
Review

Large Language Models in Critical Care Medicine: Scoping Review

Tongyue Shi1,2,3,4, MS; Jun Ma5, MD; Zihan Yu6, MS; Haowei Xu1,4, MS; Rongxin Yang1,2,3,4, MS; Minqi Xiong7,

MS; Meirong Xiao1,2,3,4, MS; Yilin Li8, MS; Huiying Zhao9, MD; Guilan Kong1,2,3,4, PhD
1National Institute of Health Data Science, Peking University, Beijing, China
2Institute for Artificial Intelligence, Peking University, Beijing, China
3Institute of Medical Technology, Peking University Health Science Center, Beijing, China
4Advanced Institute of Information Technology, Peking University, Hangzhou, China
5Peking University Third Hospital, Beijing, China
6Department of Computer Science, University of Liverpool, Liverpool, United Kingdom
7Johns Hopkins University School of Medicine, Baltimore, MD, United States
8Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, United States
9Department of Critical Care Medicine, Peking University People's Hospital, Beijing, China

Corresponding Author:
Guilan Kong, PhD
National Institute of Health Data Science
Peking University
Number 38 Xueyuan Road, Haidian District
Beijing, 100191
China
Phone: 86 10 82806542
Email: guilan.kong@hsc.pku.edu.cn

Abstract

Background: With the rapid development of artificial intelligence, large language models (LLMs) have shown strong capabilities
in natural language understanding, reasoning, and generation, attracting much research interest in applying LLMs to health and
medicine. Critical care medicine (CCM) provides diagnosis and treatment for patients with critical illness who often require
intensive monitoring and interventions in intensive care units (ICUs). Whether LLMs can be applied to CCM, and whether they
can operate as ICU experts in assisting clinical decision-making rather than “stochastic parrots,” remains uncertain.

Objective: This scoping review aims to provide a panoramic portrait of the application of LLMs in CCM, identifying the
advantages, challenges, and future potential of LLMs in this field.

Methods: This study was conducted in accordance with the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses extension for Scoping Reviews) guidelines. Literature was searched across 7 databases, including PubMed,
Embase, Scopus, Web of Science, CINAHL, IEEE Xplore, and ACM Digital Library, from the first available paper to August
22, 2025.

Results: From an initial 2342 retrieved papers, 41 were selected for final review. LLMs played an important role in CCM
through the following 3 main channels: clinical decision support, medical documentation and reporting, and medical education
and doctor-patient communication. Compared to traditional artificial intelligence models, LLMs have advantages in handling
unstructured data and do not require manual feature engineering. Meanwhile, applying LLMs to CCM has faced challenges,
including hallucinations and poor interpretability, sensitivity to prompts, bias and alignment challenges, and privacy and ethical
issues.

Conclusions: Although LLMs are not yet ICU experts, they have the potential to become valuable tools in CCM, helping to
improve patient outcomes and optimize health care delivery. Future research should enhance model reliability and interpretability,
improve model training and deployment scalability, integrate up-to-date medical knowledge, and strengthen privacy and ethical
guidelines, paving the way for LLMs to fully realize their impact in critical care.

Trial Registration: OSF Registries yn328; https://osf.io/yn328/
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Introduction

Critical care medicine (CCM), or intensive care medicine, is an
essential field dedicated to managing severely ill patients,
emphasizing rapid and life-critical decision-making and
interventions. CCM deals with patients who have severe
conditions and injuries such as acute kidney injury (AKI), sepsis,
and acute respiratory distress syndrome (ARDS), potentially
leading to a deteriorative state in the intensive care units (ICUs)
[1-4]. The incidence of AKI in the ICU could reach over 50%
worldwide [5]. Among those who received renal replacement
therapy, most of whom were with critical illness in the ICU,
the mortality rate was approximately 50% [6,7]. The prevalence
of sepsis is around 30% during ICU stay [8]. Sepsis accounted
for approximately 11 million deaths, making up about 20% of
all global deaths [9]. Recent multicenter epidemiological work
shows that the incidence of ARDS in the ICU was between
7.1% and 19% with hospital mortality of 32%-55% [10]. While
in resource-limited settings, the ICU mortality of ARDS could
be as high as 50% due to the disparities in health care services
[11]. Therefore, the special environment of the ICU has imposed
higher professional requirements on medical staff. Physicians
and nurses in ICUs must manage large amounts of patient data
while maintaining high efficiency under high pressure [11,12].
The dynamic and severe nature of critical care demands
intelligent decision-support tools to help physicians improve
diagnostic accuracy, optimize therapeutic strategies, and
facilitate timely clinical decision-making.

Artificial intelligence (AI) technologies, especially generative
artificial intelligence (GenAI) models, have developed rapidly
in recent years [13,14]. The advent of large language models
(LLMs), such as those based on the Transformer architecture
[15] and pretrained on extensive text corpora, has marked a
substantial advancement in natural language processing (NLP).
With billions of parameters, these LLMs have demonstrated
remarkable capabilities in understanding and generating
human-like text [16]. LLMs have been implemented in various
contexts, including answering questions, summarizing texts,
and engaging in open-domain conversations [17]. Compared to
human practitioners, LLMs have been perceived as more
understanding and efficient [18]. Among these LLMs, OpenAI’s
ChatGPT [16] has become a focal point since its launch in
November 2022. OpenAI then introduced upgraded versions of
ChatGPT, offering enhanced multimodal capabilities to handle
diverse inputs such as text, images, code, and table files. LLMs
have revolutionized different fields, including health and
medicine [13,14]. A more detailed description of the evolution
and applications of LLMs in health and medicine is provided
in Note S1 in Multimedia Appendix 1 [19-59].

In the field of CCM, the emergence of LLMs demonstrates its
unique potential. Similar to the application of LLMs in
informing patients with cancer of diagnosis, treatment methods,
and side effects, LLMs in CCM can help make life-or-death
decisions after fusing large volumes of patient data in a short
time [60]. Physicians in CCM face enormous workloads and

pressure, involving LLMs in different clinical decision-making
scenarios in CCM will help reduce the workload of physicians
and improve health care quality. However, LLMs face
challenges when applied in CCM, such as uncertain accuracy
and coherence, recency bias, hallucinations, poor interpretability,
and ethical issues [61]. Among them, hallucinations are one of
the biggest drawbacks of LLMs, which make them act like
stochastic parrots [62].

This study aims to review the applications of LLMs in CCM,
identifying the advantages, challenges, and future potential of
LLMs in this field. Three key research questions were designed
to be answered by this review. (1) What is the current status of
LLM applications within the critical care setting? (2) What are
the recognized advantages and challenges of using LLMs in
CCM? (3) What research directions should be taken in the future
to promote the application of LLMs in CCM? By addressing
the above 3 questions, this review endeavors to provide a clear
portrait of and identify the research gaps in the applications of
LLMs in CCM, discerning whether they are just stochastic
parrots that may mimic human responses based on probability
calculation or emerging ICU experts capable of providing timely
and highly personalized diagnosis and treatment
recommendations. Through this comprehensive review, we aim
to outline a roadmap for future research and implementation of
LLMs in CCM that could enable them to transform critical care
effectively.

Methods

Study Design
This scoping review followed the PRISMA-ScR (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
extension for Scoping Reviews) guidelines [63], and the protocol
was registered in the Open Science Framework. We have
included a checklist of the PRISMA-ScR guidelines in Table
S1 in Multimedia Appendix 1.

Literature Search Strategy
We conducted a literature search across 7 databases, including
PubMed, Embase, Scopus, Web of Science, CINAHL, IEEE
Xplore, and ACM Digital Library, from the earliest available
paper until August 22, 2025. Keywords related to LLMs
included “large language model,” “LLM,” “generative
pre-trained transformer,” “GPT,” “generative artificial
intelligence,” and “generative AI.” For CCM, the keywords
included “critical care,” “intensive care units,” “critical illness,”
“intensive care,” and “ICU.” All these terms were combined
using the “OR” and “AND” logical operators to ensure the
retrieval of literature that addresses both research areas. The
detailed search terms for each database are provided in Table
S2 in Multimedia Appendix 1.

