost—and evaluated their
performance using the StratifiedGroupKFold method (5-fold
cross-validation with stratification and grouping). This approach
ensured robust estimation of average performance metrics,
including AUC, F1-score, accuracy, sensitivity, and specificity.
Model-specific parameters are detailed in Table S2 in
Multimedia Appendix 1. Based on this, final models were
refitted on the entire training set and evaluated on the
independent test set to assess their generalizability.

Dynamic Long Short-Term Memory Model
Construction
For dynamic modeling, we used a long short-term memory
(LSTM) recurrent neural network to analyze the constructed
time-series data. Each sample consisted of a sequence of 5
consecutive time points, with each time point represented by
sliding-window statistical features. The label indicated whether
coagulation dysfunction occurred within 24 hours after the last
time point in the sequence. The specific parameters are provided
in Table S2 in Multimedia Appendix 1.

Model Evaluation and Visualization
The performance of each model was evaluated on the test set
using the following metrics: accuracy, F1-score, AUC,
sensitivity, specificity, and precision. Visual representations
included the receiver operating characteristic (ROC) curve,
precision-recall (PR) curve, calibration curve, decision curve
analysis, and a confusion matrix heatmap. The AUC values
were computed with 95% CIs using the bootstrap method.

Robustness Validation and Model Interpretation
To enhance model robustness, the static model was further
evaluated using 5-fold StratifiedGroupKFold cross-validation.
This approach ensured data stratification by subject_id,
maintaining label distribution while preventing data leakage.
Performance metrics were reported as mean (SD).

Subsequently, model interpretability analysis was conducted
using the best-performing RF model. Global feature importance
rankings were derived using the Gini index, while SHAP values
quantified the average contribution of each variable to model
predictions. The most critical clinical predictors were identified
and visualized to illustrate their impact on model outputs.

Ethical Considerations
This study does not contain any studies with human participants
or animals performed by any of the authors.

Results

Literature Search Results
As illustrated in Figure 1, a total of 1256 studies were retrieved
from the database. After removing 263 duplicate records, 993
studies underwent title and abstract screening. Following initial
screening, 921 studies that did not meet the inclusion criteria
were excluded, leaving 72 studies for full-text evaluation. After
a rigorous assessment, an additional 59 studies were excluded
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due to mismatches in study design, intervention methods, or
outcome measures, resulting in 18 studies being included in the

systematic review and meta-analysis.

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) literature screening flowchart.

All 18 included studies were cohort or case-control designs,
examining various ALSS (eg, PE, MARS, and PP). These
studies collectively involved 1771 participants and reported
changes in coagulation parameters—including INR, PT, APTT,
and fibrinogen—before and after treatment. The study

populations comprised patients with ALF and ACLF, with
etiologies such as viral hepatitis, toxic exposure, infections, and
metabolic disorders. The key characteristics of the included
studies are summarized in Table 1.
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Table 1. Basic features of included studies.

IndicatorTreatment typeBaseline disease
severity

Sex ratio (male/fe-
male), mean (SD)

Age
(y)

EtiologyParticipant
category

Research
design

Study

aPEc+CRRTdMELDb≥3050.6 (7.8)21CirrhosisACLFaCohort
study

Kounis et al
[24]

bcPEMELD≥3031.67 (13.56)36ToxicationALFeCohort
study

Ninan et al [25]

aPE+CRRTChild-Pugh Grade C7 (6.67)39InfectionALFCohort
study

Yang et al [26]

bcPEChild-Pugh Grade C1.83 (0.89)21ToxicationALFCohort
study

Hu et al [27]

abdPE+PPg20≤MELD<3046.52 (11.38)365HBVfACLFCohort
study

Huang et al [28]

aMARSi—h49.7 (7.5)15Liver trans-
plantation

ACLFCohort
study

Lee et al [29]

abPE20≤MELD<3050.4 (10.7)45HBVACLFCase-con-
trol study

Li et al [30]

aPE+CVVHDFj20≤MELD<3032.0 (9.6)19ToxicationALFCohort
study

Mohanka et al
[31]

bMARSCTPk Grade A37.13 (18.37)6ToxicationALFCase-con-
trol study

Sorodoc et al
[32]

bdPE20≤MELD<30—250VirusACLFCohort
study

Chen et al [33]

dMARSMELD≥3059 (13.71)49Primary liver
failure

ALFCohort
study

Falkensteiner et
al [34]

adPE+CVVHDF10≤PRISMl<2052 (18.25)24InfectionALFCohort
study

Colak and Ocak
[35]

aSAEm—60.2 (6.25)5—ALFCohort
study

Gong et al [36]

abPEMELD≥3023.5 (3.625)42HBVALFCohort
study

Kulkarni et al
[37]

aPEMELD<2052 (18.4)43ToxicationALFCohort
study

Stöckert et al
[38]

aPENWI≥119 (7.41)37Metabolic dis-
eases

ALFCohort
study

Pawaria et al
[39]

cPE—50.6 (2.86)20HBVACLFCase-con-
trol study

Hung et al [40]

