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Abstract

Background: Diseases of the oral cavity, including oral squamous cell carcinoma, pose major challenges to health care
worldwide due to their late diagnosis and complicated differentiation of oral tissues. The combination of endoscopic hyper-
spectral imaging (HSI) and deep learning (DL) models offers a promising approach to the demand for modern, noninvasive
tissue diagnostics. This study presents a large-scale in vivo dataset designed to support DL-based segmentation and classifica-
tion of healthy oral tissues.

Objective: This study aimed to develop a comprehensive, annotated endoscopic HSI dataset of the oral cavity and to
demonstrate automated, reliable differentiation of intraoral tissue structures by integrating endoscopic HSI with advanced
machine learning methods.

Methods: A total of 226 participants (166 women [73.5%], 60 men [26.5%], aged 24-87 years) were examined using an
endoscopic HSI system, capturing spectral data in the range of 500 to 1000 nm. Oral structures in red, green, and blue and HSI
scans were annotated using RectLabel Pro (by Ryo Kawamura). DeepLabv3 (Google Research) with a ResNet-50 backbone
was adapted for endoscopic HSI segmentation. The model was trained for 50 epochs on 70% of the dataset, with 30% for
evaluation. Performance metrics (precision, recall, and F-score) confirmed its efficacy in distinguishing oral tissue types.
Results: DeepLabv3 (ResNet-101) and U-Net (EfficientNet-BO/ResNet-50) achieved the highest overall Fj-scores of 0.857
and 0.84, respectively, particularly excelling in segmenting the mucosa (0.915), retractor (0.94), tooth (0.90), and palate (0.90).
Variability analysis confirmed high spectral diversity across tissue classes, supporting the dataset’s complexity and authenticity
for realistic clinical conditions.

Conclusions: The presented dataset addresses a key gap in oral health imaging by developing and validating robust DL
algorithms for endoscopic HSI data. It enables accurate classification of oral tissue and paves the way for future applications in
individualized noninvasive pathological tissue analysis, early cancer detection, and intraoperative diagnostics of oral diseases.
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Introduction

Oral diseases, including malignant and premalignant lesions,
often occur on pre-existing chronic tissue alterations that
are difficult to discern through conventional visual examina-
tion. This process heavily relies on the clinician’s exper-
tise and subjective interpretation, frequently necessitating
additional diagnostic measures. Available methods include
incisional and excisional biopsies, brush biopsies, cytological
techniques, and optical approaches. Among these, scalpel
biopsy remains the gold standard for diagnosing potentially
malignant lesions, offering a diagnostic accuracy of up to
88.9% [1]. However, it involves the partial removal of tissue
from a suspicious area for histopathological examination,
making it invasive, costly, and potentially inadequate for
multilocular lesions. Excisional biopsies, while more reliable
due to larger sample sizes, bear the risk of incomplete
removal of malignancies and overtreatment in cases of benign
lesions [2].

In recent years, less invasive methods, such as brush
biopsies, tissue autofluorescence, and chemiluminescence (eg,
toluidine blue staining) have been introduced as cost-effective
alternatives. Meta-analyses report high sensitivities for these
techniques, ranging from 30% to 100% for tissue autofluor-
escence, 77% for toluidine blue staining, and 91%-100%
for brush biopsies [3-5]. However, these methods have not
significantly improved the early detection of oral squamous
cell carcinoma. The examiner-dependent variability of less
invasive methods can, at worst, delay the accurate diagnosis
of oral squamous cell carcinoma, one of the most prevalent
malignant tumors globally, accounting for 90%-95% of all
malignant oral cavity pathologies [6-8]. Consequently, the
surgical scalpel biopsy remains the diagnostic gold standard
[9]. Evidence shows that patients undergoing routine clinical
evaluations, including visual inspection and digital palpation,
achieve significantly higher 5-year survival rates [10,11].

The integration of advanced imaging technologies into
clinical diagnostics is revolutionizing oral health care. Among
these innovations, hyperspectral imaging (HSI) stands out
as a noninvasive, highly sensitive modality that captures
detailed spectral information across hundreds of wavelengths
beyond the visible light spectrum. By detecting tissue-spe-
cific spectral signatures, HSI combines imaging remission
spectroscopy with conventional imaging techniques [12]. HSI
acquires spatial and spectral information as a 3D hyperspec-
tral cube in a noncontact, noninvasive, and radiation-free
manner. This approach provides vast datasets spanning wide
wavelength spectra, enabling the immediate extraction of
diagnostically relevant information [13-18]. The efficacy of
HSI relies on the distinct spectral signatures of tissues,
which result from their absorption, reflection, and refraction
properties when illuminated. Each tissue type generates a
unique light spectrum that HSI systems can capture, offering
the potential for detecting pathological changes with high
precision and sensitivity [19].

Endoscopic HSI enhances access to the oral cavity and
improves illumination, making it particularly valuable in
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addressing the growing demand for noninvasive diagnos-
tic methods in oral medicine [20-23]. In this context, the
combination of endoscopic HSI with deep learning (DL)—
based computer vision techniques provides the potential
to significantly enhance diagnostic accuracy, allowing for
more comprehensive mapping of the oral cavity and
accurate distinction between healthy and pathologically
altered mucosa. This offers potential opportunities to avoid
unnecessary biopsies and to improve patient-centered therapy
by determining individual resection margins. The advanced
capabilities of endoscopic HSI, while promising, pose
challenges in managing its vast and intricate data output.
The spectral data acquired by endoscopic HSI, character-
ized by tissue-specific signatures, surpass the processing
abilities of human observers and traditional analytical tools.
This complexity necessitates advanced data analysis, where
DL plays a pivotal role. Specialized in interpreting multi-
dimensional datasets, DL uses neural networks to process
extensive endoscopic HSI data efficiently, identifying subtle
patterns and deviations indicative of pathology that might
be missed by human assessment or conventional algorithms
[24]. The integration of DL into endoscopic HSI enhan-
ces the precision, consistency, and speed of data interpreta-
tion, significantly accelerating the diagnostic process. This
is especially critical in clinical environments, where timely,
accurate real-time analysis can profoundly impact patient
outcomes [25-28]. However, implementing DL in endoscopic
HSI analysis presents challenges, primarily the limited
availability of annotated endoscopic HSI datasets reflecting
the complexity and diversity of real-world clinical cases.
Existing datasets, often derived from controlled laboratory
environments, inadequately prepare DL models for the
variability of clinical settings, limiting their practical utility.
A review by Cui et al [24] highlights this data scarcity as
a major barrier to effective DL analysis in medical imaging,
emphasizing the need for specialized datasets. In recent years,
DL has also shown great promise in various other domains of
medical imaging, including tumor classification in magnetic
resonance imaging scans [29] and noise reduction in medical
images [30-33]. These studies highlight the versatility and
effectiveness of neural networks in processing complex
medical images. Building on these advances, the present
work applies DL and endoscopic HSI to the oral cavity—an
area where such integration remains underexplored despite its
clinical potential of enhancing current standards to advance
precision and efficacy in oral diagnostics.

Methods

Study Cohort

A total of 226 participants, including 166 (73.5%) women and
60 (26.5%) men aged between 24 and 87 years, were included
in this prospective, clinical study. Endoscopic HSI data
were acquired at the Department of Oral and Maxillofacial
Surgery, Facial Plastic Surgery, University Medical Center.
The examined participants represented a heterogeneous group
of patients from the oral and maxillofacial surgery outpa-
tient clinic. Patients with macroscopic abnormalities of the
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oral mucosa, premalignant lesions, or tumors were excluded
from the study. All participants provided informed consent
prior to the procedure and data collection. The individual
pictured in Figure 1 has provided permission for their image
to be used in this publication. This study was approved by
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the local ethics committee of Rhineland-Palatinate (registra-
tion number 2021-16158) and was conducted in accordance
with the code of ethics of the World Medical Association
(Declaration of Helsinki).

Figure 1. Experimental setup for endoscopic hyperspectral measurements of the oral cavity.

