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Abstract
Background: Pelvic organ prolapse (POP) and stress urinary incontinence (SUI) often concurrently exist. The incontinence in
some patients with POP resolves after POP surgery, but it persists in others. Some patients without SUI before surgery may
develop de novo SUI. It is unclear whether a concomitant anti-incontinence procedure should be performed at the time of POP
surgery to prevent postoperative incontinence. A prediction model is needed to guide clinical decision-making.
Objective: This study aimed to analyze the risk factors and develop prediction models for SUI after POP surgery based on
machine learning to provide new tools for evaluating and predicting postoperative SUI.
Methods: Sample size calculation was performed using the Riley 4-step method. Data of patients undergoing prolapse surgery
in Shanxi Bethune Hospital were prospectively collected from August 2022 to February 2025 and were retrospectively
collected from January 2021 to August 2022. General clinical data, relevant laboratory test results, urodynamic examination
findings, and pelvic floor ultrasound findings were collected. Lasso regression, univariate analysis, and logistic analysis were
used to screen the predictors of SUI after prolapse surgery. Data were split randomly in a 7:3 ratio into training and validation
sets. The training set was used to develop the prediction model involving Lasso regression, random forest, support vector
machine (SVM), extreme gradient boosting (XGBoost), classification and regression tree (CART), and logistic regression,
and the validation set was used for internal verification. The final implementation was achieved by developing a Shiny-based
application for model deployment.
Results: A total of 286 patients were enrolled in this study, and 91 patients had postoperative SUI. The following 6 risk
factors were identified through univariate, logistic, and Lasso regression analyses: preoperative SUI, urge urinary incontinence,
urodynamic occult SUI, anti-incontinence surgery, genital hiatus, and anterior colporrhaphy. Five prediction models were
constructed by using logistic regression, random forest, XGBoost, SVM, and CART. Based on a comprehensive evaluation of
model discrimination, calibration, and clinical utility, the SVM model demonstrated optimal overall performance, with an area
under the curve of 0.821 in the training set and 0.846 in the validation set.
Conclusions: This study developed 5 prediction models for postoperative SUI following prolapse surgery, which demonstra-
ted good performance in internal validation. Among them, the SVM prediction model appeared to be the most promising.
However, further external validation data are required to assess its generalizability. This model has the potential to become a
high-quality clinical risk prediction tool for postoperative SUI in patients with prolapse, guiding clinical decisions on whether
concurrent prolapse and incontinence surgeries are necessary.
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Introduction
Pelvic organ prolapse (POP) and stress urinary incontinence
(SUI) are the 2 most common types of female pelvic
floor dysfunctions. POP refers to the abnormal positioning
and dysfunction of female pelvic organs (vagina, bladder,
uterus, or rectum) caused by weak pelvic floor supportive
tissues, which can lead to significant physical and emotional
discomfort [1]. SUI refers to the involuntary leakage of urine
during physical exertion, coughing, or sneezing (increased
abdominal pressure) [2]. SUI occurs in 50% of patients with
POP [3]. After POP surgery, 14.3%‐32.5% of patients have
SUI, likely due to either uncorrected bladder neck defects
after prolapse repair or the unmasking of pre-existing SUI
symptoms that were previously concealed by the kinking of
the lower urinary tract during prolapse [4]. To reduce the
risk of postoperative SUI, prolapse surgery and incontinence
surgery can be performed concomitantly. However, concom-
itant operations have caused many patients who would not
have SUI to undergo an unnecessary operation, and the
current common operation for the treatment of SUI, mid-
urethral sling, is often accompanied by many postoperative
adverse reactions [5,6]. There is still no consensus on whether
patients with coexisting POP and SUI should undergo staged
surgeries or a concomitant anti-SUI surgery.