aPE20≤MELD<3050.7 (9.2)60HBVACLFCohort
study

Wan et al [41]

aACLF: acute-on-chronic liver failure.
bMELD: model for end-stage liver disease.
cPE: plasma exchange.
dCRRT: continuous renal replacement therapy.
eALF: acute liver failure.
fHBV: hepatitis B virus.
gPP: plasma perfusion.
hNot available.
iMARS: molecular adsorbent recirculating system.
jCVVHDF: continuous veno-venous hemodiafiltration.
kCTP: Child–Turcotte–Pugh.
lPRISM: pediatric risk of mortality.
mSAE: severe adverse event.
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Risk of Bias Assessment
All 18 observational studies included in this meta-analysis were
evaluated for risk of bias using the NOS. Among them, 16
studies were rated as high quality (NOS score≥7), indicating
robust methodological rigor in case selection, comparability
between groups, and exposure assessment. The remaining 2

studies were classified as moderate quality (score=6), primarily
due to incomplete follow-up data or unclear exposure assessment
methods. No studies were deemed low quality (score≤5).

Overall, the included studies demonstrated high methodological
quality, enhancing the reliability of our meta-analysis findings.
Detailed NOS scores are presented in Table 2.

Table 2. Risk of bias assessment summary: quality evaluation for each included study using the modified Newcastle-Ottawa scale.

InterpretationTotalExposureaComparabilityaSelectionaStudy

Q8Q7Q6Q5Q4Q3Q2Q1

Case-control studies

High quality8—b1121111Sorodoc et al [32]

High quality911121111Hung et al [40]

Cross-sectional studies

High quality911121111Kounis et al [24]

High quality911121111Ninan et al [25]

High quality8111211—1Yang et al [26]

High quality7——121111Hu et al [27]

High quality8111211—1Huang et al [28]

High quality911121111Lee et al [29]

High quality8111211—1Mohanka et al [31]

Moderate quality6——111111Chen et al [33]

High quality8—1121111Falkensteiner et al [34]

High quality7——121111Colak and Ocak [35]

Moderate quality6——111111Gong et al [36]

High quality911121111Kulkarni et al [37]

High quality8111211—1Stöckert et al [38]

High quality911121111Pawaria et al [39]

High quality8111211—1Wan et al [41]

High quality6——111111Li et al [30]

aThe scoring system ranges from 0 to 9 points. Higher scores indicate better methodological quality.
bNot available.

Meta-Analysis Results: INR
A total of 12 studies (encompassing 731 patients) were included
to evaluate changes in INR before and 24 hours after ALS

treatment. The meta-analysis revealed a significant reduction
in INR posttreatment, although with considerable heterogeneity
(Figure 2A).
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Figure 2. Meta-analysis of the short-term effect of artificial liver support (ALS) on international normalized ratio improvement and its heterogeneity
sources. (A) Forest plot comparing international normalized ratio changes within 24 hours before and after ALS treatment; (B) subgroup analysis
stratified by ALS modality; (C) subgroup analysis stratified by etiology. ALSS: artificial liver support system; CRRT: continuous renal replacement
therapy; CVVHDF: continuous veno-venous hemodiafiltration; HBV: Hepatitis B virus; MARS: molecular adsorbent recirculating system; PE: plasma
exchange; PP: plasma perfusion; SAE: severe adverse event; SMD: standardized mean difference [33,35,37-40,44-48,50].

To investigate potential sources of heterogeneity, we conducted
3 subgroup analyses. In the ALS modality subgroup analysis,
different treatment modalities exhibited significant variations
in INR improvement. PE alone demonstrated the most
pronounced reduction in INR, albeit with high heterogeneity.
In contrast, the PE+CRRT group showed stable and significant
effects alongside markedly reduced heterogeneity (Figure 2B),
suggesting that treatment modality may be a key factor
influencing efficacy and heterogeneity. The etiology-based
subgroup analysis indicated that patients with hepatitis B virus
(HBV) or infections exhibited more significant therapeutic
effects, whereas those with cirrhosis or metabolic diseases
showed smaller or nonsignificant effect sizes. Intergroup
differences were statistically significant (Figure 2C), implying
that underlying etiology may contribute to variations in INR
improvement. The disease-type subgroup analysis revealed that
patients with ACLF had greater INR improvement than patients
with ALF, although the difference was not statistically
significant (Figure S1A in Multimedia Appendix 1).

Sensitivity analysis (Figure S1B in Multimedia Appendix 1)
demonstrated consistent pooled effect directions and minimal

fluctuations in I2 upon sequential exclusion of individual studies,

supporting the robustness of the findings. In addition, the funnel
plot exhibited approximate symmetry (Figure S1C in Multimedia
Appendix 1), indicating a low likelihood of publication bias
and further strengthening the reliability of the conclusions.

In summary, this study demonstrates that ALS significantly
improves INR levels in patients with liver failure, with treatment
efficacy potentially influenced by therapeutic modality and
underlying etiology.