HSI and Patient Data Acquisition

The HSI datasets were acquired using a state-of-the-art
endoscopic HSI sensor system (TIVITA Mini® camera
system, Diaspective Vision GmbH). This system detects
100 wavelengths in the range of 500-1000 nm, offering a
bandwidth of 5 nm [34]. The device uses the pushbroom
principle, enabling chemical component detection based on
light absorption and reflection behavior. During operation,
light enters the optical system of the spectrometer through
the lens, where it is collimated and separated into individual
wavelengths using a transmission grating. The separated light
then passes through a second optical system before reach-
ing the sensor of the connected complementary metal-oxide-
semiconductor camera. The spectrometer directly detects
the spatial direction and width of the object being scan-
ned (Y-axis) while the second spatial direction and length
of the object (X-axis) are determined through the continu-
ous mechanical movement of the light entry gate within
the scanning unit. This process generates a 3D data cube
that includes a spectral dimension (), capturing complete
tissue spectra for each pixel within the wavelength range of
500-1000 nm [35].

Standardized measurement protocols were followed during
image acquisition, maintaining a consistent distance of 7-10
cm to ensure high-quality and distinct image data (Figure
1). Measurements were performed in an examination room
under dimmed lighting conditions to ensure uniformity and
comparability. A total of 226 participants aged between
24 and 87 years, including 166 (73.5%) women and 60
men (26.5%), were prospectively recruited at the outpatient
department of the clinic of Oral and Maxillofacial Surgery,
University Medical Center, where all individuals underwent
routine clinical evaluation and inspection. Inclusion was
limited to individuals without clinically apparent mucosal
lesions, premalignant conditions, or malignancies, ensur-
ing a representative sample of nonpathological oral tissue.
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Informed consent was obtained from all participants prior
to data acquisition. The recruitment strategy was designed
to capture a broad range of healthy oral tissue presentations
to ensure the generalizability of HSI data across different
anatomical sites and patient demographics. For each patient,
5 images were taken, including views of the right and left
cheeks, the palate, the back of the tongue, and the closed
row of teeth. The data were subsequently pseudonymously
archived using camera-specific software tools.

Red, Green, and Blue-Imaging and
Endoscopic HSI Data Files

The Comprehensive Oral Health Hyperspectral Dataset
(comprehensive, annotated endoscopic HSI dataset of the
oral cavity) primarily comprises RGB (red, green, and blue)
and endoscopic HSI data with corresponding annotations.
These components in the presented dataset are each important
to address the fundamental challenges in DL for semantic
segmentation [36], providing robust and effective model
training. The RGB component offers standard visual spectrum
imagery of the oral cavity, serving as a foundational baseline
for comparison with more sophisticated imaging modalities
like raw and processed endoscopic HSI data.

Annotation Process and Verification

Individual annotations of the oral cavity’s anatomical sites
were manually performed using an image annotation tool
(RectLabel Pro version 2024.06.07, Ryo Kawamura; Tokyo,
Japan). To ensure high-quality image data annotation, several
key features were implemented. First, detailed annotation
guidelines were developed to ensure reproducible results.
Comprehensive training sessions and practical exercises for
annotators were conducted, followed by feedback rounds
to enhance their skills. Each image was annotated by
at least 2 independent specialists to minimize subjective
errors. Regular quality checks were performed through
sample reviews by senior specialists to detect inconsistencies.
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Continuous feedback was given to annotators, and guidelines
were regularly updated based on this feedback. Interannota-
tor analysis of 2 segmentation annotation sets (“original”
vs “new”), each assigning a class label (out of 20 possi-
ble objects plus background) to every pixel, was carried
out additionally for internal quality assurance. Agreement
was quantified using metrics that capture both overall and
class-specific consistency: (1) Pixel Accuracy, (2) Cohen
Kappa (including and excluding background), and (3) Dice
Coefficients, which are mathematically equivalent to the
F1-score in the binary case. To ensure a realistic representa-
tion of everyday clinical practice, the annotated structures
marked for subsequent analysis corresponded to the individ-
ual intraoral site and situation, including “clutter (n=752),”
“blood (n=3),” “brackets (n=15),” “floor of mouth (n=43),”
“gingiva (n=511),” “implant (n=10),” “lip (n=603),” “mucosa
(n=745),” “palate (n=539),” “prosthesis (n=65),” “reflection
(n=106),” “retractor (n=702),” “suture (n=2),” “telescopic
crown (n=28),” “tongue (n=587)” and “tooth (n=681),” with a
number of distinct classes varying from a minimal count of 2
for “suture” to a substantial count of 752 for “clutter”.

To minimize diagnostic errors, undersegmentation of
anatomical structures was avoided, and experienced clinical
experts reviewed each annotation to ensure that all clinically
relevant features were thoroughly labeled. This conserva-
tive approach occasionally led to small unannotated gaps
between each class to prevent the merging of different
anatomical sites. The digital annotations in XML format
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provided a semantic comprehension of the image data, which
are essential for the application and training of machine
learning and computer vision to differentiate various oral site
conditions based on the RGB and endoscopic HSI compo-
nents (Figure 2).

Preprocessing further involved the conversion of the
original hyperspectral data from .DAT format to the NumPy
format (.npy) to facilitate interoperability, reproducibility, and
ease of use for DL models. Regarding data augmentation,
spatial transformations, such as image rotations to enhance
model robustness, were used. The addition of noise and blur
was intentionally avoided, as these operations could introduce
spectral distortions that are not physically plausible in the HSI
context.

Given the specific goal of oral structure differentiation,
classes with low incidence, such as suture, blood, implant,
brackets, telescopic crown, prosthesis, reflection, and floor of
mouth were deemed less relevant and excluded from further
analysis to prevent skewing the learning process and improve
the model’s ability to generalize to more common and
diagnostically relevant structures. By focusing on higher-inci-
dence classes, such as palate, retractor, mucosa, tongue, tooth,
lip, and gingiva, the training process is optimized, enhancing
the model’s efficiency and effectiveness across diverse oral
structures. To achieve representative results for the annota-
tion, an additional interannotator analysis and validation was
carried out to detect possible person-dependent deviations.
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Figure 2. Examples highlighting the detailed annotations, red, green, blue imagery, and features within endoscopic hyperspectral imaging Band 9

(wavelength of 545 nm), which are especially discernible for human eyes.

o

[ Clutter 1 Lip [ Palate
[ Gingiva 1 Mucosa
Dataset Structure

To ensure user-friendly analysis of the hyperspectral dataset
and reliable collaboration in the research community, the
dataset has been specifically optimized for the Python
ecosystem (Python Software Foundation 2023, Python
Language Reference, version 3.10) instead of the proprietary
software required to load endoscopic HSI data. Regarding
scientific computation, Python emerges as the predomi-
nant programming language due to its extensive libraries
and robust community support. After acknowledging this
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[ Retractor [ Tongue [ Tooth

prevalent preference and recognizing the NPY file format as
the most straightforward option for loading data into NumPy,
a pivotal library for numerical computations in Python [37],
all elements of the comprehensive, annotated endoscopic
HSI dataset of the oral cavity (“RGB,” “Annotations,”
“HSI_Data_Files”) were archived in the “.npy” format. The
NPY format offers several advantages: It is compact and
efficient for loading and saving and supports a wide range
of data types. This standardization eliminates the complex-
ity and potential incompatibilities associated with proprietary
formats. In order to provide high-quality, detailed annotations
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of the complex intraoral structures, digital annotations were
elaborated in XML format. To enhance utility and facili-
tate integration into researchers’ workflows, a semantic map
of the oral cavity was generated directly from the XML
datasets for each image. These maps essentially consisted
of binary or multiclass masks, delineating the categorization
of each pixel based on the detailed information provided in
XML. However, the creation of these maps is an automated
process that translates the complex structured information
of the XML annotations into a simple but comprehensive
format that can easily be integrated into machine learning
models to differentiate tissue types based on the values of
each pixel corresponding to the specific annotated category.
The workflow in short: First, eHSI endoscopic HSI data are
loaded, and semantic information is extracted from the XML
file. This information is then used to generate a semantic
map of the oral cavity, where each pixel value corresponds to
a specific annotated category, such as different tissue types
or anatomical sites. The resulting semantic map provides
comprehensive, pixel-wise annotations of the frame, ready for
application in segmentation algorithms.