The risk factors for urinary incontinence after prolapse
include point Ba (the lowest point of prolapse between
point Aa anteriorly and the vaginal apex), preoperative SUI,
preoperative occult SUI, diabetes, sacral colpopexy, etc [7,8].
A risk prediction model is a statistical model that estimates
the probability of an individual having a certain outcome
according to the risk factors of the disease. Predictive models
for assessing SUI risk after prolapse surgery can effectively
aid patient decision-making. Jelovsek et al [9] used data from
the OPUS (Outcomes Following Vaginal Prolapse Repair and
Midurethral Sling) trial to construct a predictive model for
de novo SUI in patients with POP who do not have SUI
before surgery, and the area under the curve (AUC) of this
model was 0.72. Based on data from the CUPIDO (Con-
comitant Surgery and Urodynamic Investigation in Geni-
tal Prolapse and Stress Incontinence: A Diagnostic Study
Including Outcome Evaluation) trial, van der Ploeg et al
[10] developed a prediction model for postoperative SUI in
patients with POP who did or did not have preoperative SUI.
Compared with the model constructed using OPUS data, the
predictive factor stress test was added. This prediction model
has an AUC of 0.79. An article published in BJOG reviewed
1142 patients who underwent POP surgery from 2 tertiary
hospitals in South Korea and developed a predictive model
for SUI after prolapse surgery, with an AUC of 0.74 [11].

With the development of artificial intelligence in recent
years, machine learning has become an important method
in the field of predictive model construction. Compared
to traditional methods, machine learning methods have
higher predictive accuracy and are commonly used in the

medical field to predict various outcomes [12,13]. In a study
conducted by Peking Union Medical College Hospital in
China, a predictive model was constructed for the first time
using machine learning methods (logistic regression, random
forest, and extreme gradient boosting [XGBoost]) [14].

Previous studies were retrospective, and the machine
learning predictive model approach used only random forest
and XGBoost methods. No prospective studies have been
conducted to establish a predictive model for SUI after
POP surgery. This study prospectively followed patients with
POP and retrospectively collected data from additional POP
surgical cases to increase the sample size. Detailed clini-
cal parameters were obtained, including pelvic ultrasound
findings, hematologic markers, and operations. Machine
learning prediction models for postoperative SUI in patients
with POP (with or without SUI) were developed and
validated to enable more accurate risk stratification and
clinical decision-making.

Methods

Study Design and Population
This study collected data prospectively from August 2022
to February 2025 and retrospectively from January 2021 to
August 2022 from patients undergoing POP surgery at Shanxi
Bethune Hospital in China. The study enrolled patients with
Pelvic Organ Prolapse Quantification (POP-Q) stages II-IV,
regardless of preoperative SUI status, who had undergone
prolapse surgery or were scheduled to undergo prolapse
surgery. The follow-up period was at least 6 months. The
exclusion criteria were prior prolapse surgery and postopera-
tive urinary tract infection.