To evaluate long-term coagulation function changes following
ALS therapy, we conducted a meta-analysis of 2 studies
reporting INR values before treatment and at 24 months
posttreatment. The results demonstrated a statistically significant
reduction in INR at 24 months compared with baseline, although
with considerable heterogeneity (Figure 3A). Furthermore, we
compared INR changes between the 24-hour and 24-month time
points to assess differences in short-term versus long-term
efficacy. The pooled analysis, which included the same 2
studies, revealed that INR remained significantly lower at 24
months than at 24 hours, with statistical significance, suggesting
that ALS therapy may have a long-term effect on improving
coagulation function (Figure 3B).
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Figure 3. Meta-analysis of the effects of artificial liver support (ALS) on international normalized ratio (INR) improvement at different posttreatment
time points. (A) Forest plot comparing INR changes between pre-ALS and 24 months post-ALS; (B) forest plot comparing INR changes between 24
hours and 24 months post-ALS. SMD: standardized mean difference [39,47].

Despite moderate heterogeneity, the findings consistently
indicate a progressive decline in INR over long-term follow-up,
supporting the stability and durability of ALS therapy in
enhancing coagulation.

In conclusion, ALS therapy significantly and persistently
improves INR levels in patients with liver failure, although its
efficacy may be influenced by treatment modalities and
underlying etiologies.

Meta-Analysis of PT Levels Before and 24 Hours After
Treatment
A total of 7 studies (combined sample size=765 patients) were
included to evaluate changes in PT 24 hours before and after
ALS treatment. The pooled analysis revealed a significant
reduction in PT levels posttreatment, with moderate
heterogeneity observed (Figure 4A).

Figure 4. Meta-analysis of PT changes before and after artificial liver support (ALS) treatment, with subgroup analyses. (A) Forest plot of PT changes
within 24 hours post-ALS versus pre-ALS; (B) subgroup analysis of PT changes by ALS type; (C) subgroup analysis by etiology; (D) subgroup analysis
by disease classification. ACLF: acute-on-chronic liver failure; ALF: acute liver failure; ALSS: artificial liver support system; HBV: Hepatitis B virus;
MARS: molecular adsorbent recirculating system; PE: plasma exchange; PP: plasma perfusion; SMD: standardized mean difference [34,36,37,39,41,42,46].

Subgroup analysis by ALS type demonstrated statistically
significant differences between groups, with the PE subgroup

exhibiting no heterogeneity (I2=0). This suggests that the type

of ALS may contribute to heterogeneity and influence the degree
of coagulation improvement (Figure 4B). Etiology-based
subgroup analysis indicated no significant differences between
HBV-related liver failure and toxic liver failure groups, with
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the latter subgroup showing no heterogeneity (I2=0). This
implies that etiology may be a source of heterogeneity (Figure
4C). Disease-type subgroup analysis found no significant
difference between ACLF and ALF groups (P=.28), with the

ALF subgroup displaying no heterogeneity (I2=0), suggesting
disease type as a potential source of heterogeneity (Figure 4D).

Sensitivity analysis demonstrated that the pooled effect size
remained stable after the sequential exclusion of individual
studies, with no substantial changes in heterogeneity, indicating
robust findings (Figure S2A in Multimedia Appendix 1). Funnel
plot symmetry suggested no significant publication bias (Figure
S2B in Multimedia Appendix 1).

In conclusion, ALS significantly improves PT levels, with
treatment type, etiology, and disease classification identified as
potential key sources of heterogeneity.

Meta-Analysis of Fibrinogen Levels Before and 24
Hours After Treatment
This meta-analysis included 4 studies comprising 688 patients
to evaluate changes in fibrinogen levels before and after ALS
treatment. The results demonstrated a slight decrease in
fibrinogen levels posttreatment, with moderate heterogeneity
observed in the overall analysis (Figure 5A).

Figure 5. Meta-analysis of the effect of artificial liver support (ALS) on fibrinogen levels in patients with liver failure. (A) Forest plot of fibrinogen
level changes pre- and post-ALS; (B) subgroup analysis by ALS type; (C) sensitivity analysis using the leave-one-out method. ALSS: artificial liver
support system; MARS: molecular adsorbent recirculating system; PE: plasma exchange; PP: plasma perfusion; SMD: standardized mean difference
[37,42-44].

Subgroup analysis by ALS therapy type revealed that the PE+PP
subgroup exhibited the most significant reduction in fibrinogen

levels, with statistically significant intergroup differences.

Notably, the PE subgroup showed no heterogeneity (I2=0%)

JMIR Med Inform 2025 | vol. 13 | e76348 | p. 11https://medinform.jmir.org/2025/1/e76348
(page number not for citation purposes)

Wang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


(Figure 5B), suggesting that treatment type may be a key factor
influencing fibrinogen level changes and a potential source of
heterogeneity. In contrast, subgroup analyses based on etiology
and disease type showed no statistically significant intergroup
differences, nor did they substantially alter heterogeneity (Figure
S3A-B in Multimedia Appendix 1).