Statistical Analysis of the Dataset

For an initial assessment of the spectral data, a coefficient
of variation (CV) was used as a statistical measure. The
CV is a standardized measure for dispersion of a probability
distribution or frequency distribution and defines the ratio of
the SD to the mean, expressed as percentage. It is particularly
useful in the context of HSI, as it allows the comparison
of variation between different classes and bands despite the
different mean intensities. The formula used for the coeffi-
cient of variation is:

cv:(i)xum%
u

where o is the SD of the dataset and u is the mean of the
dataset.

Machine Learning and DL Techniques

This study adapted several state-of-the-art models and their
performance assessing semantic segmentation in the context
of oral health diagnostics. These models included DeepLabv3
[38-40], as well as fully convolutional network (FCN [41])
and pyramid scene parsing network (PSPNet [42]), each
tested with ResNet-50 and ResNet-101 [43], backbones. In
addition, PSPNet using VGG16 [44] and U-Net [45] models
using both EfficientNet-BO [46] and ResNet-50 backbones
were evaluated. Each model was optimized for processing
our dataset, which features challenging anatomical structures,
enabling a comprehensive analysis of their suitability for
handling the variability inherent in endoscopic HSI data
for oral health diagnosis. The models were trained over 50
epochs using 70% of the comprehensive, annotated endo-
scopic HSI dataset of the oral cavity test set, with the
remaining 30% reserved for evaluation. This split allowed for
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a thorough assessment of the models’ ability to generalize to
unseen data. Each model’s performance on endoscopic HSI
data was evaluated using Precision, Recall, and the F-score,
providing a comprehensive measure of their effectiveness in
segmenting and classifying the various anatomical structures
present in the dataset.

Ethical Considerations

The study was approved by the local ethics committee
of Rhineland-Palatinate (registration number: 2021-16158)
and was conducted in accordance with the protocol and in
compliance with the moral, ethical, and scientific principles
governing clinical research as set out in the Declaration
of Helsinki of 1975 as revised in 1983. Informed consent
was obtained from all participants involved in the study.
This study received approval from the Ethics Committee of
the Medical Association of Rhineland-Palatinate (reference
number 2021-15858). All procedures adhered to institu-
tional and national ethical standards and were conducted
in accordance with the Declaration of Helsinki. Participants
were provided comprehensive information regarding the
study’s nature, purpose, procedures, data usage, and the
potential publication of anonymized images or data rela-
ted to their participation. The privacy and confidentiality
of all participants were rigorously protected. No identify-
ing information, including names or hospital IDs, has been
included in the manuscript. Images containing identifiable
features were excluded except for Figure 1, which depicts
the corresponding author (PR), who has provided written
consent for the use of their image in this publication. No
financial or material compensation was offered or provided to
the participants in this study.

Results

Variability of the Dataset

A descriptive statistical analysis of the hyperspectral dataset
was performed to describe the distribution and variability
of the data. Mean values and SD across the spectral bands
were analyzed for each class delineated in the hyperspectral
images. The objective of the statistical data evaluation was to
accurately represent the central tendencies and variabilities of
spectral signatures, which are indicative of various anatomical
and pathological entities in oral health. Mean values and SDs
for all classes across all spectral bands were presented in a
consolidated diagram (Figure 3).

The results indicated that the CV for the majority of
classes, across most spectral bands, substantially exceeded the
commonly recognized threshold of 15%, which is gener-
ally considered high. In contrast, a CV below 5% would
have denoted homogeneous data, while values between 5%
and 15% would have indicated moderate uniformity. The
consistently elevated CV values observed across all classes
thus underscored significant spectral diversity within each
class (Figure 4).
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Figure 3. Consolidated diagram of mean values and SD for each class across all measured spectral bands.
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DL Model Performance

The DeepLabv3 model with the ResNet-50 backbone
achieved solid overall performance, with an Fi-score of
0.855, performing especially well on the segmentation of
mucosa, retractor, and tooth. However, it exhibited moder-
ate performance on gingiva and lip, with F{-scores of 0.753
and 0.709, respectively. Switching to the deeper ResNet-101
backbone improved the overall performance slightly, with an
F1-score of 0.857, particularly enhancing the model’s ability
to segment clutter and gingiva (Table 1).

Both FCN-ResNet-50 and FCN-ResNet-101 demonstra-
ted robust segmentation performance, achieving overall
F1-scores of 0.862 and 0.861, respectively (Table 2). They
excelled in segmenting retractor (F-score=0.942 for both),
tooth (F(-score=0.910), palate (Fj-score=0.890), and mucosa
(F1-score=0.912). However, lip and gingiva posed challenges
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for both backbones, reflected by lower Fj-scores around 0.72
and 0.77, respectively. Although switching to the deeper
ResNet-101 backbone yielded marginal improvements in
certain classes, the overall performance remained comparable
between the 2 architectures.

PSPNet models showed slightly lower performance, with
the ResNet-50 backbone achieving an Fy-score of 0.837 and
the VGG16 backbone scoring 0.808. While these models
handled classes, such as retractor and tooth, relatively well,
they faced difficulties in the segmentation of gingiva and lip,
particularly when using VGG16. The lower overall perform-
ance of PSPNet VGG16 compared to ResNet-50 reflects the
influence of the backbone on the segmentation outcomes
(Table 3).

U-Net (EfficientNet-BO) and U-Net (ResNet-50) both
demonstrated robust segmentation performance, attaining

JMIR Med Inform 2025 | vol. 13 1e76148 | p. 7
(page number not for citation purposes)


https://medinform.jmir.org/2025/1/e76148

JMIR MEDICAL INFORMATICS

overall Fy-scores of 0.867 and 0.840, respectively (Table
4). They excelled particularly at segmenting retractor
(F1-score=0.941 vs 0.927), palate (F1-score=0.909 vs 0.881),
and mucosa (Fp-score=0.920 vs 0.901). Tongue and tooth
segmentation also performed well, with Fl-scores exceed-
ing 0.85 for both models. However, both networks faced
challenges in segmenting lip (Fj-score=0.755 vs 0.695) and

RoOmer et al

gingiva (F-score=0.751 vs 0.721), indicating opportunities
for further refinement in these classes.

Figure 5 demonstrates that DeepLabv3 (ResNet-101) and
U-Net (EfficientNet-BO) outperform other models across
most tissue classes, with lower Fji-scores consistently
observed for lip and gingiva segmentation.

Table 1. Results showing precision, recall, and F{-score for different classes in a comparison of DeepLabv3 ResNet-50 and DeepLabv3 ResNet-101.

Class Precision Recall F|-score

DeepLabv3 DeepLabv3 DeepLabv3 DeepLabv3 DeepLabv3

ResNet-50 ResNet-101 ResNet-50 ResNet-101 ResNet-50 DeepLabv3 ResNet-101
Overall 0.849 0.851 0.861 0.863 0.855 0.857
Palate 0.886 0.874 0918 0.929 0.901 0.900
Retractor 0.936 0.942 0.940 0.938 0.938 0.940
Mucosa 0915 0914 0914 0916 0914 0915
Tongue 0.878 0.872 0.888 0.892 0.883 0.882
Clutter 0.840 0.844 0.848 0.849 0.844 0.846
Tooth 0.862 0.871 0.937 0.936 0.898 0.902
Lip 0.723 0.730 0.695 0.683 0.709 0.706
Gingiva 0.756 0.757 0.751 0.765 0.754 0.761

Table 2. Results showing precision, recall, and F-score for different classes in a comparison of FCN-ResNet-50 and FCN-ResNet-101.

Class Precision Recall F1-score
FCN®-ResNet-50 FCN-ResNet-101  FCN®-ResNet-50 ~ FCN-ResNet-101 FCN?-ResNet-50 FCN-ResNet-101

Overall 0.850 0.350 0.874 0.873 0.862 0.861
Palate 0.859 0.860 0.924 0.923 0.890 0.890
Retractor 0.940 0.935 0.944 0.949 0.942 0.942
Mucosa 0.904 0.907 0.921 0.929 0912 0916
Tongue 0.881 0.882 0.909 0.893 0.895 0.887
Clutter 0.864 0.8363 0.839 0.843 0.852 0.853
Tooth 0.878 0.876 0.946 0910 0910 0910
Lip 0.699 0.718 0.744 0.723 0.721 0.721
Gingiva 0.776 0.765 0.767 0.777 0.772 0.771

4FCN: fully convolutional network.