The Riley 4-step method, specifically used in clinical
prediction models, was adopted for sample size calculation
[15]. This study developed binary prediction models with an
anticipated 8 predictor parameters. For internal validation, the
anticipated shrinkage level was set at 0.9. The postoperative
SUI incidence rate at our hospital is approximately 30%. With
an assumed model C-statistic of 0.8, we calculated the sample
size requirement using the R package “pmsampsize.” The
results showed that the minimum sample size required for the
new model was 276.
Data Collection
Considering SUI risk factors in previous studies, relevant
clinical characteristics of patients were collected, including
age, height, weight, BMI, parity, vaginal delivery count,
cesarean section count (due to low positive rates, this item
was finally excluded), menopausal status, surgical age minus
menopausal age, smoking history, type of medical insur-
ance (Employee Basic Medical Insurance/Resident Basic
Medical Insurance), educational background, preoperative
estrogen supplement, postoperative estrogen supplement,
preoperative SUI, preoperative urge urinary incontinence
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(UUI), hypertension, diabetes, comorbidities, POP-Q points
and grade, biochemical indicators (albumin, liver function
tests, and lipid profile; renal function tests were excluded due
to low positive rates), cystocele Green type, residual urine,
urodynamic occult stress urinary incontinence (UOSUI),
urine leakage point pressure, anterior colporrhaphy performed
(yes or no), perineal body reconstruction performed (yes
or no), anti-SUI procedure performed (yes or no), hysterec-
tomy performed (yes or no), and prolapse surgery method.
Since urine leak point pressure only exists in patients
with urodynamic stress incontinence, it is not conducive to
model construction, and thus, it was not considered. Surgical
methods for prolapse included colpocleisis, sacrospinous
ligament fixation, round ligament suspension, high utero-
sacral ligament suspension, transvaginal mesh implantation,
Manchester procedure, sacrocolpopexy, and lateral abdominal
wall suspension. If only hysterectomy or anterior/posterior
colporrhaphy was performed, the patient was coded as 0
in surgical evaluations. The operation for SUI was midure-
thral sling. Preoperative urinary incontinence status was
determined through retrospective review of medical records
combined with patient recall during postoperative follow-up.
Postoperative SUI was defined as the reporting of bother-
some SUI symptoms during any follow-up visit. Patients
were followed up via outpatient clinic visits or telephone
interviews.
Data Preprocessing
Smoking history was excluded because of more than 10%
missing data and a low positive rate (2 out of 286). Educa-
tional background was excluded because of more than 10%
missing data. The remaining missing values were multi-inter-
polated using the R package “mice.” Patients with missing
postoperative SUI outcomes were ultimately excluded from
the study. Therefore, all postoperative SUI outcomes were
based on the actual postoperative follow-up.
Model Development
Data were split randomly in a 7:3 ratio into a training set and
a validation set. We ensured that there were no statistically
significant differences in baseline characteristics between the
training set and the validation set. The training set was used
to develop the model, and the validation set was used for
internal validation.

We performed 5-fold cross-validated Lasso (least absolute
shrinkage and selection operator) regression using the R
package “glmnet” to screen for predictive variables. Lasso
regression was implemented with L1 regularization (tuning
parameter λ) to select variables via coefficient shrinkage
and prevent overfitting, thereby improving generalization.
Multivariate logistic regression analysis was performed using
the variables obtained by Lasso regression to construct a
nomogram prediction model.

The decision tree model in this study was constructed
based on the classification and regression tree (CART)
method developed in 1984 [16]. CART analysis is a
nonparametric, nonlinear method that generates binary trees

by feature selection based on Gini index minimization
criteria.

Random forest and XGBoost are both integrated machine
learning methods based on decision trees. The random forest
prediction model is created based on the bagging algo-
rithm and can be used for both classification and regres-
sion analyses [17]. We developed the random forest model
using bootstrap resampling techniques. We assessed feature
importance in 2 metrics: mean decrease accuracy (based
on permutation) and mean decrease Gini (based on Gini
impurity). Considering the direct relevance of mean decrease
accuracy to model prediction accuracy, its stronger robust-
ness, and its better interpretability in clinical contexts [18,
19], we ultimately selected the top 8 most predictive features
based on the ranking results of mean decrease accuracy to
construct the final model. XGBoost develops the model by
gradually adding decision trees, each of which resolves the
error weakness of the previous one to achieve an accurate
classification effect [20]. The XGBoost model incorporates
regularization terms based on tree complexity, effectively
reducing overfitting and thereby enhancing generalization
performance. XGBoost was configured to utilize the top
8 most important variables. The optimal parameters were
selected via hyperparameter optimization, with additional
L2 regularization (lambda) and L1 regularization (alpha)
penalties incorporated to mitigate overfitting.

Support vector machine (SVM) is a powerful and versatile
machine learning method that excels at both classification and
regression tasks. Based on the limited sample information,
it seeks the best compromise between the complexity and
learning ability of the model. Its objective is to identify the
optimal hyperplane that separates data into 2 distinct classes,
where support vectors represent the critical data points that
maximize the margin between the 2 classes. In this study,
4 SVM methods were employed: linear SVM, polynomial
SVM, radial basis SVM, and sigmoid SVM. The kernel with
the best performance was finally selected to develop the
model [21].