Sensitivity analysis indicated that the exclusion of individual
studies only significantly reduced heterogeneity (to 15.3%)
upon the removal of Huang et al [28] (Figure 5C), identifying
it as a potential source of heterogeneity. Funnel plot analysis
demonstrated a generally symmetrical study distribution with
no evident publication bias (Figure S3C in Multimedia Appendix
1).

In conclusion, ALS therapy has a limited effect on fibrinogen
levels, and the observed heterogeneity may primarily stem from
differences in treatment modalities.

Meta-Analysis of APTT Levels Before and 24 Hours
After Treatment
A total of 3 studies (comprising 77 patients) were included to
evaluate changes in APTT before and after ALS therapy. The
meta-analysis revealed a significant reduction in APTT levels
posttreatment, though moderate heterogeneity was observed
(Figure 6A).

Figure 6. Meta-analysis of the effect of artificial liver support on APTT in patients with liver failure. (A) Forest plot of APTT changes pre- and
post–artificial liver support; (B) subgroup analysis by disease type; (C) subgroup analysis by etiology; (D) sensitivity analysis. ACLF: acute-on-chronic
liver failure; ALF: acute liver failure; ALSS: artificial liver support system; HBV: Hepatitis B Virus; SMD: standardized mean difference [34,36,49].
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To investigate potential sources of heterogeneity, subgroup
analyses were performed based on disease type and etiology.
The disease-type subgroup analysis demonstrated that patients
with ACLF exhibited a greater improvement in APTT than
patients with ALF, with a statistically significant intergroup
difference. Notably, heterogeneity within the ALF subgroup
was 0%, suggesting that disease type may contribute to
heterogeneity and influence the degree of coagulation
improvement (Figure 6B). The etiology-based subgroup analysis
indicated that patients with HBV showed a more pronounced
APTT improvement than those with toxic liver injury, with
significant intergroup differences and 0% heterogeneity in the
toxic etiology subgroup. This further supports etiology as a
potential source of heterogeneity and a modifier of coagulation
function (Figure 6C).

Sensitivity analysis confirmed the robustness of the pooled
effect size after excluding Hung et al [40], with heterogeneity

(I2) decreasing to 0% (Figure 6D). Funnel plot symmetry
suggested no significant publication bias (Figure S4 in
Multimedia Appendix 1).

In summary, ALS therapy significantly improves APTT levels,
with heterogeneity likely attributable to differences in disease
type and etiology.

This study demonstrates that ALS therapy significantly enhances
multiple coagulation parameters in patients with liver failure,
particularly in reducing INR and PT while improving APTT.
The long-term improvement in INR suggests long-term
therapeutic benefits in coagulation support. Treatment efficacy
varies significantly depending on the artificial liver modality
(eg, PE, double PE, and MARS), etiology (eg, viral hepatitis
vs toxic liver failure), and disease type (ALF vs ACLF), which
are key contributors to interstudy heterogeneity. In contrast,
improvements in fibrinogen levels were relatively limited, with
variability primarily influenced by treatment modality. These
findings underscore the importance of individualized coagulation
management strategies in ALS therapy, optimizing treatment
efficacy while providing evidence-based guidance for
coagulation monitoring and clinical care.

Dynamic Coagulation Risk Prediction in Patients With
Liver Failure
Based on previous meta-analysis findings, this study confirms
that ALS therapy significantly improves coagulation function

in patients with liver failure across multiple time points,
demonstrating clear dynamic trends in core indicators (INR,
PT, APTT, and fibrinogen). However, current clinical practice
still lacks individualized predictive tools for coagulation
dysfunction, hindering precise intervention and dynamic
monitoring. To address this gap, we further integrated clinical
data from the MIMIC database to develop a machine
learning–based predictive model. By leveraging dynamic
coagulation indicators as key features, this model explores
predictive pathways for coagulation abnormalities, aiming to
provide an intelligent decision-support tool for the early
identification of high-risk patients.

A total of 3456 ICU patients with liver failure were included
from the MIMIC-IV database based on strict inclusion and
exclusion criteria. Patients were stratified by ID and randomly
assigned to the training cohort (n=2764) and independent
validation cohort (n=692). Table 3 presents the baseline
demographic characteristics, vital signs, and laboratory
parameters of all patients. Overall, most features were
well-balanced between the training and validation sets, with no
statistically significant differences. Specifically, there was no
significant difference in age distribution between the 2 cohorts
(P=.57), with 2262 patients (65.5%) younger than 65 years. A
statistically significant difference was observed in sex
distribution (P<.001), with a slightly higher proportion of males
(2140/3456, 60.9%). Regarding race, White patients accounted
for the largest proportion (1942/3456, 56.2%), while the
proportion of Asian patients was slightly higher in the validation
cohort (P=.02). For laboratory parameters—including liver
function markers (alanine aminotransferase, aspartate
aminotransferase, TBIL, and alkaline phosphatase), renal
function (creatinine and urea), inflammatory marker (C-reactive
protein), complete blood count (platelet count, hemoglobin, and
hematocrit), coagulation indicators (INR_PT, PTT, and
fibrinogen), and vital signs (heart rate, respiratory rate, oxygen
saturation, and BP)—the overall distributions between the
training and validation sets were consistent. Only hemoglobin
(P=.02) and hematocrit (P=.02) showed mild differences,
suggesting slight variations in hemoglobin levels among some
patients.