Table 3. Results showing precision, recall, and F-score for different classes in a comparison of PSPNet-ResNet-50 and PSPNet-VGG16.

Class Precision Recall F1-score
PSPNet-ResNet-50 ~ PSPNet-VGG16 PSPNet-ResNet-50 PSPNet-VGG16 ~ PSPNet-ResNet-50 PSPNet-VGG16

Overall 0.849 0.797 0.830 0.822 0.837 0.809
Palate 0.840 0.854 0915 0.840 0.876 0.847
Retractor ~ 0.929 0.853 0919 0.906 0.924 0.879
Mucosa 0.906 0.835 0.842 0.841 0.873 0.838
Tongue 0.903 0.794 0.837 0.886 0.869 0.837
Clutter 0.793 0.807 0.873 0.779 0.831 0.793
Tooth 0.877 0.865 0910 0.907 0.893 0.886
Lip 0.766 0.716 0.701 0.693 0.732 0.704
Gingiva 0.775 0.651 0.639 0.723 0.700 0.685

4PSPNet: pyramid scene parsing network.
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Table 4. Results showing precision, recall, and F-score for different classes in a comparison of U-Net-EfficientNet-BO and U-Net-Res

Class Precision Recall F-score

U-Net-EfficientNet- U-Net- U-Net-EfficientNet-

BO U-Net-ResNet-50  U-Net-EfficientNet-BO ResNet-50 BO U-Net-ResNet-50
Overall 0.853 0.846 0.882 0.836 0.867 0.840
Palate 0.892 0.857 0.927 0.907 0.909 0.881
Retractor 0.956 0.936 0.927 0918 0.941 0.927
Mucosa 0915 0918 0.924 0.8384 0.920 0.901
Tongue 0.893 0.856 0.895 0.889 0.894 0.872
Clutter 0.862 0.811 0.846 0.862 0.8354 0.835
Tooth 0.876 0.875 0.949 0.894 0911 0.885
Lip 0.711 0.734 0.806 0.661 0.755 0.695
Gingiva 0.723 0.780 0.782 0.671 0.751 0.721

Figure 5. Spider plot illustrating the per-class Fj-score performance of different deep learning models for oral tissue segmentation.

Palate

U-Net EfficientNet-BO
FCN ResNet-50

FCN ResNet-101
DeeplLabv3 ResNet-50
DeeplLabv3 ResNet-101
U-Net ResNet-50
PSPNet ResNet-50
PSPNet VGG16

KAONOB0Y

Clutter

Interannotator Agreement

The analysis of segmentation annotations revealed an overall
pixel accuracy of 80.84%, indicating a high level of interan-
notator agreement. Cohen Kappa, a more robust measure of
interannotator agreement, was 77.56% when including the
background class, indicating substantial agreement. When
the background was excluded, Kappa increased to 82.91%,
highlighting even stronger agreement for the segmentation
of foreground structures. Dice coefficients per class ranged
from near-zero (in classes with minimal or inconsistent
labeling) to 93% in well-defined classes, where the overlap
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—g— U-Net EfficientNet-BO
FCN ResNet-50

—a— FCN ResNet-101
DeeplLabv3 ResNet-50

—+#— DeepLabv3 ResNet-101
U-Net ResNet-50

—=— PSPNet ResNet-50
PSPNet VGG16

between annotations was nearly perfect. Since the Dice
Coefficient measures spatial overlap between segmentation
masks, high Dice scores (above 90%) indicate excellent
agreement, whereas lower values suggest potential ambiguity
or underrepresentation of certain structures.
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Discussion

Principal Findings and Comparison With
Previous Works

The objective of this study was to establish a digital map
of the oral cavity using endoscopic HSI in conjunction
with advanced machine learning techniques and therefore
to develop a comprehensive endoscopic HSI dataset. This
approach aimed to enable reliable and automated differentia-
tion of various tissue types and objects based on the spectral
data acquired from the endoscopic HSI system. Despite the
continuous interest in faster, minimally invasive diagnostic
techniques, methods, such as brush biopsies and in vivo
fluorescence procedures have faced challenges in establish-
ing themselves as reliable alternatives due to their compa-
ratively lower sensitivity and specificity [2,4,5,9]. Modern
methods, such as endoscopic HSI, represent a state-of-the-art,
innovative approach in the field of automated image and
tissue classification. In our preliminary ex vivo studies, we
have already demonstrated that HSI can differentiate between
various tissue types and states based on specific wave-
length patterns [20,47]. However, to effectively differentiate
between pathological and healthy tissue conditions in vivo,
a substantial dataset of hyperspectral signatures from healthy
tissues is essential [47].

The study introduces a comprehensive collection of
1,130,751 endoscopic HSI-cubes of healthy oral mucosa,
captured in vivo from various angles, creating a representa-
tive digital map that includes relevant tissues and objects
of the oral cavity. This dataset forms a representative
digital endoscopic HSI map, encompassing relevant tissues
and structures of the oral cavity. By establishing a robust
reference for healthy tissue, this dataset lays the ground-
work for advancing HSI-based diagnostics, particularly in the
identification of premalignant and malignant mucosal lesions
and the precise definition of tumor resection margins.

The findings revealed elevated CV across most classes,
indicating substantial spectral diversity in endoscopic HSI
data. This high variability poses challenges for threshold-
based classification methods, as intraclass variation can lead
to class overlap. However, this diversity also holds valuable
information that, when leveraged by advanced computational
models, can enhance tissue classification and pathological
anomaly detection with high accuracy.

To address this complexity, this study evaluated several
state-of-the-art segmentation models, including DeepLabv3,
FCN, PSPNet, and U-Net, with different backbones, such as
ResNet-50, ResNet-101, VGG16, and EfficientNet-BO. These
architectures were chosen for their effectiveness in seman-
tic segmentation, balancing feature extraction capability,
computational efficiency, and global context recognition.
DeepLabv3 was selected for its ability to handle scale
variability and capture fine details while FCN served as
a strong baseline due to its foundational role in image
segmentation. PSPNet was included for its strong capability
in capturing global context, which is crucial for recognizing
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complex structures in medical imaging. U-Net, widely used
in medical imaging, was chosen for its ability to achieve
accurate segmentation even with limited data.

The choice of backbones was guided by their specific
strengths. ResNet-50 and ResNet-101 were selected for their
robust feature extraction, VGG16 for its simplicity and
high-resolution detail, and EfficientNet-BO for its optimized
architecture that balances performance and computational
efficiency. By incorporating models with varying depths and
parameter complexities, this study ensures a comprehensive
evaluation of segmentation performance while maintaining a
focus on efficient training and inference times. The integra-
tion of the DeepLabv3 model with the ResNet-50 as well
as with the ResNet-101 backbone offers a robust semantic
segmentation approach for endoscopic HSI data interpreta-
tion. The primary modification to all the models, including
DeepLabv3, FCN, PSPNet, and U-Net (with backbones, such
as ResNet-50, ResNet-101, EfficientNet-BO, and VGG16),
involved adapting the first convolutional layer to handle
the variable number of channels in the dataset. This adjust-
ment was essential to accommodate the multidimensional
spectral data of the HSI dataset, as opposed to the stand-
ard 3-channel RGB imagery. This modification enables the
models to use the unique spectral information in the HSI data
cubes beyond the visible spectrum. Despite these adjust-
ments, the deep residual learning architectures of ResNet-50
and ResNet-101 retain their capacity to extract high-level
features—an essential aspect of HSI data analysis [43]. These
backbones excel at identifying subtle spectral patterns crucial
for accurate disease detection and classification. Leveraging
atrous convolution and atrous spatial pyramid pooling, the
DeepLabv3 model efficiently captures multiscale information
[48]. This capability facilitates precise image segmentation,
an essential feature for diagnosing oral health conditions with
subtle and overlapping visual signatures. Likewise, FCN and
PSPNet, with their robust architectures, and U-Net, recog-
nized for its effectiveness in medical imaging, also benefited
from the capacity to process and interpret multidimensional
spectral data.