The “glmnet,” “rms,” “random forest,” “XGBoost,”
“e1071,” and “rpart” packages in R software (R Foundation
for Statistical Computing) were used to construct logistic
regression, random forest, XGBoost, SVM, and CART
prediction models.
Model Evaluation
The models were internally validated using validation
sets. AUC, accuracy, precision, sensitivity, specificity, and
F1-score were used to evaluate the discrimination of the
models. The prediction model calculated the AUC based
on probability outputs. AUC values approaching 1.0 were
considered to indicate superior predictive performance
for postoperative SUI, while AUC values near 0.5 were
considered to suggest limited clinical utility.

Model calibration was evaluated by both the Brier score
and calibration curves. The Brier score quantifies predic-
tion accuracy, with values approaching 0 indicating perfect
prediction and values nearing 1 representing the poorest
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performance. Calibration curves were used to visualize
the agreement between predicted probabilities and actual
frequencies, where perfect calibration follows the 45-degree
line.

Decision curve analysis (DCA) was used to evaluate the
application value of the model in practical clinical decision-
making and provide guidance for clinical decision-making.
Statistical Analysis
All data processing and statistical analyses were performed
using R software (version 4.4.2). Numerical variables have
been presented as mean (SD) for normally distributed data
(analyzed with the Student t test) or median (IQR [P25, P75])
for nonnormally distributed data (analyzed with the Mann-
Whitney U test). Categorical variables have been expressed as
frequency (n) and were compared using chi-square tests.
Ethical Considerations
The study was approved by the Shanxi Bethune Hospi-
tal Medical Ethics Review Committee (YXLL-2025‐072)
and was performed in accordance with the principles of
the Declaration of Helsinki. Written informed consent was
obtained from each participant before taking measurements.
All data were anonymized, and the study was conducted
without offering any financial or material incentives to the
participants.

Results
Clinical Characteristics
Between January 2021 and February 2025, 353 patients
underwent prolapse surgery at Shanxi Bethune Hospital. Of

these patients, 23 were excluded due to a history of previous
prolapse surgery, leaving 108 retrospectively enrolled patients
from January 2021 to August 2022 and 222 prospectively
recruited patients from September 2022 to February 2025.
However, 44 patients were lost to follow-up. Thus, the final
analytical cohort included 286 patients (Figure 1). These
patients were randomly allocated to the training (n=201)
and validation (n=85) sets in a 7:3 ratio, with no significant
differences in baseline characteristics between the groups (all
P>.05).

A total of 286 patients undergoing prolapse surgery
were included, and of these patients, 91 (31.8%) developed
postoperative SUI, including 27 (9.4%) with de novo SUI
and 64 (22.4%) with persistent SUI. In univariate analysis,
preoperative SUI, UUI, UOSUI, and longer genital hiatus
were identified as significant predictors of postoperative
SUI, while concomitant anti-SUI surgery was identified as a
protective factor. Variables with P≤.05 in univariate analysis
are presented in Table 1.

Multivariate logistic regression analysis was performed for
these 5 variables (Table 2). The results showed that preop-
erative SUI, UOSUI, length of genital hiatus, and concomi-
tant anti-SUI surgery were influential factors for SUI after
prolapse surgery.
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Figure 1. Flowchart of patient selection and model development and validation. CART: classification and regression tree; LR: logistic regression;
SVM: support vector machine; XGBoost: extreme gradient boosting.