In conclusion, the training and validation cohorts exhibited a
strong balance in key clinical and laboratory characteristics,
supporting their appropriateness for subsequent model
development and validation.
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Table 3. Baseline characteristics of patients in training and validation cohorts: demographic data, vital signs, laboratory parameters, and comparative
statistics.

P valueTest dataTrain dataAll dataGroup

nana69227643456N

Age (y), n (%)

.57246 (35.6)948 (34.3)1194 (34.6)≥65

.57446 (64.6)1816 (65.7)2262 (65.5)<65

Sex, n (%)

<.001228 (33)1124 (40.7)1352 (39.1)Female

<.001464 (67)1640 (59.3)2104 (60.9)Male

Race

.1764 (9.2)210 (7.6)274 (7.9)Black

.22374 (54)1568 (56.7)1942 (56.2)White

.0230 (4.3)70 (2.5)100 (2.9)Asian

.73224 (32.4)916(33.1)1140 (33)Other

.20493.02 (1037.01)435.07 (926.86)446.69 (950.08)ALTb, mean (SD)

.59543.15 (984.00)567.76 (1042.23)562.95 (1031.00)ASTc, mean (SD)

.136.66 (9.05)6.09 (8.62)6.20 (8.71)TBILd, mean (SD)

.87144.91 (122.78)145.82 (152.40)145.63 (146.90)ALPe, mean (SD)

.782.91 (0.67)2.92 (0.65)2.92 (0.65)Albumin, mean (SD)

.56156.27 (101.90)153.59 (98.02)154.11 (98.77)PLTf, mean (SD)

.0210.20 (2.61)9.93 (2.57)9.99 (2.58)HGBg, mean (SD)

.0231.39 (8.06)30.57 (7.88)30.74 (7.92)HCTh, mean (SD)

.9495.77 (77.51)96.52 (73.93)96.36 (74.60)CRPi, mean (SD)

.361.99 (1.65)1.92 (1.58)1.94 (1.59)CREj, mean (SD)

.8537.74 (27.55)37.97 (28.75)37.92 (28.50)Urea, mean (SD)

.0593.64 (20.36)95.35 (22.25)95.01 (21.89)HRk, mean (SD)

.7221.07 (6.63)20.96 (6.62)20.98 (6.62)RRl, mean (SD)

.6896.49 (4.18)96.69 (23.94)96.65 (21.49)SpO2
m, mean (SD)

.53114.72 (23.64)115.37 (24.20)115.24 (24.09)SBPn, mean (SD)

.8568.54 (17.71)68.68 (18.60)68.65 (18.43)DBPo, mean (SD)

.11282.29 (164.66)269.88 (149.78)272.37 (152.93)Fibrinogen, functional, mean (SD)

.131.88 (0.64)1.92 (0.66)1.91 (0.66)INR_PTp, mean (SD)

.6643.88 (12.76)44.12 (12.42)44.07 (12.49)PTTq, mean (SD)

anan: not a number.
bALT: alanine aminotransferase.
cAST: aspartate aminotransferase.
dTBIL: total bilirubin.
eALP: alkaline phosphatase.
fPLT: platelet count.
gHGB: hemoglobin.
hHCT: hematocrit.
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iCRP: C-reactive protein.
jCRE: creatinine.
kHR: heart rate.
lRR: respiratory rate.
mSpO2: oxygen saturation.
nSBP: systolic blood pressure.
oDBP: diastolic blood pressure.
pINR_PT: international normalized ratio of prothrombin time.
qPTT: partial thromboplastin time.

Model Discriminatory Power and Performance
Evaluation
A comprehensive evaluation of model performance was
conducted on an independent test set, incorporating metrics
such as ROC curves, PR curves, and calibration curves. The
ROC curve analysis revealed that the RF model demonstrated
the highest discriminatory power, with an AUC of 0.92 (95%

CI 0.91-0.93). The XGBoost and LR models exhibited
comparable performance, with AUC values of 0.91 (95% CI
0.90-0.92) and 0.90 (95% CI 0.89-0.91), respectively. In
contrast, the LSTM dynamic model showed significantly lower
discriminative ability, achieving an AUC of only 0.74 (95% CI
0.72-0.76), suggesting limited generalizability under the current
data configuration (Figure 7A).