The endoscopic HSI procedure implemented in this study
achieves results that are comparable to those obtained in
preliminary HSI-ex vivo trials conducted by our research
group in 2021 [47]. In this study, using a similar approach
with a lightweight 6-layer deep neural network containing
10,445 parameters trained over 4000 epochs, tissue samples
of fat, muscle, and oral mucosa could be differentiated with
an overall class accuracy of over 80%. Similarly, in a study
by Ma et al, tissue from various organs, including the kidney,
liver, lung, muscle, salivary gland, and spleen, was identi-
fied using automated polarized HSI with an accuracy of
up to 87% [49]. Furthermore, a deep convolutional neu-
ral network established by Poonkuzhali et al [50] could
accurately identify brain tissue with an Fy-score precision of
97.3% using HSI in a recent study conducted in 2023. Unlike
previous studies that focused on ex vivo tissue samples and
organ-specific HSI data [47], the present work introduces the
first large-scale in vivo annotated endoscopic HSI dataset of
the oral cavity acquired under realistic clinical conditions.
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While earlier studies demonstrated the technical feasibility
of HSI-based tissue differentiation, these approaches often
lacked anatomical complexity, semantic annotations, and
clinical variability. This study addresses these deficiencies
by providing a large annotated in vivo HSI dataset and
evaluating multiple DL. models especially adapted for HSI
data analysis. This provides the basis for clinically applicable
segmentation of oral tissues and paves the way for future
studies involving pathological lesions.

These findings affirm that HSI, when integrated with
appropriate modalities, can serve as a reliable tool for
differentiating various tissues in both in vivo and ex vivo
setups. In oncological surgery, fast, reliable, and minimally
invasive diagnosis of pathological tissue conditions is of
paramount importance. Numerous studies in this field have
shown that HSI can dependably differentiate between tumor
and healthy tissue by analyzing histopathological sections and
their spatial-spectral features. Moreover, the combination of
HSI and DL has shown superior results compared to the
use of RGB images and conventional support-vector-machine
approaches [51-56].

In this study, the established DL and neural network
approach was able to accurately identify different types
of oral mucosa with an overall precision of approximately
91%. DeepLabv3 (ResNet-101) and U-Net (EfficientNet-
B0O) emerged as the top performers, demonstrating robust
segmentation across key anatomical classes. While all
models could benefit from further refinement in gingiva
and lip segmentation, their consistent accuracy in identifying
retractors and teeth underscores the strength of the dataset.
While there is no universally accepted threshold for clinical
applicability, F{-scores above 0.85 are generally considered
promising in similar biomedical imaging tasks. Scores in this
range suggest that the method may already approach a level
of accuracy relevant for clinical decision-making, though
further validation in real-world settings would be required.
Notably, U-Net (EfficientNet-BO) exhibited exceptional
segmentation of retractors, mucosa, and teeth, indicating its
strong potential for medical image segmentation applications.
The results demonstrate the dataset’s suitability for training
advanced neural networks, particularly in challenging medical
segmentation tasks.

Limitations of our study specifically include the acquisi-
tion of a higher amount of data, which depended heavily
on the individual patient volume of the clinic conducting
the study. This represents a major challenge, particularly
when aiming to document various oral mucosal lesions and
precancerous mucosal conditions. To address the issue of
data scarcity, the raw data generated in this study will be
made publicly available. This initiative aims to provide other
research groups with the opportunity to use and build upon
the dataset for further investigations. Furthermore, while the
study cohort was intentionally designed to include a broad
cross-section of patients from a university-based outpatient
clinic, selection bias cannot be fully excluded. As recruitment
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was confined to a single university clinic, the cohort may not
fully reflect the demographic and clinical variability found
in primary care or the general population. Other limita-
tions include variable lighting conditions, motion artifacts,
and spectral overlaps, as well as overexposure and under-
exposure. Overexposure can occur due to various factors,
such as the variability in patient anatomy, the movement
during image capture, or the fluctuation of lighting condi-
tions in an operating room. While overexposed images are
typically regarded as artifacts and excluded from datasets,
our approach incorporates them, acknowledging that such
occurrences are an inherent part of clinical practice. Under-
standing that these instances present both challenges and
opportunities for advanced image processing techniques,
we have carefully indexed these overexposed images for
further analysis. This approach enhances the resilience and
adaptability of the models trained on this dataset, ensuring
they perform effectively in real clinical environments. By
incorporating overexposed images, the models are better
equipped to handle the full spectrum of data variability,
including common environmental factors. This combination
highlights the substantial potential of endoscopic HSI data to
significantly enhance the precision and reliability in detecting
and categorizing healthy and pathological oral conditions.
This convergence not only paves the way for significant
advancements in diagnostic methodologies but also holds
the potential to substantially enhance patient care. Exter-
nal validation is currently planned as part of future work,
particularly for mucosa segmentation. We intend to validate
our model on an ex vivo dataset that includes mucosa
samples captured under different acquisition conditions. At
this stage, the focus of this study was the initial validation
on the internally collected dataset. Corresponding follow-
up studies are currently in preparation and will include
HSI of pathological tissue conditions, such as oral mucosal
lesions and neoplastic changes, to assess the transferabil-
ity and diagnostic robustness of the proposed models in
clinically relevant scenarios. By enabling earlier detection
and more precise characterization of oral health conditions,
this approach facilitates the development of more effective
treatment strategies, ultimately leading to improved patient
outcomes and a higher standard of care.

Conclusion

This study presents the first large-scale in vivo annotated
dataset of the oral cavity using endoscopic HSI under realistic
clinical conditions. By combining hyperspectral datasets and
DL-based segmentation, it was possible to demonstrate the
feasibility of automated, noninvasive tissue classification
across important anatomical intraoral structures. Comparative
analysis reveals DeepLabv3 and U-Net as robust architec-
tures for oral tissue classification. The comprehensive dataset
consequently provides a sufficient foundation for future
work on pathological tissue detection, intraoperative margin
assessment in oncology, and early, individualized diagnostics
in oral medicine.

Acknowledgments

https://medinform.jmir.org/2025/1/e76148

JMIR Med Inform 2025 | vol. 13 1e76148 | p. 11
(page number not for citation purposes)


https://medinform.jmir.org/2025/1/e76148

JMIR MEDICAL INFORMATICS Romer et al

The results of the present study are part of the doctoral thesis of the co-author and student of the University of Mainz,
Katharina Kloster, and as such will be made publicly available as part of the doctorate. It was funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) — Project number 516210826.

Data Availability

All raw data on which this study is based will be made available by the corresponding author upon request. The datasets used
and/or analyzed during the current study are available from the corresponding author on reasonable request.

Authors’ Contributions

The conceptualization of the study was carried out by DT, JJP, and PR. Methodology development was led by DT, JJP, BP,
PR, KK and TK. Validation was performed by DT, JJP, BP, and PR. Formal analysis was conducted by DT, PWK, JJP, BP,
PR, and TK. Investigation was carried out by DT, BP, KK and JJP. Resources were provided by DT, JJIP, TK and BAN. Data
curation was managed by DT, KK, PR and JJP. The original draft was prepared by DT, JJP, PR, SV. Manuscript review and
editing were done by DT, JIP, BP, SV, PWK, TK and BAN. Visualization was prepared by DT, JJP and PR. Supervision was
conducted by DT, JJP, PR and TK. Project administration was managed by DT, JJP, PR and TK.

Conflicts of Interest
None declared.