Study Selection
The study selection in this scoping review was conducted to
ensure comprehensive coverage and relevance of the included
literature. In the first phase of the study selection, literature was
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included based on the following criteria: (1) focusing on LLMs
in CCM, including studies that explicitly used or commented
on LLMs relevant to the field of CCM, and (2) original research
papers from peer-reviewed journals and conferences,
perspectives, and letters. Studies were excluded from the review
if they met any of the following conditions: (1) irrelevant to
LLMs or CCM, including studies that did not focus on applying
LLMs within the realm of CCM; (2) conference abstracts,
preprint papers, books, patents, editorials, and review papers;
and (3) non-English literature. The process for selecting sources
of evidence is provided in Note S2 in Multimedia Appendix 1.

Keyword Co-Occurrence Network Analysis
Keyword co-occurrence network analysis [64] is a bibliometric
method to explore the relationships between keywords in
academic papers. It involves constructing a network where nodes
represent keywords and edges represent the co-occurrence of
these keywords within the studied documents. It helps to identify
the main research themes, trends, and potential research gaps
by analyzing the frequency and patterns of keyword
co-occurrences. This study used the VOSviewer (version 1.6.20)
software to construct a bibliometric network using the
visualization of similarity method [65,66]. The software
automatically extracts keywords from a publication’s title,
abstract, or author-supplied keyword list. The frequency of
co-occurrences of 2 keywords is determined by the number of
publications in which both keywords appear together in the title,
abstract, or keyword list. The visualization of similarity method
starts by calculating the similarity between the keywords of
publications based on their co-occurrence. Finally, a matrix is
constructed to arrange keywords spatially according to their
similarities, and it is the basis for multivariate statistical and
network analysis.

Risk of Bias and Applicability Assessment
We critically appraised all included studies using the
PROBAST-AI (Prediction Model Risk of Bias Assessment
Tool-Artificial Intelligence) [67], rating Risk of Bias (RoB)
across 4 domains (participants, predictors, outcome, and
analysis) and applicability across 3 domains (participants,
predictors, and outcome) on a 3-level scale (low, high, and
unclear). Full evaluation criteria and rules are provided in Note
S3 in Multimedia Appendix 1.

Results

Literature Search Results
This scoping review covered publications in the 7 databases to
August 22, 2025, and retrieved 2342 papers initially. The
flowchart of the study selection process is presented in Figure
1.

The application of LLMs in CCM is a relatively innovative
field, but research is still lacking, and the overall number of
papers is relatively small. Finally, 41 papers met all the inclusion
criteria and were chosen for this review. Table 1 documents the
research contents and publication details of the included studies.
The study design and model performance details of the included
studies are in Table S3 in Multimedia Appendix 1, where metrics
(such as area under the receiver operating characteristic curve
and area under the precision-recall curve, and F1-score) are
described, together with the setting, implementation effect on
patient outcomes, validation design, and external-validation
environment.
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Figure 1. The PRISMA flowchart for study selection and quality assessment. PRISMA: Preferred Reporting Items for Systematic Reviews and
Meta-Analyses.

JMIR Med Inform 2025 | vol. 13 | e76326 | p. 4https://medinform.jmir.org/2025/1/e76326
(page number not for citation purposes)

Shi et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Research contents and publication details of the included studies in this review.

Research contentsModelCountryJournal or con-
ference name

Study designArticle typePublished
year

Authors

Developed and validated a language
model-based screening tool for optimizing
Best Practice Alerts.

BioMed-
RoBERTa

United
States

JMIR Medical
Informatics

Retrospec-
tive

Original re-
search

2023Savage et al
[68]

Compared LLMsa to neonatal nurses in
clinical decision support for neonatal care.

ChatGPT-4 and
Claude-2 (An-
thropic PBC)

IsraelInternational
Journal of
Nursing Studies

Retrospec-
tive

Original re-
search

2024Levin et al
[17]

Evaluated LLMs in simulations for cardiac
arrest and bradycardia based on the

ChatGPT-3.5
and ChatGPT-4

United
States

Journal of Med-
ical Internet Re-
search

Retrospec-
tive

Original re-
search

2024Pham et al
[69]

American Heart Association’s Advanced
Cardiovascular Life Support guidelines.

Evaluated the capabilities of LLMs in
generating the background sections of

ChatGPT-3.5ArgentinaCritical care
explorations

Retrospec-
tive

Observation-
al study

2023Huespe et al
[70]

critical care clinical research questions
compared to human researchers.

Applied contextual embeddings to enhance
clinical concept extraction from medical
texts.

ELMo and
BERT

United
States

Journal of the
American Medi-
cal Informatics
Association

Retrospec-
tive

Original re-
search

2019Si et al [71]

Used LLMs to enhance expert panel dis-
cussions at a medical conference, focusing

ChatGPT-4Saudi Ara-
bia

CureusRetrospec-
tive

Original re-
search

2023Almazyad et
al [72]

on pediatric palliative care and ethical de-
cision-making scenarios.

Evaluated the performance of LLMs in
perioperative risk stratification and prog-
nostication across various tasks.

ChatGPT-4
Turbo

United
States

JAMAb surgeryRetrospec-
tive

Original re-
search

2024Chung et al
[73]

Assessed the effectiveness of LLMs in
diagnosing rare and complex medical

Bard (Google
LLC), ChatG-

United
States

JMIR Medical
Education

Retrospec-
tive

Original re-
search

2024Abdullahi et
al [74]

conditions, focusing on improving medical
education and diagnostic accuracy.

PT-3.5, and
ChatGPT-4

Developed and applied a multilingual,

AIc-driven educational curriculum in pedi-

ChatGPT-4United
States

Frontiers in
Public Health

Retrospec-
tive

Original re-
search

2024Benboujja et
al [75]

atric care to overcome language barriers
in global health care education.

Explored potential uses of LLMs in inten-
sive care medicine, focusing on knowledge

ChatGPT-3.5
and ChatGPT-4

ChinaAnnals of
Biomedical En-
gineering

Retrospec-
tive

Letter2023Lu et al [1]

augmentation, device management, clini-
cal decision support, early warning sys-

tems, and ICUd database establishment.

Evaluated the effectiveness of LLMs in
querying and summarizing unstructured
medical notes in the ICU.

ChatGPT-4IrelandIntensive Care
Medicine

Retrospec-
tive

Letter2023Madden et al
[76]

Assessed LLMs in predicting the risk of
endotracheal intubation after initiating

ChatGPT-3.5
and ChatGPT-4

ChinaHeliyonProspectiveOriginal re-
search

2024Liu et al [77]

high-flow oxygen therapy, highlighting
potential in decision-making in critical
care.

Investigated the use of LLMs in assisting
surrogate and proxy decision-making in

ChatGPT-3.5
and BERT

United
States

Critical Care
Explorations

Retrospec-
tive

Original re-
search

2024Nolan et al
[78]

critical care, focusing on aligning treat-
ment recommendations with patient val-
ues.

Investigated ChatGPT-3.5’s application
in extracting substance use information

ChatGPT-3.5United
States

JMIR Medical
Informatics

Retrospec-
tive

Original re-
search

2024Shah-Mo-
hammadi
and Finkel-
stein [79]

from ICU discharge summaries, highlight-
ing improvements in accuracy with differ-
ent learning scenarios.
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Research contentsModelCountryJournal or con-
ference name

Study designArticle typePublished
year

Authors

Evaluated ChatGPT-3.5 Turbo’s effective-

ness in assigning ICD-10e codes to clinical
notes, demonstrating improved accuracy
with fine-tuning, particularly in critical
care administrative tasks.

ChatGPT-3.5
Turbo

United
States

Journal of Med-
ical Artificial
Intelligence

Retrospec-
tive

Original re-
search

2024Nawab et al
[80]

Assessed ChatGPT’s ability to generate

radiology reports using MIMIC-CXRf

data, with a 3-step prompt guiding report
synthesis. Compared outputs to Bart and
XLM, showing high similarity to human
reports.