Table 1. The results of univariate analysis.
Variable Total (N=286) Postoperative SUIa (−)

(n=195)
Postoperative SUI (+)
(n=91)

t test (df) Chi-square (df) P value

Ghb, mean (SD) 5.44 (0.92) 5.28 (0.93) 5.78 (0.81) −4.42 (284) —c <.001
SUI, n (%) — 59.79 (1) <.001
  Absent 175 (61.2) 149 (76.4) 26 (28.6)
  Present 111 (38.8) 46 (23.6) 65 (71.4)
UUId, n (%) — 7.50 (1) .006
  Absent 244 (85.3) 174 (89.2) 70 (76.9)
  Present 42 (14.7) 21 (10.8) 21 (23.1)
UOSUIe, n (%) — 13.92 (1) <.001
  Absent 255 (89.2) 183 (93.8) 72 (79.1)
  Present 31 (10.8) 12 (6.2) 19 (20.9)
Anti-SUI surgery, n (%) — 4.25 (1) .04
  No 267 (93.4) 178 (91.3) 89 (97.8)
  Yes 19 (6.6) 17 (8.7) 2 (2.2)

aSUI: stress urinary incontinence.
bGh: genital hiatus.
cNot applicable.
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dUUI: urge urinary incontinence.
eUOSUI: urodynamic occult stress urinary incontinence.

Table 2. Multivariate logistic regression analysis.
Variable β SE Z P value ORa (95% CI)
Intercept −5.17 1.07 −4.82 <.001 0.01 (0.00-0.05)
Ghb 0.60 0.18 3.26 .001 1.83 (1.27-2.62)
SUIc

  Absent —d — — — 1.00 (reference)
  Present 2.16 0.32 6.77 <.001 8.71 (4.66-16.30)
UUIe

  Absent — — — — 1.00 (reference)
  Present 0.76 0.42 1.78 .07 2.13 (0.93-4.89)
UOSUIf

  Absent — — — — 1.00 (reference)
  Present 1.12 0.54 2.06 .04 3.05 (1.06-8.80)
Anti-SUI surgery
  No — — — — 1.00 (reference)
  Yes −3.03 0.84 −3.60 <.001 0.05 (0.01-0.25)

aOR: odds ratio.
bGh: genital hiatus.
cSUI: stress urinary incontinence.
dNot applicable.
eUUI: urge urinary incontinence.
fUOSUI: urodynamic occult stress urinary incontinence.

Model Development

Logistic Regression Predictive Model
Lasso regression was used to identify nonzero coefficient
predictors from both the postoperative SUI and non-SUI
groups, thereby refining the risk factors for postoperative
SUI complications (Figure 2). The optimal λ value (0.041)
was selected through 5-fold cross-validation, and 4 nonzero
coefficient predictors were selected, including preoperative

SUI, anterior colporrhaphy, anti-SUI surgery, and length of
genital hiatus.

Subsequently, the risk factors selected by Lasso regres-
sion were incorporated into the logistic regression predic-
tive model, with the corresponding nomogram presented
in Figure 3. The model demonstrated an AUC of 0.817
(95% CI 0.755‐0.880) in the training set, maintaining robust
discrimination upon internal validation (AUC=0.869, 95% CI
0.791‐0.947).

Figure 2. Lasso regression for filtered predictors. (A) Cross-validation error; (B) Coefficient paths.
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Figure 3. Logistic regression model nomogram. Gh: genital hiatus; SUI: stress urinary incontinence.

Random Forest Predictive Model
A preliminary random forest model was constructed with 38
variables, and the importance of the variables was calcula-
ted, as shown in Figure 4. We chose to include the top 8
features (SUI, BMI, weight, UUI, age at menopause, height,
age, and operation) as ranked by mean decrease accuracy,
since this measure more directly reflects a feature’s contribu-
tion to classification performance and mitigates the evalu-
ation biases associated with the Gini index. To optimize
model performance, hyperparameter tuning was conducted
through cross-validation to determine the optimal mtry value.