References

1. Chen S, Forman M, Sadow PM, August M. The diagnostic accuracy of incisional biopsy in the oral cavity. J Oral
Maxillofac Surg. May 2016;74(5):959-964. [doi: 10.1016/j.joms.2015.11.006] [Medline: 26682520]

2. Pentenero M, Carrozzo M, Pagano M, et al. Oral mucosal dysplastic lesions and early squamous cell carcinomas:
underdiagnosis from incisional biopsy. Oral Dis. Mar 2003;9(2):68-72. [doi: 10.1034/j.1601-0825.2003.02875 .x]
[Medline: 12657031]

3. Macey R, Walsh T, Brocklehurst P, et al. Diagnostic tests for oral cancer and potentially malignant disorders in patients
presenting with clinically evident lesions. Cochrane Database Syst Rev. May 29, 2015;2015(5):CD010276. [doi: 10.
1002/14651858.CD010276.pub2] [Medline: 26021841]

4.  Rashid A, Warnakulasuriya S. The use of light-based (optical) detection systems as adjuncts in the detection of oral
cancer and oral potentially malignant disorders: a systematic review. J Oral Pathol Med. May 2015;44(5):307-328. [doi:
10.1111/jop.12218] [Medline: 25183259]

5. Kiammerer PW, Rahimi-Nedjat RK, Ziebart T, et al. A chemiluminescent light system in combination with toluidine blue
to assess suspicious oral lesions-clinical evaluation and review of the literature. Clin Oral Investig. Mar
2015;19(2):459-466. [doi: 10.1007/s00784-014-1252-z] [Medline: 24888605]

6. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates
of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. Nov 2018;68(6):394-424. [doi:
10.3322/caac.21492] [Medline: 30207593]

7.  Panarese I, Aquino G, Ronchi A, et al. Oral and Oropharyngeal squamous cell carcinoma: prognostic and predictive
parameters in the etiopathogenetic route. Expert Rev Anticancer Ther. Feb 2019;19(2):105-119. [doi: 10.1080/14737140.
2019.1561288] [Medline: 30582397]

8. Barsouk A, Aluru JS, Rawla P, Saginala K, Barsouk A. Epidemiology, risk factors, and prevention of head and neck
squamous cell carcinoma. Med Sci (Basel). Jun 13,2023;11(2):42. [doi: 10.3390/medscil 1020042] [Medline: 37367741]

9.  Brocklehurst P, Kujan O, O’Malley LA, Ogden G, Shepherd S, Glenny AM. Screening programmes for the early
detection and prevention of oral cancer. Cochrane Database Syst Rev. Nov 19, 2013;2013(11):CD004150. [doi: 10.1002/
14651858.CD004150.pub4] [Medline: 24254989]

10. Sankaranarayanan R, Ramadas K, Thomas G, et al. Effect of screening on oral cancer mortality in Kerala, India: a
cluster-randomised controlled trial. Lancet. 2005;365(9475):1927-1933. [doi: 10.1016/S0140-6736(05)66658-5]
[Medline: 15936419]

11. Sankaranarayanan R, Ramadas K, Thara S, et al. Long term effect of visual screening on oral cancer incidence and
mortality in a randomized trial in Kerala, India. Oral Oncol. Apr 2013;49(4):314-321. [doi: 10.1016/j.oraloncology.2012.
11.004] [Medline: 23265945]

12. Halicek M, Fabelo H, Ortega S, Callico GM, Fei B. In-vivo and ex-vivo tissue analysis through hyperspectral imaging
techniques: revealing the invisible features of cancer. Cancers (Basel). May 30, 2019;11(6):31151223. [doi: 10.3390/
cancers11060756] [Medline: 31151223]

13. Ishida T, Kurihara J, Viray FA, et al. A novel approach for vegetation classification using UAV-based hyperspectral
imaging. Comput Electron Agric. Jan 2018;144:80-85. [doi: 10.1016/j.compag.2017.11.027]

14. Miljkovi¢ V, Gajski D. Adaptation of industrial hyperspectral line scanner for archaeological applications. Int Arch
Photogramm Remote Sens Spatial Inf Sci. ;XLI-B5:343-345. [doi: 10.5194/isprs-archives-XLI-B5-343-2016]

https://medinform.jmir.org/2025/1/e76148 JMIR Med Inform 2025 | vol. 13 1e76148 | p. 12
(page number not for citation purposes)


https://doi.org/10.1016/j.joms.2015.11.006
http://www.ncbi.nlm.nih.gov/pubmed/26682520
https://doi.org/10.1034/j.1601-0825.2003.02875.x
http://www.ncbi.nlm.nih.gov/pubmed/12657031
https://doi.org/10.1002/14651858.CD010276.pub2
https://doi.org/10.1002/14651858.CD010276.pub2
http://www.ncbi.nlm.nih.gov/pubmed/26021841
https://doi.org/10.1111/jop.12218
http://www.ncbi.nlm.nih.gov/pubmed/25183259
https://doi.org/10.1007/s00784-014-1252-z
http://www.ncbi.nlm.nih.gov/pubmed/24888605
https://doi.org/10.3322/caac.21492
http://www.ncbi.nlm.nih.gov/pubmed/30207593
https://doi.org/10.1080/14737140.2019.1561288
https://doi.org/10.1080/14737140.2019.1561288
http://www.ncbi.nlm.nih.gov/pubmed/30582397
https://doi.org/10.3390/medsci11020042
http://www.ncbi.nlm.nih.gov/pubmed/37367741
https://doi.org/10.1002/14651858.CD004150.pub4
https://doi.org/10.1002/14651858.CD004150.pub4
http://www.ncbi.nlm.nih.gov/pubmed/24254989
https://doi.org/10.1016/S0140-6736(05)66658-5
http://www.ncbi.nlm.nih.gov/pubmed/15936419
https://doi.org/10.1016/j.oraloncology.2012.11.004
https://doi.org/10.1016/j.oraloncology.2012.11.004
http://www.ncbi.nlm.nih.gov/pubmed/23265945
https://doi.org/10.3390/cancers11060756
https://doi.org/10.3390/cancers11060756
http://www.ncbi.nlm.nih.gov/pubmed/31151223
https://doi.org/10.1016/j.compag.2017.11.027
https://doi.org/10.5194/isprs-archives-XLI-B5-343-2016
https://medinform.jmir.org/2025/1/e76148

JMIR MEDICAL INFORMATICS Romer et al

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

Pavurala N, Xu X, Krishnaiah YSR. Hyperspectral imaging using near infrared spectroscopy to monitor coat thickness
uniformity in the manufacture of a transdermal drug delivery system. Int J Pharm. May 15, 2017;523(1):281-290. [doi:
10.1016/j.ijpharm.2017.03.022] [Medline: 28330736]

Fernandez de la Ossa MA, Amigo JM, Garcia-Ruiz C. Detection of residues from explosive manipulation by near
infrared hyperspectral imaging: a promising forensic tool. Forensic Sci Int. Sep 2014;242:228-235. [doi: 10.1016/].
forsciint.2014.06.023] [Medline: 25086347]

Sakarya U, Teke M, Demirkesen C, et al. A short survey of hyperspectral remote sensing and hyperspectral remote
sensing research at tiibitak uzay. Presented at: 2015 7th International Conference on Recent Advances in Space
Technologies (RAST); Jun 16-19, 2015:187-192; Istanbul, Turkey. [doi: 10.1109/RAST.2015.7208339]

Qin J, Kim M, Chao K, Chan D, Delwiche S, Cho BK. Line-scan hyperspectral imaging techniques for food safety and
quality applications. Appl Sci (Basel). 2017;7(2):125. [doi: 10.3390/app7020125]

Lu G, Fei B. Medical hyperspectral imaging: a review. J Biomed Opt. Jan 2014;19(1):10901. [doi: 10.1117/1.JBO.19.1.
010901] [Medline: 24441941]

Romer P, Blatt S, Siegberg F, et al. Intraoral perfusion assessment using endoscopic hyperspectral imaging (EHSI)- first
description of a novel approach. Clin Oral Investig. Feb 5,2025;29(2):115. [doi: 10.1007/s00784-025-06197-5]
[Medline: 39907805]

Lu G, Wang D, Qin X, et al. Histopathology feature mining and association with hyperspectral imaging for the detection
of squamous neoplasia. Sci Rep. Nov 28, 2019;9(1):17863. [doi: 10.1038/s41598-019-54139-5] [Medline: 31780698]
Ortega S, Halicek M, Fabelo H, Callico GM, Fei B. Hyperspectral and multispectral imaging in digital and
computational pathology: a systematic review [Invited]. Biomed Opt Express. Jun 1, 2020;11(6):3195-3233. [doi: 10.
1364/BOE.386338] [Medline: 32637250]