ChatGPT-3.5
and Claude.ai

IranAcademic Radi-
ology

Retrospec-
tive

Original re-
search

2024Soleimani et
al [81]

Analyzed ChatGPT-3.5-turbo and ChatG-
PT-4 in predicting sepsis mortality using
data from the Korean Sepsis Alliance.

ChatGPT-3.5
and ChatGPT-4

KoreaHealthcare In-
formatics Re-
search

ProspectiveOriginal re-
search

2024Oh et al [82]

Evaluated ChatGPT-4, ChatGPT, and
Llama 2 for generating ICU discharge
summaries, emphasizing event recall and
readability.

ChatGPT-3.5,
ChatGPT-4, and
Llama-2 (Meta)

IrelandIntensive Care
Medicine Exper-
imental

Retrospec-
tive

Original re-
search

2024Urquhart et
al [83]

Explored in-hospital outcomes for heart
failure patients with improved ejection
fraction. ChatGPT-3.5 was used to extract

LVEFg data from medical records, but in-
complete data detection in some cases re-
quired manual review.

ChatGPT-3.5United
States

European Jour-
nal of Heart
Failure

Retrospec-
tive

Original re-
search

2024Pabon et al
[84]

Evaluated domain-specific fine-tuned
models against general LLMs for generat-

ing differential diagnoses in PICUh pa-
tients. Fine-tuned Llama-7B outperformed
larger models, demonstrating the impor-
tance of domain-specific training.

Llama-7B, Lla-
ma-65B, and
BioGPT-Large

United
States

Pediatric Criti-
cal Care
Medicine

Retrospec-
tive

Original re-
search

2024Akhondi-Asl
et al [85]

Qualitative exploration of ICU novice
simulation instructors’ experience with
ChatGPT in case design, focusing on per-
ceived value, potential applications, and
limitations.

ChatGPT-3.5ChinaClinical Simula-
tion in Nursing

Retrospec-
tive

Original re-
search

2025Liu et al [86]

Qualitative investigation of abbreviation
uses in ICU communication, focusing on
risks, clinician perceptions, and patient
safety implications.

ChatGPT-4oSwitzer-
land

Journal of Criti-
cal Care

Retrospec-
tive

Original re-
search

2025Berger et al
[87]

Comparative benchmarking of LLMs for
diagnostic accuracy using medical images
plus clinical context in emergency and
critical care.

DeepSeek, In-
ternVL, and
ChatGPT-4o

GermanyNPJ Digital
Medicine

Retrospec-
tive

Original re-
search

2025Kurz et al
[88]

Assessment of ChatGPT-4o’s ability to
interpret cranial ultrasound images for PV-

IVHi diagnosis in very preterm infants,
compared to pediatric radiologists.

ChatGPT-4oVietnamCureusRetrospec-
tive

Original re-
search

2025Pham et al
[89]

Comparison of LLMs for predicting 1-year

all-cause mortality post-AMIj, using
structured variables versus discharge note
analysis.

SWEDE-
HEART-AI,
Qwen-2, and
Llama-3

ChinaJournal of Med-
ical Internet Re-
search

Retrospec-
tive

Original re-
search

2025Shi et al [90]

Comparative evaluation of ChatGPT-4
versus PICU specialist in answering open-
ended medical education questions
sourced from a trainee WhatsApp (What-
sApp LLC) forum.

ChatGPT-4oIsraelJournal of Pae-
diatrics and
Child Health

Retrospec-
tive

Original re-
search

2025Yitzhaki et
al [91]
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Research contentsModelCountryJournal or con-
ference name

Study designArticle typePublished
year

Authors

Evaluation of 4 LLMs’ responses to SC-

CMk guideline–based medication ques-
tions.

ChatGPT-4,
Copilot (Mi-
crosoft Corp),
Gemini 1.5, and
Meta AI

United
States

American Jour-
nal of Health-
System Pharma-
cy

Retrospec-
tive

Original re-
search

2025Williams
and Erstad
[92]

Development of an automated deployment
and extraction platform to allow SQL
generation and data retrieval from ICU-
related databases without coding.

ICU-GPTlChinaJMIR Medical
Informatics

Retrospec-
tive

Original re-
search

2025Yang et al
[93]

Benchmarking 5 LLMs using expert-level

ICU MCQsm, compared against human
physicians and random guessing.

ChatGPT-4o,
ChatGPT-4o-
mini, ChatGPT-
3.5-turbo, Mis-
tral Large 2407,
and Llama-3.1
70B

Nether-
lands

Critical CareRetrospec-
tive

Original re-
search

2025Workum et
al [94]

Comparative evaluation of 5 LLMs on
multiple-choice questions in critical care
pharmacotherapy education, including
prompt-engineering effects and a custom
GPT.

ChatGPT-3.5,
ChatGPT-4,
Claude 2, Lla-
ma2-7B, and
Llama2-13B

United
States

Frontiers in Ar-
tificial Intelli-
gence

Retrospec-
tive

Original re-
search

2025Yang et al
[95]

Developed a framework that distills LLM
knowledge into structured multimodal

EHRn predictive models for ICU health
event prediction.

BlueBERTUnited
States

Scientific Re-
ports

Retrospec-
tive

Original re-
search

2024Ding et al
[96]

Development of CARE-SD: supervised
classifiers to detect stigmatizing and
doubt-marker language in ICU clinical
notes using lexicon- and model-based

NLPo.

ChatGPT-3.5United
States

Journal of the
American Medi-
cal Informatics
Association

Retrospec-
tive

Original re-
search

2025Walker et al
[97]

Multimodal assessment of freely available

MTp tools translating critical care educa-
tional content into Chinese, Spanish, and
Ukrainian.

DeepL, Gemini
(Google LLC),
Google Trans-
late, and Mi-
crosoft Copilot

United
States

BMC Medical
Education

Retrospec-
tive

Original re-
search

2025Chen et al
[98]

Evaluation of Gemini’s application of

ACGq 2024 guidelines to diagnose severi-
ty and guide management in acute pancre-
atitis.

GeminiTurkeyJournal of Clini-
cal Medicine

Retrospec-
tive

Original re-
search

2025Ucdal et al
[99]

Comparative evaluation of ChatGPT-3.5
versus 4.0 on appropriateness, consistency,
and readability of critical care recommen-
dations.

ChatGPT-3.5
and ChatGPT-4

CanadaJournal of Inten-
sive Care
Medicine

Retrospec-
tive

Original re-
search

2024Balta et al
[100]

Evaluation of contextualized versus static

word embeddings in predicting AKIr using
ICU clinical notes and structured data, via

CNNs models.

ChatGPT-4o
and ChatGPT-
4o mini

ChinaBME FrontiersRetrospec-
tive

Original re-
search

2025Zhu et al
[101]

Development and evaluation of Resp-

BERT that identifies ARDSt from radiolo-
gy report texts using BERT embeddings
and transfer learning.

RespBERTUnited
States

IEEE Journal of
Biomedical and
Health Informat-
ics

Retrospec-
tive

Original re-
search

2025Pathak et al
[102]

Development of a note-specific hierarchi-
cal network for predicting ICU in-hospital
mortality from clinical notes; compares
against supervised baselines and LLMs
using diverse prompting strategies.

ChatGPT-4oAustraliaIEEE Journal of
Biomedical and
Health Informat-
ics

Retrospec-
tive

Original re-
search

2025Liu et al
[103]
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Research contentsModelCountryJournal or con-
ference name

Study designArticle typePublished
year

Authors

Prospective evaluation of ChatGPT-4 in

interpreting ABGu test results compared
to expert anesthesiologists.

ChatGPT-4TurkeyJournal of Clini-
cal Anesthesia

ProspectiveOriginal re-
search

2025Turan et al
[104]

Evaluation of ChatGPT-4’s performance
on the Chinese critical care physician
qualification examination covering multi-
ple domains.