Subsequently, the out-of-bag error was used to identify the
ideal number of decision trees (ntree) for ensuring model
stability and convergence. After parameter adjustment and
bootstrap resampling (n=500 iterations), the parameters of the
final random forest prediction model were set as follows:
max_depth=5, min_samples_split=10, min_samples_leaf=5,
mtry=3, ntree=146, maxnodes=20, and nodesize=5. The
random forest model showed good differentiation in the
training set (AUC=0.855, 95% CI 0.796‐0.914), but the
AUC dropped to 0.731 (95% CI 0.604‐0.858) in the internal
validation.
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Figure 4. Feature importance plot of the random forest model. (A) Feature importance plot of the random forest model based on the Gini index; (B)
Feature importance plot of the random forest model based on accuracy. HTN: hypertension; SUI: stress urinary incontinence; UOSUI: urodynamic
occult stress urinary incontinence; UUI: urge urinary incontinence; VD: vaginal delivery.

XGBoost Model
The regularization and early stop methods were used
to reduce the overfitting of the model, and the optimal
parameters and top 8 variables of importance were selec-
ted to build the XGBoost prediction model. The impor-
tance of accuracy based on the preliminary XGBoost
model is shown below (Figure 5). After hyperparameter
tuning by the train() function and 5-fold cross-validation,

the final XGBoost model demonstrated enhanced pre-
dictive performance with the following configuration:
eta=0.01, max_depth=3, gamma=0.1, colsample_bytree=0.8,
min_child_weight=1, subsample=0.8, lambda=3, alpha=.5,
early_stopping_rounds=10, and nrounds=200. The XGBoost
prediction model had an AUC of 0.899 (95% CI 0.856‐0.943)
and an AUC of 0.783 (95% CI 0.680‐0.886) in the training
set.

Figure 5. Feature importance of the extreme gradient boosting model based on accuracy. HTN: hypertension; SUI: stress urinary incontinence;
UOSUI: urodynamic occult stress urinary incontinence; UUI: urge urinary incontinence; VD: vaginal delivery.
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CART Model
The CART model, after pruning according to the opti-
mal complexity parameters (0.625), is shown in Figure 6,
illustrating the final classification tree used to predict the
occurrence of postoperative SUI. The CART model contained
3 branches based on 3 key predictive factors: preoperative
SUI status, concomitant anti-SUI procedure, and POP-Q
point C, which simplified postoperative SUI assessment. The

model directed “yes” responses to the left node and “no”
responses to the right node. For patients without preoperative
SUI (representing 62% of the cohort), the postoperative SUI
probability was 0.15. The AUC of this decision tree model
was 0.764 (95% CI 0.695‐0.832). In the validation set, the
AUC was 0.782 (95% CI 0.677‐0.886). The model exhibited
minimal overfitting.

Figure 6. Decision tree. SUI: stress urinary incontinence.

SVM Model
After hyperparameter tuning of the 4 kernel functions (linear
kernel, radial base kernel, polynomial kernel, and sigmoid
kernel), their accuracy, precision, recall, specificity, and
F1-scores were calculated, and the findings are summarized
in Table 3. We observed that the sigmoid kernel predicted
all samples as class 0. This phenomenon may be attributed
to a mismatch between the sigmoid kernel function and
the characteristics of the dataset in our study. Under the
optimized hyperparameters (gamma=0.1; coefficient 0=3),
the decision function values for all samples were negative
(ranging from −0.92 to −4.05) and were classified as class

0 according to the decision rule of SVMs, resulting in the
model’s failure to form an effective classification boundary.
Consequently, the precision, recall, and F1-score of the
sigmoid model were considered invalid.

The preliminary analysis found that the polynomial kernel
SVM classifier had better performance than the other 3
kernel classifiers (Table 3), and thus, polynomial kernel
modeling was selected. Finally, the SVM prediction model
was developed with 4 variables obtained by Lasso regres-
sion. The AUC of the final SVM model was 0.821 (95% CI
0.760‐0.883), and the validation set AUC was 0.846 (95% CI
0.757‐0.936).

Table 3. Evaluation of support vector machine kernels.
Model type Accuracy, % Precision, % Recall, % Specificity, % F1-score, %
Linear kernel 72.94 62.96 56.67 81.82 59.62
Polynomial kernel 78.82 66.67 66.67 84.48 66.67
Radial base kernel 76.47 51.85 66.67 79.69 58.33
Sigmoid kernel 68.24 —a — 100.00 —

aNot applicable.