Bhargava R, Falahkheirkhah K. Enhancing hyperspectral imaging. Nat Mach Intell. 2021;3(4):279-280. [doi: 10.1038/
s42256-021-00336-9]

CuiR, YuH, Xu T, et al. Deep learning in medical hyperspectral images: a review. Sensors (Basel). Dec 13,
2022;22(24):9790. [doi: 10.3390/522249790] [Medline: 36560157]

Madooei A, Abdlaty RM, Doerwald-Munoz L, et al. Hyperspectral image processing for detection and grading of skin
erythema. Presented at: SPIE Medical Imaging; Feb 11-16,2017:1013322; Orlando, Florida, United States. Feb 24,
2017.[doi: 10.1117/12.2254132]

Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun
ACM. May 24, 2017;60(6):84-90. [doi: 10.1145/3065386]

Li W. Cell classification using convolutional neural networks in medical hyperspectral imagery. Presented at: 2017 2nd
International Conference on Image, Vision and Computing (ICIVC); Jun 2-4,2017:501-504; Chengdu, China. [doi: 10.
1109/ICIVC.2017.7984606]

Jeyaraj PR, Samuel Nadar ER. Computer-assisted medical image classification for early diagnosis of oral cancer
employing deep learning algorithm. J Cancer Res Clin Oncol. Apr 2019;145(4):829-837. [doi: 10.1007/s00432-018-
02834-7] [Medline: 30603908]

Gangadharan SMP, Dharani M, Thapliyal N, Yamsani N, Singh J, Singh P. Comparative analysis of deep learning-based
brain tumor prediction models using MRI scan. In: Singh P, editor. Presented at: 2023 3rd International Conference on
Innovative Sustainable Computational Technologies (CISCT); Sep 8-9,2023:1-6; Dehradun, India. [doi: 10.1109/
CISCT57197.2023.10351227]

Diwakar M, Singh P, Garg D. Edge-guided filtering based CT image denoising using fractional order total variation.
Biomed Signal Process Control. Jun 2024;92:106072. [doi: 10.1016/j.bspc.2024.106072]

Diwakar M, Kumar P, Singh P, Tripathi A, Singh L. An efficient reversible data hiding using SVD over a novel
weighted iterative anisotropic total variation based denoised medical images. Biomed Signal Process Control. Apr
2023;82:104563. [doi: 10.1016/j.bspc.2022.104563]

Diwakar M, Pandey NK, Singh R, et al. Low-dose COVID-19 CT Image Denoising Using CNN and its Method Noise
Thresholding. Curr Med Imaging. 2023;19(2):182-193. [doi: 10.2174/1573405618666220404162241] [Medline:
35379137]

Agrawal T, Choudhary P, Shankar A, Singh P, Diwakar M. MultiFeNet: multi-scale feature scaling in deep neural
network for the brain tumour classification in MRI images. Int J Imaging Syst Technol. 2024;34(1):e22956. [doi: 10.
1002/ima.22956]

Sicher C, Rutkowski R, Lutze S, et al. Hyperspectral imaging as a possible tool for visualization of changes in
hemoglobin oxygenation in patients with deficient hemodynamics - proof of concept. Biomed Tech (Berl). Oct 25,
2018;63(5):609-616. [doi: 10.1515/bmt-2017-0084] [Medline: 30210054]

Yudovsky D, Nouvong A, Pilon L. Hyperspectral imaging in diabetic foot wound care. J Diabetes Sci Technol. Sep 1,
2010;4(5):1099-1113. [doi: 10.1177/193229681000400508] [Medline: 20920429]

https://medinform.jmir.org/2025/1/e76148 JMIR Med Inform 2025 | vol. 13 1e76148 | p. 13

(page number not for citation purposes)


https://doi.org/10.1016/j.ijpharm.2017.03.022
http://www.ncbi.nlm.nih.gov/pubmed/28330736
https://doi.org/10.1016/j.forsciint.2014.06.023
https://doi.org/10.1016/j.forsciint.2014.06.023
http://www.ncbi.nlm.nih.gov/pubmed/25086347
https://doi.org/10.1109/RAST.2015.7208339
https://doi.org/10.3390/app7020125
https://doi.org/10.1117/1.JBO.19.1.010901
https://doi.org/10.1117/1.JBO.19.1.010901
http://www.ncbi.nlm.nih.gov/pubmed/24441941
https://doi.org/10.1007/s00784-025-06197-5
http://www.ncbi.nlm.nih.gov/pubmed/39907805
https://doi.org/10.1038/s41598-019-54139-5
http://www.ncbi.nlm.nih.gov/pubmed/31780698
https://doi.org/10.1364/BOE.386338
https://doi.org/10.1364/BOE.386338
http://www.ncbi.nlm.nih.gov/pubmed/32637250
https://doi.org/10.1038/s42256-021-00336-9
https://doi.org/10.1038/s42256-021-00336-9
https://doi.org/10.3390/s22249790
http://www.ncbi.nlm.nih.gov/pubmed/36560157
https://doi.org/10.1117/12.2254132
https://doi.org/10.1145/3065386
https://doi.org/10.1109/ICIVC.2017.7984606
https://doi.org/10.1109/ICIVC.2017.7984606
https://doi.org/10.1007/s00432-018-02834-7
https://doi.org/10.1007/s00432-018-02834-7
http://www.ncbi.nlm.nih.gov/pubmed/30603908
https://doi.org/10.1109/CISCT57197.2023.10351227
https://doi.org/10.1109/CISCT57197.2023.10351227
https://doi.org/10.1016/j.bspc.2024.106072
https://doi.org/10.1016/j.bspc.2022.104563
https://doi.org/10.2174/1573405618666220404162241
http://www.ncbi.nlm.nih.gov/pubmed/35379137
https://doi.org/10.1002/ima.22956
https://doi.org/10.1002/ima.22956
https://doi.org/10.1515/bmt-2017-0084
http://www.ncbi.nlm.nih.gov/pubmed/30210054
https://doi.org/10.1177/193229681000400508
http://www.ncbi.nlm.nih.gov/pubmed/20920429
https://medinform.jmir.org/2025/1/e76148

JMIR MEDICAL INFORMATICS Romer et al

36.

37.
38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Ponciano C, Schaffert M, Ponciano JJ. Deep learning datasets challenges for semantic segmentation-a survey. Presented
at: P337 - INFORMATIK 2023 - Designing Futures: Shaping the Future; Sep 26-29, 2023:57-70; Berlin, Germany. [doi:
10.18420/inf2023 04]

Gupta P, Bagchi A. Essentials of Python for Artificial Intelligence and Machine Learning. 2024. ISBN: 3031437241

Lu H, Cai J. Artificial intelligence and robotics. In: 8th International Symposium, ISAIR 2023. Vol 15. Springer;
2024:535. URL.: https://link.springer.com/10.1007/978-981-99-9109-9 [doi: 10.1007/978-981-99-9109-9]

Chen LC. Rethinking atrous convolution for semantic image segmentation. arXiv. Preprint posted online on Sep 5, 2017.
[doi: 10.48550/arXiv.1706.05587]

Chen LC, Zhu Y, Papandreou G, Schroff F, editors. Encoder-decoder with atrous separable convolution for semantic
image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV. Vol 1121. Springer;
2018:833-851. [doi: 10.1007/978-3-030-01234-2 49]

Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Long J, Shelhamer E,
Darrell T, editors. Presented at: Proceedings of the IEEE conference on computer vision and pattern recognition; Jun
7-12,2015:3431-3440; Boston, MA, USA. [doi: 10.1109/CVPR.2015.7298965]

Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Jia J, editor. Presented at: 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR); Jul 21-26, 2017:6230-6239; Honolulu, HI. [doi: 10.
1109/CVPR.2017.660]

He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Sun J, editor. Presented at: 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR); Jun 27-30,2016:770-778; Las Vegas, NV, USA.
[doi: 10.1109/CVPR.2016.90]

Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv. Preprint posted
online on Apr 10,2015. [doi: 10.48550/arXiv.1409.1556]

Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. medical image
computing and computer-assisted intervention-MICCAI 2015. In: Navab N, Hornegger J, Wells W, Frangi A, editors.
Medical Image Computing and Computer-Assisted Intervention — MICCAI 2015. Vol 9351. Springer; 2015:234-241.
[doi: 10.1007/978-3-319-24574-4 28]

Tan M, Le Q. Efficientnet: rethinking model scaling for convolutional neural networks. Presented at: Proceedings of the
36th International Conference on Machine Learning; Jun 9-15,2019:6105-6114; Long Beach, CA. URL: https://
proceedings.mlr.press/v97/tan19a.html [Accessed 2025-09-03]

Thiem DGE, Romer P, Gielisch M, et al. Hyperspectral imaging and artificial intelligence to detect oral malignancy -
part 1 - automated tissue classification of oral muscle, fat and mucosa using a light-weight 6-layer deep neural network.
Head Face Med. Sep 3, 2021;17(1):38. [doi: 10.1186/s13005-021-00292-0] [Medline: 34479595]

Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. DeepLab: semantic image segmentation with deep
convolutional nets, atrous convolution, and fully connected CRF. IEEE Trans Pattern Anal Mach Intell. Apr
2018;40(4):834-848. [doi: 10.1109/TPAMI.2017.2699184] [Medline: 28463186]

Ma L, Srinivas A, Krishnamurthy A, et al. Automated polarized hyperspectral imaging (PHSI) for ex-vivo and in-vivo
tissue assessment. 123910F; Jan 2023.[doi: 10.1117/12.2651011] [Medline: 38476292]

Poonkuzhali P, Helen Prabha K. Deep convolutional neural network based hyperspectral brain tissue classification. J
Xray Sci Technol. 2023;31(4):777-796. [doi: 10.3233/XST-230045] [Medline: 37182861]

Hu B, Du J, Zhang Z, Wang Q. Tumor tissue classification based on micro-hyperspectral technology and deep learning.
Biomed Opt Express. Dec 1,2019;10(12):6370-6389. [doi: 10.1364/BOE.10.006370] [Medline: 31853405]

Ma L, Zhou X, Little JV, et al. Hyperspectral microscopic imaging for the detection of head and neck squamous cell
carcinoma in histologic images. Proc SPIE Int Soc Opt Eng. Feb 2021;11603:35783088. [doi: 10.1117/12.2581970]
[Medline: 35783088]

MaL, Lu G, Wang D, Qin X, Chen ZG, Fei B. Adaptive deep learning for head and neck cancer detection using
hyperspectral imaging. Vis Comput Ind Biomed Art. 2019;2(1):18. [doi: 10.1186/542492-019-0023-8] [Medline:
32190408]

Zhou X, Ma L, Mubarak HK, et al. Automatic detection of head and neck squamous cell carcinoma on pathologic slides
using polarized hyperspectral imaging and deep learning. Proc SPIE Int Soc Opt Eng. 2022;12039:Feb-Mar; [doi: 10.
1117/12.2614624] [Medline: 36798940]

Eggert D, Bengs M, Westermann S, et al. In vivo detection of head and neck tumors by hyperspectral imaging combined
with deep learning methods. J Biophotonics. Mar 2022;15(3):¢202100167. [doi: 10.1002/jbi0.202100167] [Medline:
34889065]

https://medinform.jmir.org/2025/1/e76148 JMIR Med Inform 2025 | vol. 13 1e76148 | p. 14

(page number not for citation purposes)


https://doi.org/10.18420/inf2023_04
https://link.springer.com/10.1007/978-981-99-9109-9
https://doi.org/10.1007/978-981-99-9109-9
https://doi.org/10.48550/arXiv.1706.05587
https://doi.org/10.1007/978-3-030-01234-2_49
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/CVPR.2017.660
https://doi.org/10.1109/CVPR.2017.660
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.1007/978-3-319-24574-4_28
https://proceedings.mlr.press/v97/tan19a.html
https://proceedings.mlr.press/v97/tan19a.html
https://doi.org/10.1186/s13005-021-00292-0
http://www.ncbi.nlm.nih.gov/pubmed/34479595
https://doi.org/10.1109/TPAMI.2017.2699184
http://www.ncbi.nlm.nih.gov/pubmed/28463186
https://doi.org/10.1117/12.2651011
http://www.ncbi.nlm.nih.gov/pubmed/38476292
https://doi.org/10.3233/XST-230045
http://www.ncbi.nlm.nih.gov/pubmed/37182861
https://doi.org/10.1364/BOE.10.006370
http://www.ncbi.nlm.nih.gov/pubmed/31853405
https://doi.org/10.1117/12.2581970
http://www.ncbi.nlm.nih.gov/pubmed/35783088
https://doi.org/10.1186/s42492-019-0023-8
http://www.ncbi.nlm.nih.gov/pubmed/32190408
https://doi.org/10.1117/12.2614624
https://doi.org/10.1117/12.2614624
http://www.ncbi.nlm.nih.gov/pubmed/36798940
https://doi.org/10.1002/jbio.202100167
http://www.ncbi.nlm.nih.gov/pubmed/34889065
https://medinform.jmir.org/2025/1/e76148

JMIR MEDICAL INFORMATICS Romer et al

56. Trajanovski S, Shan C, Weijtmans PJC, de Koning SGB, Ruers TIM. Tongue tumor detection in hyperspectral images
using deep learning semantic segmentation. IEEE Trans Biomed Eng. Apr 2021;68(4):1330-1340. [doi: 10.1109/TBME.
2020.3026683] [Medline: 32976092]

Abbreviations
CV: coefficient of variation
DL: deep learning
FCN: fully convolutional network
HSI: hyperspectral imaging
PSPNet: pyramid scene parsing network

Edited by Arriel Benis; peer-reviewed by Boluwatife Afolabi, Deborah Oluwatobi Alabi, Prabhishek Singh; submitted
17.04.2025; final revised version received 05.07.2025; accepted 06.07.2025; published 11.09.2025

Please cite as:

Romer P, Ponciano JJ, Kloster K, Siegberg F, Plaf} B, Vinayahalingam S, Al-Nawas B, Kdmmerer PW, Klauer T, Thiem D
Enhancing Oral Health Diagnostics With Hyperspectral Imaging and Computer Vision: Clinical Dataset Study

JMIR Med Inform 2025;13:¢76148

URL: hitps://medinform . jmir.org/2025/1/e76148

doi: 10.2196/76148

© Paul Romer, Jean-Jacques Ponciano, Katharina Kloster, Fabia Siegberg, Bastian PlaB3, Shankeeth Vinayahalingam, Bilal
Al-Nawas, Peer W Kdmmerer, Thomas Klauer, Daniel Thiem. Originally published in JMIR Medical Informatics (https://
medinform.jmir.org), 11.09.2025. This is an open-access article distributed under the terms of the Creative Commons
Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduc-
tion in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete
bibliographic information, a link to the original publication on https://medinform.jmir.org/, as well as this copyright and license
information must be included.

https://medinform.jmir.org/2025/1/e76148 JMIR Med Inform 2025 | vol. 13 1e76148 | p. 15
(page number not for citation purposes)


https://doi.org/10.1109/TBME.2020.3026683
https://doi.org/10.1109/TBME.2020.3026683
http://www.ncbi.nlm.nih.gov/pubmed/32976092
https://medinform.jmir.org/2025/1/e76148
https://doi.org/10.2196/76148
https://medinform.jmir.org
https://medinform.jmir.org
https://creativecommons.org/licenses/by/4.0/
https://medinform.jmir.org/
https://medinform.jmir.org/2025/1/e76148

	Enhancing Oral Health Diagnostics With Hyperspectral Imaging and Computer Vision: Clinical Dataset Study
	Introduction
	Methods
	Study Cohort
	HSI and Patient Data Acquisition
	Red, Green, and Blue–Imaging and Endoscopic HSI Data Files
	Annotation Process and Verification
	Dataset Structure
	Statistical Analysis of the Dataset
	Machine Learning and DL Techniques
	Ethical Considerations

	Results
	Variability of the Dataset
	DL Model Performance
	Interannotator Agreement

	Discussion
	Principal Findings and Comparison With Previous Works
	Conclusion