ChatGPT-4ChinaJournal of Criti-
cal Care

Retrospec-
tive

Original re-
search

2025Wang et al
[105]

LLM-driven extraction of entities and re-
lations to build a sepsis knowledge graph
using multicenter clinical data.

ChatGPT-4,
Qwen-2, and
Llama-3

ChinaJournal of Med-
ical Internet Re-
search

Retrospec-
tive

Original re-
search

2025Yang et al
[106]

aLLM: large language model.
bJAMA: Journal of the American Medical Association.
cAI: artificial intelligence.
dICU: intensive care unit.
eICD-10: International Statistical Classification of Diseases, Tenth Revision.
fMIMIC-CXR: Medical Information Mart in Intensive Care-Chest X-Ray.
gLVEF: left ventricular ejection fraction.
hPICU: pediatric intensive care unit.
iPV-IVH: periventricular-intraventricular hemorrhage.
jPost-AMI: postacute myocardial infarction.
kSCCM: Society of Critical Care Medicine.
lICU-GPT: Intensive Care Unit-specific Generative Pre-trained Transformer.
mMCQ: multiple choice question.
nEHR: electronic health record.
oNLP: natural language processing.
pMT: machine translation.
qACG: American College of Gastroenterology.
rAKI: acute kidney injury.
sCNN: convolutional neural network.
tARDS: acute respiratory distress syndrome.
uABG: arterial blood gas.

Bibliometric Analysis
This scoping review included a focused selection of 41 papers,
providing a global perspective on LLM applications in CCM.
This diverse corpus spans several countries, demonstrating
widespread research interest in applying LLMs in CCM. The
results of keyword co-occurrence network analysis are in Note
S4 in Multimedia Appendix 1. Among the 41 papers, only 2
used prospective data, while the other 39 were retrospective
studies. The distribution of the selected publications indicates
substantial international collaboration and research efforts. We
analyzed the countries where each selected paper’s first and
corresponding authors were based. The authors from the United
States took the lead in most studies, followed by authors from
China, Ireland, Israel, Korea, etc. It revealed that nearly half of
the studies were conducted in the United States, with much
fewer contributions from other countries and regions. This
indicates a concentration of research activities in applying LLMs

in CCM within the United States, potentially reflecting the
advanced development and adoption of AI technologies in
American critical care settings. Among the LLMs used,
ChatGPT-4 appears most frequently, demonstrating its relevance
and recent prominence in CCM applications. Other models
include ChatGPT-3.5 and models such as Llama, Gemini,
Claude, and DeepSeek, highlighting the breadth of generative
models explored in the included studies. A minority of studies
use domain-adapted or clinical NLP backbones, including
BioGPT-Large, BioMed-RoBERTa, BlueBERT, and
RespBERT.

Applications of LLMs in CCM

Clinical Decision Support
As illustrated in Figure 2, the primary application of LLMs in
CCM is clinical decision support. LLMs can be applied in
diagnosis, treatment planning, and prognosis prediction in
in-hospital critical care settings.
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Figure 2. The process and characteristics of clinical decision support. ED: emergency department; ICU: intensive care unit.

In diagnosis, LLMs demonstrate the potential to aid physicians
in making diagnostic decisions. Gandomi et al [107] explored
the use of LLMs (Llama 70B and Mistral) in detecting ARDS
from radiology reports in the MIMIC-III (Medical Information
Mart for Intensive Care-III) database. The study applied LLMs
to identify high-probability ARDS cases based on bilateral
infiltrates. Akhondi-Asl et al [85] investigated the use of
domain-specific fine-tuned models (Llama-7B and
BioGPT-Large) against larger general-domain models
(Llama-65B) for generating differential diagnoses in pediatric
intensive care unit (PICU) patients. They found that fine-tuned
Llama-7B outperformed both Llama-65B and BioGPT-Large.
Kurz et al [88] benchmarked the diagnostic performance of
various vision-language models on a multimodal dataset
comprising medical images and associated clinical context in
ICU environments. They compared several open-source
vision-language models against ChatGPT-4o, finding that while
open models achieved accuracy only up to 40.4%, ChatGPT-4o
substantially outperformed them with an approximation of
68.1%. Pham et al [89] evaluated the diagnostic utility of
ChatGPT-4o in interpreting cranial ultrasound images to detect
periventricular-intraventricular hemorrhage among very preterm
infants in a neonatal ICU in Vietnam. Comparing ChatGPT-4o’s
image-based diagnoses against pediatric radiologists, the model
achieved moderate performance (area under the curve
[AUC]=0.796), with 75% sensitivity and 84.2% specificity,
alongside fair-to-good interrater agreement. The study highlights
ChatGPT-4o’s potential as a supplemental tool for early
periventricular-intraventricular hemorrhage screening. Pathak
et al [102] developed RespBERT, leveraging BERT-based
embedding and transfer learning to automatically identify ARDS
from unstructured radiology notes across multiple hospital
datasets. Applying the model to notes from 2 independent
institutions, RespBERT achieved F1-scores of 74.5% and 64.2%,
demonstrating robust performance across different clinical
settings and indicating its potential for ARDS detection in the
ICU.

In treatment planning, LLMs show considerable promise in
providing personalized treatment recommendations and
optimizing clinical pathways for patients with critical illness.
Savage et al [68] developed and validated the LLM screening
tool to selectively identify patients appropriate for Best Practice
Alerts of deep vein thrombosis anticoagulation prophylaxis
using the MIMIC-III database. They found that the LLM
screening tool improved the precision of Best Practice Alerts,
reducing the number of unnecessary alerts by 20% and
increasing the applicability of alerts by 14.8%. Pham et al [69]
evaluated ChatGPT’s performance in treating cardiac arrest and
bradycardia simulations in accordance with the American Heart
Association’s Advanced Cardiovascular Life Support guidelines.
Using the 2020 Advanced Cardiovascular Life Support
guidelines, ChatGPT’s responses to 2 simulation scenarios were
assessed for accuracy. They found that ChatGPT had a median
accuracy of 69% for cardiac arrest and 42% for bradycardia,
with significant variability in its outputs, often missing critical
actions, and having incorrect medication information. Nolan et
al [78] used LLMs to support critical care decision-making for
incapacitated patients. The study simulated scenarios for 50
patients requiring urgent clinical decisions and incorporated
patient values captured through various formats, including
free-text narratives. The LLMs were tasked with extracting
treatments and generating recommendations based on patient
profiles. The results showed that LLMs accurately extracted
treatments in 88% of cases and received high scores for
providing medically plausible and value-aligned
recommendations. Williams et al [92] evaluated 4 LLMs
(ChatGPT-4, Copilot, Gemini version 1.5, and Meta AI) by
medication-related questions based on 6 Society of Critical Care
Medicine clinical practice guidelines. Copilot yielded the highest
proportion of correct answers, followed by Meta AI, ChatGPT-4,
and Gemini, which delivered the most incorrect responses.
Despite these capabilities, none of the models consistently
matched guideline recommendations, indicating that while
clinically promising, AI tools require further development for
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reliable use in the ICU. Ucdal et al [99] assessed the
performance of Gemini in applying American College of
Gastroenterology 2024 guidelines to clinical decisions in acute
pancreatitis management. Using MIMIC-III data consisting of
512 patient cases, the study evaluated Gemini’s accuracy in
determining disease severity, recommending nutritional
strategies, and antibiotic use. Gemini achieved 85% accuracy
for mild cases, 82% for severe cases, and 78%-85% compliance
with guideline-based nutritional and management
recommendations, demonstrating solid agreement with scoring
systems. This suggests that AI may support consistent,
guideline-concordant decision-making in pancreatitis care. Turan
et al [104] conducted a prospective observational study
comparing ChatGPT-4’s interpretation of arterial blood gas
results with that of expert anesthesiologists using 400 ICU
patient samples. The model demonstrated excellent accuracy
for parameters such as pH, oxygenation, sodium, chloride, and
hemoglobin, though it struggled with bilirubin. While generally
reliable, it occasionally recommended unnecessary bicarbonate
therapy, highlighting the promise of ChatGPT-4 as a rapid
interpretive aid, but underscoring the necessity of clinician
oversight. Yang et al [106] presented a pioneering study that
leveraged ChatGPT-4 and a multicenter real-world sepsis dataset
(10,544 patients across 3 hospitals in China) to construct a
comprehensive sepsis knowledge graph. By combining clinical
guidelines, public data, and advanced prompt engineering, they
extracted entities and relationships, building a graph with 1894
nodes and 2021 unique connections. ChatGPT-4 achieved a
high F1-score of 76.76 on the study’s sepsis-specific dataset
and 65.42 under the few-shot condition, surpassing models such
as Qwen-2 and Llama-3.