Figure 7. Performance evaluation of machine learning models in predicting coagulation dysfunction in patients with liver failure. (A) Receiver operating
characteristic curves comparing the discriminative ability of logistic regression, random forest, extreme gradient boosting, and long short-term memory
models in predicting coagulation abnormalities within 24 hours (test set); (B) PR curves assessing model performance in identifying positive cases
under class imbalance; (C) calibration curves evaluating the agreement between predicted probabilities and observed event rates. AP: average precision;
AUC: area under the curve; LSTM: long short-term memory; XGBoost: extreme gradient boosting; ROC: receiver operating characteristic.
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The PR curve analysis further assessed the models’ ability to
identify positive cases (ie, predicting coagulation abnormalities
within 24 hours). Both RF and XGBoost achieved high average
precision (AP) scores of 0.96, maintaining robust precision even
at high recall levels. The LR model exhibited a slightly lower
AP (0.95) but remained clinically useful. The LSTM model,
however, underperformed with an AP of 0.87, reinforcing its
limitations in positive predictive accuracy (Figure 7B).

Calibration curve analysis evaluated the agreement between
predicted probabilities and observed outcomes. The LR and RF
models demonstrated near-perfect calibration across all risk
strata, indicating high reliability. The XGBoost model showed
stable calibration in moderate-to-high risk ranges but minor
deviations in low-risk regions. In contrast, the LSTM model
exhibited substantial fluctuations in low-to-moderate risk ranges,
reflecting weaker overall calibration (Figure 7C).

The confusion matrix analysis revealed distinct performance
advantages among the models in the classification task. The RF
model achieved the best classification performance on the test
set, while LR and XGBoost exhibited comparable results, both
maintaining a high true positive rate with a low misclassification
rate. In contrast, although the LSTM model demonstrated
superior sensitivity in identifying positive cases, it showed
marked limitations in correctly classifying negative samples,
resulting in lower specificity and a higher false-positive rate
(Figure S5A in Multimedia Appendix 1). Overall, traditional

machine learning models outperformed the LSTM in both
accuracy and robustness.

To further evaluate the clinical utility of these models, we
conducted decision curve analysis to assess their net benefit
across different risk thresholds. The results demonstrated that
LR, RF, and XGBoost models consistently outperformed the
“treat all” and “treat none” strategies across most threshold
ranges, indicating strong potential for clinical decision support.
Notably, these models provided greater net benefit in
intermediate-risk ranges, suggesting their predictive outcomes
could reliably guide individualized interventions (Figure S5B
in Multimedia Appendix 1).

In summary, static machine learning models—particularly
RF—not only exhibited strong predictive discrimination but
also demonstrated better calibration performance than the
time-series–based LSTM dynamic model. These findings
suggest that static models are more suitable for clinical
early-warning applications in predicting coagulation dysfunction
risk in patients in ICU with liver failure.

Table 4 summarizes the common performance metrics across
all models. Overall, the results demonstrate that the RF model
achieves the most robust performance, with an AUC of 92.1%,
an F1-score of 91%, an accuracy of 86.9%, a recall (sensitivity)
of 93.3%, a precision of 88.8%, and a specificity of 71.7%.

Based on these findings, we select the RF model as our final
risk prediction model.

Table 4. Performance comparison of 4 machine learning algorithms for dynamic coagulation risk prediction.

Specificity (%)Sensitivity (%)AUCa (%)Recall (%)Accuracy (%)F1-score (%)Model

67.392.590.492.585.189.7LRb

71.793.392.193.386.991RFc

68.192.290.992.285.189.7XGBoostd

2193.575.493.572.282.6LSTMe

aAUC: area under the curve.
bLR: logistic regression.
cRF: random forest.
dXGBoost: extreme gradient boosting.
eLSTM: long short-term memory.

Feature Importance and Model Interpretability
Analysis
To elucidate the decision-making mechanism of the predictive
model, this study conducted a feature importance assessment
and interpretability analysis based on the top-performing RF
model. As illustrated in Figure 8A, among the dynamic features,
multiple INR-related indicators—including INR(PT)_last_24h,

INR(PT)_mean_24h, INR(PT)_max_24h, and
INR(PT)_min_24h—exhibited the highest importance scores,
indicating that INR values play a critical role in predicting
coagulation abnormalities within the next 24 hours. PTT-related
features (eg, PTT_last_24h, PTT_mean_24h, and
PTT_max_24h) also ranked among the top 10, further
underscoring the significance of dynamic coagulation time in
the model’s decision-making process.
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Figure 8. Feature importance and interpretability analysis of the random forest model. (A) Bar plot of feature importance scores; (B) SHapley Additive
exPlanations summary plot, where red and blue indicate high and low feature values, respectively, and the x-axis represents the directional impact on
predictions. “INR (PT)” (labeled per MIMIC database conventions) is standardized as international normalized ratio in this study; “PTT” refers to
activated partial thromboplastin time. ALT: alanine aminotransferase; AST: aspartate aminotransferase; HR: heart rate; INR: international normalized
ratio; PLT: platelet count; PT: prothrombin time; PTT: partial thromboplastin time; TBIL: total bilirubin.

To enhance model interpretability, we used SHAP for visual
explanation of the RF model. The results demonstrated that
elevated INR(PT) and PTT values positively contributed to the
prediction of coagulation abnormalities, aligning with
established clinical pathophysiological mechanisms. In addition,
static variables such as hours_since_icu, fibrinogen, TBIL,
and anchor_age exhibited moderate predictive importance
(Figure 8B).