Comparison of the 5 Models and
Applications
The performance metrics of all 5 models are summarized
as follows: Figure 7A displays the combined AUC values
for the training set, while Figure 7B presents those for the
validation set. Except for the CART model, the AUC values
of all other models were above 0.8, demonstrating excellent

discriminative ability, while the AUC values in the valida-
tion set were above 0.7. Comprehensive evaluation metrics,
including AUC, accuracy, precision, recall, specificity, and
F1-score, for the training set are detailed in Table 4, with
corresponding validation set metrics provided in Table 5.
Across all models, we observed a consistent pattern of
relatively low recall coupled with high specificity.
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Figure 7. Receiver operating characteristic curves (ROCs) of each model. (A) ROCs in the training set; (B) ROCs in the validation set. AUC: area
under the curve; CART: classification and regression tree; LR: logistic regression; RF: random forest; SVM: support vector machine; XGBoost:
extreme gradient boosting.

Table 4. Evaluation of the 5 models in the training set.
Model AUCa Accuracy Precision Sensitivity Specificity F1-score
LRb 0.81 0.74 0.70 0.33 0.90 0.45
CARTc 0.76 0.80 0.6 0.64 0.87 0.67
RFd 0.85 0.84 0.77 0.69 0.91 0.73
XGBooste 0.90 0.85 0.82 0.66 0.93 0.73
SVMf 0.82 0.78 0.66 0.66 0.84 0.66

aAUC: area under the curve.
bLR: logistic regression.
cCART: classification and regression tree.
dRF: random forest.
eXGBoost: extreme gradient boosting.
fSVM: support vector machine.

Table 5. Evaluation of the 5 models in the validation set.
Model AUCa Accuracy Precision Sensitivity Specificity F1-score
LRb 0.87 0.76 0.77 0.37 0.95 0.50
CARTc 0.78 0.78 0.68 0.56 0.88 0.61
RFd 0.73 0.78 0.65 0.63 0.84 0.64
XGBooste 0.78 0.76 0.63 0.63 0.83 0.63
SVMf 0.85 0.82 0.73 0.70 0.88 0.72

aAUC: area under the curve.
bLR: logistic regression.
cCART: classification and regression tree.
dRF: random forest.
eXGBoost: extreme gradient boosting.
fSVM: support vector machine.

Figure 8 presents the Brier scores and calibration curves for
the 5 models. Given that the CART model produces only
4 discrete predicted probabilities, its calibration curve was
plotted directly using the binning method. The calibration
curves for other models were generated using the Lowess
smoothing method. The Brier index of the logistic regression
model in the training set was relatively high (0.259). The

performance of the 5 models in the validation set was worse
than that in the training set. It can be seen from the cali-
bration curve that there is a high consistency between the
predicted outcomes of the models and the actual outcomes of
the training set (Figure 8A). The calibration of the validation
set (Figure 8B) was worse than that of the training set.
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Figure 8. Brier index and calibration curves of the 5 models. (A) Brier index and calibration curves in the training set; (B) Brier index and calibration
curves in the validation set. BS: Blair score; CART: classification and regression tree; LR: logistic regression; RF: random forest; SVM: support
vector machine; XGBoost: extreme gradient boosting.

From the DCA (Figure 9), in the training set, the curve of
the XGBoost model (at predicted probabilities of 0.8‐0.9) was
slightly below the treat none curve, while all other models
performed above both the treat all and treat none curves,
demonstrating high net benefit. However, in the validation

set’s DCA, the overall performance was acceptable, though
slightly inferior to that of the training set. Meanwhile, the
logistic regression model appeared to achieve the highest net
benefit in the validation set.

Figure 9. Decision curve analysis of the 5 models. (A) Decision curve analysis in the training set; (B) Decision curve analysis in the validation
set. CART: classification and regression tree; LR: logistic regression; RF: random forest; SVM: support vector machine; XGBoost: extreme gradient
boosting.