For prognosis prediction, Amacher et al [108] used ChatGPT-4
to predict mortality and poor neurological outcomes at hospital
discharge for adult patients who had cardiac arrest. The study
involved prompting ChatGPT-4 with 16 prognostic parameters
from established post–cardiac arrest scores. The findings showed
that ChatGPT-4 achieved an AUC of 0.85 for in-hospital
mortality and 0.84 for poor neurological outcomes, comparable
to traditional scoring systems. Chung et al [73] used ChatGPT-4
to perform risk stratification and predict postoperative outcomes
based on procedure descriptions and preoperative clinical notes
from electronic health records (EHRs). They found that
ChatGPT-4 achieved F1-scores of 0.64 for predicting hospital
admission, 0.81 for ICU admission, 0.61 for unplanned
admission, and 0.86 for predicting hospital mortality. Liu et al
[77] conducted a prospective multicenter cohort study using
ChatGPT-3.5 and ChatGPT-4 to predict the risk of endotracheal
intubation within 48 hours following high-flow nasal cannula
oxygen therapy in patients with critical illness. They found that
ChatGPT-4 achieved an accuracy comparable to that of
specialist physicians, with an AUC of 0.82, which was higher
than that of non-specialist physicians (AUC=0.66). Oh et al
[82] conducted a study using ChatGPT-3.5-turbo and
ChatGPT-4 to predict in-hospital mortality for sepsis patients.
The study used clinical data from the Korean Sepsis Alliance
database, focusing on ICU admissions and using metrics such
as the SOFA (Sequential Organ Failure Assessment) score and
lactic acid levels. The findings demonstrated that ChatGPT-4

performed comparably to a gradient boosting machine in
predicting short-term mortality, particularly for 7-day outcomes.
Shi et al [90] used the MIMIC-IV (Medical Information Mart
for Intensive Care-IV) database to compare the performance of
2 LLMs (Qwen-2 and Llama-3) with a specialized artificial
neural network (SWEDEHEART-AI) trained on Swedish
registry data, in predicting 1-year all-cause mortality among
ICU patients with acute myocardial infarction.
SWEDEHEART-AI outperformed both LLMs, maintained
consistent area under the receiver operating characteristic curve
in time-dependent analyses, and demonstrated superior clinical
utility and net benefit across risk thresholds, suggesting its
stronger reliability for risk stratification. Ding et al [96]
proposed a novel framework, cross-modality knowledge learning
and extraction, that distills knowledge from LLMs into a
predictive model trained on multimodal EHR data in the ICU.
By refining clinical text using LLM-generated embeddings and
using a cross-modality knowledge distillation approach that
combines contrastive and patient-similarity learning losses,
cross-modality knowledge learning and extraction significantly
improved predictive accuracy for hypertension and heart failure
events, demonstrating up to a 4.48% boost over state-of-the-art
models using data from the MIMIC-III database. Zhu et al [101]
used clinical data from 2 Chinese hospitals and a public South
Korean dataset, comprising a total of 2649 older adult patients
who underwent surgery, to use LLMs (GPT-4o, ChatGPT-4o
mini, Qwen2-7B-Instruct, and Llama3.1-8B-Instruct), comparing
their performance against traditional ML models such as
XGBoost (Extreme Gradient Boosting) and Random Forest for
the task of predicting postoperative AKI. The study enhanced
the LLMs’ capabilities through prompt engineering techniques
such as Medical Chain of Thought and instruction fine-tuning.
The results demonstrated that the LLM-based frameworks
achieved superior generalization on external datasets while also
providing human-readable medical rationales for predictions,
significantly improving interpretability and clinical utility
compared to traditional ML approaches. Liu et al [103]
investigated risk prediction of in-hospital mortality using
routinely collected clinical notes in the ICU. It proposes a
note-specific hierarchical network that adapts to different note
types and benchmarks it against various supervised baselines
and 34 instruction-following LLMs under zero-shot and few-shot
settings, as well as chain-of-thought prompting. The hierarchical
model outperformed both LLMs and supervised baselines, which
consistently underperformed in this critical task, highlighting
important constraints of LLMs in risk assessment of critical
care patients.

Medical Documentation and Reporting
LLMs are making strides in medical documentation and
reporting by automating and streamlining these processes.
Shah-Mohammadi et al [79] used the ChatGPT-3.5 model to
extract substance use information from ICU discharge
summaries in the MIMIC-III database, focusing on tobacco,
alcohol, and illicit substances. They explored both zero-shot
and few-shot prompt learning settings and found that GPT’s
performance in identifying tobacco, alcohol, and substance use
varied depending on the learning scenario. Zero-shot learning
achieved high accuracy in recognizing substance use, while
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few-shot learning, although lowering accuracy, improved the
identification of substance use status, leading to better recall
and F1-scores but lower precision. Nawab et al [80] conducted
a study using the ChatGPT-3.5 Turbo to automate the
assignment of ICD-10 codes to clinical notes in the ICU. Their
findings demonstrated that fine-tuning the model with a
specialized dataset improved its accuracy from 29.7% to 62.6%.
Soleimani et al [81] conducted a study using ChatGPT-3.5 to
evaluate the performance of radiology report generation. Using
data from the MIMIC-CXR (Medical Information Mart for
Intensive Care-Chest X-Ray) database, the study explored how
ChatGPT, guided by a 3-step prompt, synthesized complete
radiology reports. They found that ChatGPT effectively
generated comprehensive reports by accurately interpreting both
patient characteristics and radiological findings. Urquhart et al
[83] used ChatGPT-4, ChatGPT-3.5, and Llama 2 to extract
key information from ICU patient text records in an Irish
population. The study evaluated the models’ ability to generate
concise and accurate clinical summaries from unstructured ICU
admission notes. The results showed that ChatGPT-4
outperformed the other models in readability, organization, and
summarization of clinically significant events, but all models
struggled with completeness and narrative coherence. Pabon et
al [84] used ChatGPT-3.5 for extracting left ventricular ejection
fraction data from medical records in a study involving patients
with heart failure with improved ejection fraction. The model
achieved 100% accuracy in identifying reported left ventricular
ejection fraction values but struggled with a capture
completeness of 75%. Si et al [71] explored the impact of ELMo
and BERT on clinical concept extraction tasks using data from
the MIMIC-III and other clinical corpora. They found that
contextual embeddings pretrained on a large clinical corpus
outperformed traditional methods. Madden et al [76] used
ChatGPT-4 to query and summarize unstructured medical notes
in the ICU. They found that while the model could produce
concise and useful summaries, it also had significant risks of
generating hallucinations. Yang et al [93] developed a platform
to facilitate the deployment and extraction of critical care-related
big data using LLMs. The system leverages Docker (Docker
Inc)–based automated database deployment and visualization
tools, along with an ICU-fine-tuned LLM ICU-GPT to generate
SQL queries and extract data from complex ICU datasets
without requiring programming knowledge. This platform
enables clinicians to manage, visualize, and retrieve structured
insights from large critical care databases through a user-friendly
web interface, reducing the technical barrier to big data research
in clinical settings. Walker et al [97] developed CARE-SD, a
classifier-based NLP toolkit designed to identify stigmatizing
patient labels and doubt markers within ICU clinical notes. By
constructing lexicons (127 stigmatizing expressions and 58
doubt markers) using literature-based stems augmented via
Word2Vec and ChatGPT-3.5, and training supervised classifiers
on annotated samples drawn from 18 million MIMIC-III
sentences, the models achieved macro F1-scores of 0.84 (doubt
markers) and 0.79 (stigmatizing labels). This approach supports
the detection of linguistic biases in critical care EHRs and could
inform interventions to reduce stigmatizing language in health
care.