In summary, the RF model not only demonstrates superior
predictive performance but also maintains strong interpretability,
effectively identifying key variables associated with coagulation
dysfunction. These findings support early clinical identification
of high-risk patients.
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Discussion

Principal Findings
This study systematically evaluates the dynamic effects of ALS
on coagulation function in patients with liver failure by
integrating meta-analysis and machine learning modeling based
on clinical databases. In addition, it develops an intelligent
predictive model for future coagulation abnormalities. The
meta-analysis results demonstrate that ALS significantly
improves key coagulation parameters, including INR, PT, and
APTT, highlighting its critical role in coagulation support for
patients with liver failure. These findings align with previous
studies [42,43], further reinforcing the evidence-based efficacy
of ALS therapy in ameliorating coagulopathy. The maintained
reduction in INR during long-term follow-up further underscores
the stability and durability of its therapeutic efficacy. Variations
in treatment modalities, etiologies, and liver failure subtypes
were identified as major sources of heterogeneity in coagulation
improvement.

This study adopts a dual-track strategy that integrates high-level
evidence synthesis with individualized risk prediction, thereby
avoiding the misconception that the meta-analysis and machine
learning model are 2 parallel approaches. Specifically, the
meta-analysis establishes the overall efficacy and heterogeneity
of ALSS in improving coagulation parameters, which provides
a rigorous evidence-based rationale for subsequent predictive
modeling. Building upon these findings, the machine learning
model operationalizes the most clinically relevant
indicators—such as INR, PT, and APTT—into a dynamic
decision-support tool for real-time risk assessment at the
bedside. This methodological pathway transforms
population-level evidence into patient-level prediction, thus
ensuring both validity and clinical applicability.

Importantly, our results demonstrated that INR was the most
significantly improved parameter in the meta-analysis and
simultaneously the strongest predictive feature in the machine
learning model, underscoring the translational consistency
between the 2 components. This alignment exemplifies the
synergistic relationship in which meta-analysis informs feature
selection and validates the clinical importance of predictors,
while the model extends these findings to enable individualized,
real-time monitoring. Such integration reflects a broader trend
in evidence-based medicine and artificial intelligence, where
systematic reviews and meta-analyses provide high-level validity
[44], predictive analytics enable dynamic risk assessment [45],
and the convergence of these methods enhances clinical
decision-making [46,47].

A related study also used MIMIC-IV v3.1 data and applied
XGBoost to predict Peripherally Inserted Central
Catheter–related thrombosis in patients with sepsis [48].
Compared with that work, our study differs in population
(patients with liver failure undergoing ALSS vs patients with
sepsis with Peripherally Inserted Central Catheter), target
(coagulation abnormalities after ALSS vs catheter-related
thrombosis), and methodology (integration of meta-analysis
with multiple machine learning models vs single algorithm).
Building upon existing literature, this study systematically

compares—for the first time—the differential effects of various
ALSS (eg, PE, CRRT, and MARS) on coagulation function,
thereby addressing a critical research gap and providing new
evidence for individualized clinical treatment strategies. These
distinctions highlight the novelty and specific contribution of
our approach to coagulation risk prediction in the ALSS context.
Notably, ALS showed limited efficacy in improving fibrinogen
levels, potentially due to differences in fibrinogen clearance
efficiency across treatment methods. Subgroup analysis revealed
that PE combined with CRRT yielded more consistent
coagulation improvements compared with monotherapy,
suggesting that hybrid ALS regimens may be more suitable for
critically ill patients with severe coagulation dysfunction. In
addition, disparities in APTT improvement are primarily
influenced by the underlying disease type, underscoring the
importance of etiological classification in guiding personalized
treatment.

Unlike previous studies that primarily focused on static
measurements at single time points [49], this study adopts a
dynamic monitoring approach, for the first time, elucidating the
evolutionary patterns and predictive value of INR, PT, APTT,
and fibrinogen throughout the treatment course. Notably, the
dynamic features of INR in the model—including its mean,
peak, and trend—demonstrated the highest weighting,
confirming its clinical significance as an early warning
indicator. This dynamic modeling strategy significantly enhances
predictive sensitivity and prospective utility, shifting risk
assessment from post hoc evaluation to real-time intervention.

In predictive modeling, this study enhances translational
potential by developing a multialgorithm model based on
real-world data from MIMIC-IV. Among the tested models, the
RF algorithm achieved the highest performance (AUC=92.12%,
F1-score=90.96%) in accurately predicting coagulation
abnormalities within 24 hours. Unlike previous studies that
primarily relied on single-algorithm approaches such as LR
[50], this work systematically compared and integrated multiple
machine learning models (including XGBoost and LSTM).
Furthermore, SHAP interpretation was used to elucidate feature
contributions, improving model transparency and clinical
interpretability. The proposed model holds promise as an
intelligent clinical decision–support tool in ICU settings,
assisting nurses in early identification of high-risk patients for
coagulation disorders. By optimizing transfusion strategies,
monitoring frequency, and intervention timing, this approach
may reduce bleeding-related complications while enhancing
the precision and efficiency of coagulation management.
Ultimately, this shift from experience-based
judgment to data-driven decision-making provides a more
reliable foundation for clinical workflows.