Medical Education and Doctor-Patient Communication
LLMs are used more and more frequently in medical education
now. One important area closely connected to LLMs is to
generate or answer questions in medical examinations. Workum
et al [94] conducted a benchmark study by evaluating 5 LLMs
(GPT-4o, ChatGPT-4o-mini, ChatGPT-3.5-turbo, Mistral Large
2407, and Llama 3.1 70B) on 1181 multiple-choice questions
from the European Diploma in Intensive Care examination. All
models significantly outperformed human physicians, with
ChatGPT-4o achieving the highest accuracy of 93.3%. Despite
outstanding consistency and performance, models still produced
incorrect answers and raised concerns about energy
consumption, especially for ChatGPT-4o, highlighting the need
for ongoing evaluation before clinical deployment. Yang et al
[95] compared the performance and consistency of 5 LLMs
(GPT-3.5, ChatGPT-4, Claude 2, Llama2-7B, and Llama2-13B)
on a set of 219 multiple-choice questions covering critical care
pharmacotherapy for Doctor of Pharmacy students. The study
evaluated accuracy, response variance, and the impact of prompt
engineering techniques, such as few-shot chain-of-thought
prompting, and the use of a custom-trained GPT model.
ChatGPT-4 emerged with the highest accuracy (71.6%),
chain-of-thought prompting further improved its performance,
and the variance in performance differed across models.
Notably, customizing models and prompt strategies can enhance
LLM reliability in pharmacy education contexts. Chen et al [98]
developed and applied a multimodal evaluation framework to
assess the performance of widely available machine translation
(MT) tools (including DeepL, Gemini, Google Translate, and
Microsoft Copilot) in translating critical care educational content
from English into Mandarin Chinese, Spanish, and Ukrainian.
The study used blinded bilingual clinician ratings (for fluency,
adequacy, and meaning), BLEU (bilingual evaluation
understudy) scores, and usability assessments to compare MT
outputs against professional human translations. The results
revealed no single MT tool consistently excelled across
languages or metrics, human translation scored best for Chinese,
Gemini performed strongest for Spanish, and Microsoft Copilot
ranked highest for Ukrainian, highlighting the need for ongoing
evaluation of MT tools in critical care education as they rapidly
evolve. Wang et al [105] evaluated ChatGPT-4 against the
Chinese Health Professional Technical Qualification
Examination for Critical Care Medicine, which comprises 600
questions across fundamental knowledge, specialized
knowledge, practical skills, and related medical knowledge.
ChatGPT-4 achieved an overall success rate of 73.5%,
surpassing the 60% passing threshold, with the highest accuracy
in fundamental knowledge (81.94%). Notably, performance
was significantly better on single-choice versus multiple-choice
questions (76.72% vs 51.32%, P<.001), with no difference
between case-based and non–case-based formats. The study
underscores its potential as a clinical decision support and
educational aid, while cautioning on the need for expert
oversight due to potential inaccuracies.

Meanwhile, LLMs use information such as clinical guidelines
to answer questions and do clinical reasoning from real-world
medical scenarios. Levin et al [17] used 2 LLMs, ChatGPT-4
and Claude-2.0, to provide initial assessment and treatment
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recommendations for patients in neonatal intensive care settings.
The results indicated that both models demonstrated clinical
reasoning abilities, with Claude-2.0 outperforming ChatGPT-4
in clinical accuracy in providing initial assessments and
treatment recommendations, and response speed. Liu et al [86]
conducted a qualitative study to explore how novice ICU
simulation instructors experience the use of GenAI in case
design. Using semistructured interviews with 13 instructors and
thematic analysis, the study found that GenAI improved
efficiency, provided structured and diverse scenario design, and
enhanced learning engagement, especially for beginners. The
findings suggest that GenAI can serve as a valuable educational
tool in ICU simulation, but must be balanced with instructor-led
critical thinking and validated clinical accuracy. Yitzhaki et al
[91] used 100 educational questions from a PICU trainee
WhatsApp forum to compare ChatGPT-4’s performance against
pediatric intensive care specialists. Evaluated by 10 PICU
experts across multiple tertiary centers, ChatGPT-4’s responses
were longer and more complete for factual questions, with 60%
being preferred for factual knowledge; however, specialists’
responses were favored in clinical reasoning (67%), reflecting
higher accuracy. Integrated answers were chosen in 37% of
evaluations, emphasizing the need for expert oversight when
using ChatGPT-4 in PICU education. Balta et al [100] assessed
ChatGPT-3.5 versus ChatGPT-4 by having 2 independent
intensivists evaluate LLM-generated recommendations to 50
curated core critical care questions from textbooks. ChatGPT-4
delivered significantly higher median appropriateness scores.
The study stresses that both models can confidently produce
clinically misleading or hallucinated content and thus should
be used with caution in the ICU.

LLMs can also be used to overcome language barriers and
enhance communication. Benboujja et al [75] developed and
evaluated a multilingual, AI-driven curriculum to overcome
language barriers in pediatric care. Using ChatGPT-4 for
translation, the study created 45 educational video modules in
English and Spanish, covering surgical procedures, perioperative
care, and patient journeys. Almazyad et al [72] used ChatGPT-4
to enhance expert panel discussions in pediatric palliative care.
They found that ChatGPT-4 effectively facilitated discussions
on do-not-resuscitate conflicts by summarizing key themes such
as communication, collaboration, patient and family-centered
care, trust, and ethical considerations. Berger et al [87]
conducted a study to investigate the risks associated with the
use of abbreviations in critical care communication. By
analyzing perspectives from ICU clinicians, the study
highlighted how abbreviations, although designed to save time,
often introduce ambiguity, misinterpretation, and patient safety

risks in high-stakes environments. The findings emphasize that
abbreviations can fall short of their intended efficiency,
underscoring the importance of clear communication,
standardized language, and improved training to minimize
preventable errors and improve patient safety in the ICU.

RoB and Applicability Assessment
Across the literature, most studies were judged to have a high
RoB in at least 1 RoB domain, most commonly analysis,
including reliance on apparent performance without robust
internal validation, absent calibration or uncertainty, and risks
of temporal or selection leakage, followed by predictors and
participants. Outcome definitions were generally aligned with
ICU standards, but sometimes lacked blinded ascertainment.
Applicability concerns concentrated in predictors (including
dependencies on sources not readily available in real-time ICU
workflows). Detailed ratings and justifications are presented in
Table S4 in Multimedia Appendix 1.

Discussion

Principal Findings
This scoping review provided a comprehensive portrait of the
role of LLMs in CCM, identifying the applications, advantages,
challenges, and future research directions of this area. With the
recent advent of LLMs, medicine has witnessed groundbreaking
developments and advancements [109]. Many review papers
focus on applying LLMs in health and medicine [110,111].
Particularly, although there are some review papers on AI in
CCM [112-114], few review papers focus on the application of
LLMs in CCM. From the 2342 papers initially retrieved, 41 of
them were selected for final review. An extensive examination
of the selected literature revealed that LLMs have shown
promise in some main aspects of CCM: clinical decision support,
medical documentation and reporting, medical education, and
doctor-patient communication. Compared with traditional AI
models, LLMs have advantages in processing unstructured data
and do not require manual feature engineering. At the same
time, applying LLMs to CCM faces numerous challenges,
including hallucinations and poor interpretability, sensitivity to
prompts, bias and alignment challenges, and privacy and ethical
issues. The current applications, together with the challenges
and future directions of LLMs in CCM identified by this review,
are shown in Figure 3. Our findings highlight the potential of
LLMs in critical care practices while also underscoring the need
for further research to address corresponding challenges and
improve the reliability and applicability of LLMs in the critical
care domain.
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Figure 3. The main applications, challenges, and future directions of LLMs in CCM. CCM: critical care medicine; LLM: large language model.