In conclusion, ALS significantly improves coagulation
parameters (INR, PT, and APTT) in patients with liver failure,
while the machine learning model based on dynamic indicators
provides accurate risk prediction for coagulation abnormalities.
These findings offer valuable support for early intervention and
precision management in coagulation care. These results offer
strong evidence for implementing earlier and more targeted
clinical nursing interventions.
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Despite the innovation and clinical utility of this study, several
limitations should be acknowledged. First, although this study
systematically evaluated the effects of ALSS on coagulation
function in patients with liver failure through meta-analysis and
developed a dynamic indicator-based coagulation risk prediction
model, the constructed predictive model did not specifically
target patients who received ALSS treatment. Instead, risk
modeling was conducted for the broader population of patients
with liver failure. This decision was primarily due to the
extremely limited number of ALSS-treated cases identified in
the MIMIC-IV database—only 5 patients met the strict inclusion
criteria—making the sample size insufficient to meet the basic
data requirements for machine learning model development or
to ensure model robustness and generalizability. As a
compromise, this study focused on the overall liver failure
population to explore trends in coagulation function and
dynamic risk prediction. This approach provides a foundational
reference for future model development based on larger datasets
of patients treated for ALSS.

Secondly, although LSTM networks are widely used in clinical
prediction due to their temporal modeling capabilities, their
predictive performance in this study was significantly inferior
to that of static models. This discrepancy primarily stems from
the poor temporal resolution of the MIMIC dataset. Laboratory
and vital sign data are sparsely sampled, irregular, and
discontinuous—particularly for variables such as INR and
fibrinogen—making it difficult to construct high-quality time
series inputs. In addition, the short length of ICU stays in some
patients resulted in insufficient sequence data, further limiting
the model’s ability to learn time-dependent patterns. In contrast,
the RF model, which is based on aggregated features, is less
reliant on data continuity and demonstrated superior robustness
and generalizability. Therefore, under the constraints of
low-frequency and sparse ICU data, static models may offer
greater practical value.

To address the limitations of LSTM performance, we attempted
to incorporate attention mechanisms to enhance the model’s
ability to capture critical time points. However, due to the short
feature sequences and missing key records, no significant
performance improvement over LSTM was observed. In the
future, we plan to further evaluate the potential of architectures,
such as transformer on higher-quality, multicenter time series
data to optimize temporal modeling outcomes.

Furthermore, although the RF model performed well within the
MIMIC-IV database, we fully acknowledge that external
validation is essential for assessing its generalizability. Given
that MIMIC is derived from a single US center and exhibits
gender imbalances, the model’s applicability to other

populations remains uncertain. The current lack of publicly
available ALSS-specific, patient-level data limits the feasibility
of immediate external validation. We plan to collaborate with
regional multicenter hospitals, particularly in Asian populations,
to conduct prospective validation studies and improve the
model’s cross-population adaptability.

In this study, the definition of coagulation dysfunction labels
was primarily based on established clinical diagnostic criteria
and expert consensus. However, due to the absence of explicitly
annotated bleeding events or other coagulation-related outcomes
in the MIMIC database, we were unable to validate the
correlation between the threshold and actual clinical risk. We
acknowledge that future work should incorporate specific
clinical outcomes (eg, gastrointestinal bleeding and hemorrhagic
shock) to reassess the clinical significance of the risk threshold.
Furthermore, considering the complex etiology of liver failure,
adopting etiology-specific or dynamically adjusted prediction
thresholds may better reflect real-world clinical scenarios and
improve model sensitivity and practicality. We have identified
this issue as a key direction for future research.

Conclusion
In summary, this study not only provides systematic,
evidence-based support for the efficacy of ALSS in improving
coagulation function but also constructs a highly discriminative
and interpretable risk prediction tool. The findings are of great
significance for advancing individualized and intelligent
coagulation support therapy and nursing interventions in patients
with liver failure. Future efforts should aim to expand the
model’s applicability by incorporating multicenter data and
nursing practice variables, thereby promoting the
implementation and refinement of dynamic coagulation
monitoring systems and providing data-driven decision support
in critical care settings.

Although the RF model demonstrated superior performance in
predicting coagulation dysfunction in patients with liver failure,
it is currently well-suited for practical use due to its clear
structure and transparent feature inputs. Key predictors such as
dynamic INR, PTT, and fibrinogen can be visualized through
a graphical user interface, allowing clinicians and nursing staff
to intuitively assess individual risk and determine optimal
intervention timing. In the future, we plan to deploy this model
as an open-access web application or integrate it into hospital
information systems, enabling rapid clinical access to short-term
coagulation risk predictions. This will support intelligent
optimization of ALSS treatment pathways and nursing resource
allocation. We believe this translational approach will
significantly enhance the model’s clinical accessibility and
practical value.
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