The application of LLMs in CCM has demonstrated numerous
advantages. Compared to traditional machine learning
techniques, using LLM technology in CCM can effectively
cause understanding and generate natural language, aiding
clinicians in writing patient medical records and diagnostic
notes [115-118]. The capabilities of LLMs extend beyond text
interpretation and generation. They surpass traditional machine
learning methods in handling unstructured data. LLMs can learn
directly from extensive patient data without manual feature
engineering. Moreover, multimodal LLMs can learn and
understand medical images, such as x-rays and CT (computed
tomography) scans [110]. In clinical practice, LLMs can extract
critical information from a patient’s historical medical records
and combine it with the latest medical research, aiding
physicians in identifying rare diseases or those with early
symptoms that are not clearly defined [119]. For medical
research, LLMs can assist researchers in summarizing data and

information in literature research and providing suggestions for
manuscript structure and titles, enhancing the readability and
completeness of texts [118]. LLMs have a wide range of
knowledge that can provide physicians with a comprehensive
analysis of decision-making across different specialties [115].

Challenges

Hallucinations and Poor Interpretability
One of the most critical challenges in applying LLMs in CCM
is the occurrence of hallucinations, where the model generates
plausible-sounding but factually incorrect information [120,121].
These hallucinations pose risks, where incorrect
recommendations can lead to inappropriate diagnoses or
treatment plans, potentially endangering ICU patients’ lives.
Studies have documented examples where LLMs hallucinate
during critical care decision-making, raising concerns about
their reliability [76,81,122]. Additionally, LLM outputs often
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lack transparency, making it difficult for clinicians to understand
how specific decisions are reached. This opacity complicates
the tracking of decision-making processes, leading to reduced
trust in these systems [61,123]. The opaque nature of LLMs
further complicates their application, as it becomes challenging
to verify the factual basis of their outputs, particularly in the
ICU, where patient safety is important. The lack of clarity
regarding the sources of information makes LLMs unreliable
for autonomous decision-making in CCM [76,81]. Therefore,
improving the interpretability and transparency of LLMs remains
a critical challenge in their integration into clinical workflows
[123,124].

Sensitivity to Prompts and Inconsistent Performance
LLM-generated outputs are highly sensitive to input prompts,
and different prompt strategies may affect the model’s
capabilities and performance [122]. In CCM, where the accuracy
of information is essential, this sensitivity can lead to
inconsistent results across different clinical scenarios [82,84].
The same LLM might provide different answers to slightly
rephrased prompts, requiring clinicians to analyze multiple
iterations to ensure accuracy. This lack of consistency raises
concerns about the reliability of LLM applications in critical
care, especially when time-sensitive decisions must be made.
There is no universal prompt strategy that guarantees high
performance across all LLMs, which means that clinicians must
carefully craft prompts to suit the context of the task [75]. The
absence of a one-size-fits-all approach for prompting remains
a significant limitation of LLMs in critical care settings [76].

Model Training and Deployment Challenges
Training and deploying LLMs for critical care applications is
a resource-intensive process, requiring vast computational power
and large, diverse datasets. Public critical care databases, such
as MIMIC (Medical Information Mart for Intensive Care)
[125,126] and eICU [127], are commonly used for model
training. Moreover, hospital regulations and privacy laws often
restrict data sharing, complicating the training of models across
multiple centers [107]. The deployment of LLMs in real-time
ICU settings also requires substantial computational resources,
which may not be feasible in all clinical environments,
particularly those with constrained infrastructure [68,128,129].
Additionally, compliance with local data privacy regulations in
some hospitals can limit the use of LLMs in health care settings
[107]. The inability of LLMs to adapt to local computing
environments due to privacy concerns further hampers their
wide-scale application in critical care [68].

Timeliness of Knowledge and Model Updates
CCM is a rapidly evolving field, with frequent updates to clinical
guidelines, treatments, and best practices. LLMs, however, are
typically trained on static datasets, limiting their ability to
remain up-to-date with the latest medical advancements [19].
This delay in knowledge poses a significant challenge, as
outdated information could negatively impact patient outcomes
[76,84]. To ensure their continued relevance in clinical practice,
LLMs must be regularly updated with the latest medical
knowledge. However, this process is computationally expensive
and logistically challenging, particularly for large-scale LLMs

[84,130]. Therefore, ensuring the timeliness of LLMs’
knowledge base is crucial to their successful application in
CCM.

Bias and Alignment Challenges
LLMs may unintentionally learn biases from the training data
and reproduce them in their outputs, potentially leading to
skewed or inappropriate recommendations in critical care. These
biases can disproportionately affect specific patient populations,
potentially leading to disparities in treatment and care
[70,78,131]. In the ICU, biased outputs could result in
suboptimal or even harmful decisions. Moreover, aligning LLM
behavior with clinical guidelines and ethical standards is also
a challenge, as models may not always adhere to best practices
when generating recommendations [81,84,132]. Addressing
bias and ensuring alignment with clinical guidelines and ethics
are essential steps for LLMs to function as reliable tools in
critical care [131,133]. Additionally, excessive reliance on
AI-generated alerts can lead to “alarm fatigue,” where clinicians
become desensitized to frequent, nonurgent predictions,
potentially missing critical care events [134].

Lack of Evaluation Benchmarks
Currently, there are no universally accepted standards for
evaluating the performance of LLMs in critical care settings.
Traditional model evaluation primarily focuses on the accuracy
of medical question answering, which may not fully reflect the
capabilities of LLMs in critical care clinical practice [135].
Across the included literature, model discrimination should not
be conflated with clinical benefit. Consistent with current
professional guidance and editorials, routine adoption should
follow prospective evaluations that consider patient-centered
outcomes rather than relying solely on technical metrics. Current
benchmarks rarely include patient-relevant end points [136,137].
Without appropriate benchmarks, it is challenging to evaluate
the effectiveness of LLMs in critical care or compare different
models on an equal standard.

Information Overload and Alarm Fatigue in ICU
Workflows
Contemporary ICUs are characterized by a proliferation of
bedside devices and dense, multistream monitoring data.
Qualitative and narrative evidence suggest that this technological
abundance, when poorly integrated, can amplify cognitive load,
desensitize clinicians to frequent alarms, and undermine
situation awareness and team communication [138].
LLM-enabled systems may help by acting as context-aware
filters and data-to-text summarizers that deduplicate
near-identical events across monitors, ventilators, or pumps;
prioritize alerts using clinical context; and attach traceable
rationales for rapid verification [139,140]. However, naïve
deployments could also increase burden (eg, secondary
notifications and unverifiable rationales), so any use of LLMs
should be aligned with human-centered monitoring principles
and embedded in sociotechnical workflows rather than added
as another layer.
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Clinician Workload, Burnout, and Documentation
Quality
While LLMs show promise for text generation and knowledge
integration, clinical burden and professional burnout are often
overlooked dimensions of the ICU setting [141,142].
Hallucinations and lack of interpretability shift the burden from
“writing” to “reviewing and evidence verification.” Inconsistent
sensitivity to prompts and output leads to trial and error for
frontline staff [143]. At the deployment level, the ICU’s high
noise level, multirole collaboration, and rigorous legal review
may create new bottlenecks for editing and rework. Furthermore,
language biases in generated text and paperwork bloat may
compromise team communication and information retrieval
efficiency. These factors collectively point to the need for
systematic evaluation of clinician burden and burnout beyond
model effectiveness.

Privacy and Ethical Concerns
Handling patient data responsibly is a significant concern in
critical care, where vast amounts of sensitive information must
be processed. Ensuring patient privacy while using LLMs
presents both technical and legal challenges. Strict compliance
with data protection regulations, such as the General Data
Protection Regulation and HIPAA (Health Insurance Portability
and Accountability Act), is necessary but can hinder the
deployment of LLMs in clinical settings [68,76]. Moreover, the
ethical implications of relying on LLMs for life-or-death
decisions raise concerns about accountability and the potential
over-reliance on AI in medical decision-making [144]. To
navigate these issues, health care systems must establish clear
guidelines for the responsible use of LLMs, ensuring that patient
privacy is upheld and ethical standards are maintained.
Addressing these privacy and ethical challenges will be essential
for gaining clinician and patient trust in AI systems used in
CCM [72].

Future Directions

Enhancing Model Reliability and Interpretability
Improving the reliability and interpretability of LLMs in CCM
is critical for their safe integration into real-world clinical
workflows. To enhance model reliability, future research should
prioritize improving the quality of training data, particularly by
incorporating domain-specific knowledge from critical care
environments [84,107]. The accuracy and reliability of LLMs
can be enhanced by improving training data quality, using
ensemble learning, evidential reasoning, implementing
adversarial training, and multiagent systems [145-149].
Additionally, the use of methods, such as chain-of-thought
reasoning, tree-of-thoughts, and retrieval-augmented generation
(RAG), can offer greater interpretability, allowing clinicians to
understand how LLMs arrive at specific recommendations [150].
These interpretability techniques would provide clinicians with
a clearer rationale for decision-making, thereby building trust
in LLM outputs [151,152]. LLM outputs should include
provenance-linked evidence and enforce concise, structured
formats to curb alert or note bloat and reduce verification burden
in human-centered ICU workflows [138]. Further, integrating
external knowledge databases such as PubMed through plugins

can improve the accuracy of LLM outputs and reduce the risk
of hallucinations, particularly in critical care [108].

Optimizing Prompt Engineering Techniques
LLMs are highly sensitive to prompts, and developing robust
prompt engineering techniques is essential for improving
consistency and reliability in CCM. Recently, advancements
such as Medprompt, which combines dynamic few-shot,
self-generated chain-of-thought, and choice shuffle ensemble,
have demonstrated improved performance in general LLMs,
particularly in medical contexts [153]. MedGraphRAG is also
a novel graph-based RAG framework designed specifically for
the medical domain, enhancing the capabilities of LLMs by
generating evidence-based, contextually accurate responses
through a hierarchical graph structure, thereby improving
transparency and reliability in handling private medical data
[154]. These advancements will be particularly useful for critical
care environments, where fast and reliable decision-making is
essential. Future research should explore the development of
prompt engineering strategies to handle complex clinical tasks
[74,79].

Improving Model Training and Deployment Scalability
To address LLM training and deployment challenges, scalable
model architectures, transfer learning, model pruning, and
federated learning approaches can be explored to reduce
computational demands and facilitate practical deployment
[155]. The emergence of low-powered open-source LLMs
running locally could circumvent issues related to data privacy
and computational resource constraints [76]. It is crucial to
convert medical datasets into easily accessible structured
databases and train health care professionals in the ICUs to use
LLMs in clinical practice to aid decision-making [108].
Collaboration with hospitals to develop structured medical
databases will also aid in better training of LLMs for real-time
decision-making in critical care environments [84,107].

Integrating Up-to-Date Medical Knowledge
Using web-based learning systems allows models to update and
assimilate the latest medical research and changes in clinical
practices on time. Additionally, modular update systems can
swiftly integrate new medical discoveries, while expert
collaboration ensures the scientific validity and timeliness of
model outputs. Moreover, using RAG techniques to connect
LLMs with databases in CCM can also address the knowledge
timeliness issue to some extent [151,152].

Mitigating Bias and Ensuring Fairness
Bias mitigation should be approached through preprocessing,
in-training, intraprocessing, and postprocessing stages [131].
Preprocessing techniques involve modifying model inputs to
ensure balanced representations. In-training methods focus on
adjusting model parameters to mitigate biases through
gradient-based updates. Intraprocessing methods modify
inference behavior without further training, while postprocessing
techniques correct model outputs to ensure fair treatment across
demographic groups. Developing bias detection and dataset
augmentation algorithms to review and adjust model outputs
regularly can help reduce model bias and ensure fairness in
CCM [156].

JMIR Med Inform 2025 | vol. 13 | e76326 | p. 15https://medinform.jmir.org/2025/1/e76326
(page number not for citation purposes)

Shi et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Developing Comprehensive Evaluation Benchmarks
Recent studies demonstrated that performance varies across
different medical tasks, highlighting the need for task-specific
evaluations [135,157]. Future efforts should focus on developing
more sophisticated evaluation frameworks that go beyond
traditional metrics and consider the specific challenges of critical
care [68]. For instance, the MIMIC-IV-CDM (Medical
Information Mart for Intensive Care-IV-Clinical Decision
Making) dataset and evaluation framework, focusing on 2400
real patient cases with acute abdominal pain, offers a new
benchmark for evaluating LLMs in clinical decision-making,
highlighting the need for more rigorous testing to ensure LLMs
meet clinical standards, particularly guidelines [158]. We must
standardize clinician-centered metrics, such as time-in-note,
click or keystroke counts, handoff completion time, and note
quality (accuracy, completeness, consistency, and readability),
and report them alongside patient outcomes in prospective,
preregistered ICU studies [159]. To establish clinical benefit
and safety beyond model accuracy, future studies should use
preregistered, prospective designs that prespecify outcomes
such as mortality, ventilator-free days, time-to-critical
interventions, and ICU length of stay, alongside calibration and
uncertainty reporting [136,137]. Future work should explore
comparing general LLMs against domain-adapted or fine-tuned
LLMs (eg, BioGPT-Large and Llama-Med) on tasks and datasets
in CCM. Additionally, collaboration between medical
professionals and AI researchers will be necessary to design
evaluation metrics that are meaningful, clinically applicable,
and capable of guiding LLM improvements [135].

Strengthening Privacy and Ethical Guidelines
Data privacy and ethical guidelines are crucial for ensuring that
LLMs are safely integrated into CCM [123,124]. As LLMs
handle vast amounts of sensitive patient data, their deployment
must comply with strict data protection regulations [76]. Future
research should explore synthetic data generation techniques to
augment training datasets while protecting patient privacy,

allowing for comprehensive model training without
compromising confidentiality [76,107]. Moreover, collaboration
with policymakers, ethicists, and legal experts is necessary to
ensure LLM applications comply with ethical and legal
requirements, thus protecting patient privacy and data security
[160].

This scoping review may be limited by selection bias due to the
literature databases and inclusion criteria, potentially excluding
relevant studies in non-English or outside the selected databases.
Additionally, the rapid development of LLMs could render the
findings quickly outdated, and the broad scope may have limited
the depth of analysis for specific LLM applications in CCM.

Conclusions
In conclusion, although LLMs in CCM are not yet ICU experts,
they act as more than stochastic parrots. Applying LLMs in
CCM presents a transformative potential for enhancing critical
care. LLMs are capable of reasoning beyond random generation,
and they have demonstrated capabilities to improve diagnostic
accuracy, plan optimal treatments, and provide valuable support
in prognosis prediction. However, applying LLMs in CCM is
still in its early stages, with very few large models specifically
designed and fine-tuned for this domain. Future research should
focus on enhancing model reliability and interpretability,
optimizing prompt engineering techniques, improving training
and deployment scalability, integrating up-to-date medical
knowledge, mitigating bias and ensuring fairness, developing
comprehensive evaluation benchmarks, and strengthening
privacy and ethical guidelines. Close collaboration across
multiple disciplines, such as medicine, computer science, and
data science, may help catalyze the applications of LLMs in
CCM. There is some way to go before making LLMs that
become true ICU experts. Nevertheless, we are optimistic that
LLMs in CCM will become experts in the near future, helping
to improve the quality of critical care and the outcomes of
patients with critical illness.
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