Overall, the logistic regression prediction model demonstra-
ted a high AUC; however, its overall performance in terms of
recall and F1-score, as well as its calibration, was inferior
to that of the other models. Both the random forest and
XGBoost models exhibited an AUC difference of more than
0.1 between the training and validation sets, indicating a high
degree of overfitting. The CART model offered advantages in
ease of interpretation and demonstrated acceptable discrim-
inatory power. However, due to its inherent algorithmic
structure, the CART model produced a limited number of
discrete risk categories (n=4), which consequently resulted in
poor calibration performance.

The SVM model demonstrated good stability in AUC and
DCA. However, DCA revealed its tendency to overestimate
the probability of positive outcomes in negative cases and
underestimate the actual risk in positive cases. It should be
noted that this phenomenon in the calibration curve was
not unique to the SVM model, as similar phenomena were
observed in the other models. The SVM model seemed to
have the best performance according to current data and
analysis.

In addition to the nomogram and decision tree, we
developed prediction tools for the random forest, XGBoost,
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and SVM models using Shiny to facilitate clinical implemen-
tation, as illustrated in Figure 10.

Figure 10. Example of support vector machine model application.

Discussion
Principal Findings
This study analyzed the data from 286 patients who under-
went prolapse surgery, obtained the risk factors for post-
operative SUI, and developed 5 novel prediction models,
including a conventional logistic regression–based model and
4 machine learning–based models (random forest, XGBoost,
CART, and SVM). Among the models, the SVM prediction
model demonstrated relatively robust performance.
Comparison With Prior Work
Jelovsek et al [9] developed the first logistic regression
prediction model for SUI after prolapse surgery (termed the
OPUS model) based on data from the OPUS trial, achieving
an AUC of 0.72. Since the OPUS study exclusively enrol-
led patients without SUI, this model is only applicable to
patients without SUI for predicting de novo SUI. External
validation using data from the CARE (Colpopexy and Urinary
Reduction Efforts) trial yielded an AUC of 0.62. When
conducting external validation using available data from the
CUPIDO trial, the model’s AUC was 0.63 [22]. Yasa et al
[23] reported a markedly lower AUC of 0.56 during external
validation with data from the Istanbul University Faculty of
Medicine, concluding that the OPUS model demonstrated
poor diagnostic performance.

van der Ploeg et al [10] developed the second logistic
regression prediction model for SUI after prolapse surgery
based on data from the CUPIDO trial (termed the CUPIDO
model), achieving an AUC of 0.76. The CUPIDO-1 trial
enrolled 134 patients with preoperative overt SUI, and the
CUPIDO-2 trial enrolled 225 patients with occult SUI.
Consequently, this model is not well-suited for patients
without either overt or occult SUI preoperatively. To date, no
external validation of the CUPIDO model has been conduc-
ted.

Oh et al [11] developed the third logistic regression
prediction model (termed the Oh model), which is applicable
to all prolapse women, regardless of preoperative SUI status
or prolapse surgery type, achieving an AUC of 0.78. They
partitioned data in a 4:1 ratio, allocating 20% for external
validation, which yielded an AUC of 0.73.

Fu et al [14] developed the first machine learning–based
predictive model for postoperative SUI following prolapse
surgery by using the retrospective data of 555 patients. The
study used 3 modeling approaches: random forest, XGBoost,
and logistic regression. The authors determined that the
XGBoost model demonstrated optimal predictive capability,
with an AUC of 0.714 in the training set, 0.721 in inter-
nal validation using 5-fold cross-validation, and 0.704 in
external validation with a randomly partitioned validation set.
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Regrettably, they only provide model parameters without the
model application available.

In our study, 5 methods were used to construct the
prediction model, covering tree model, linear model, and
ensemble learning. It is suggested to use various methods
to build a predictive model of machine learning and finally
select the best model based on performance indicators [24].
Our prediction models, developed using retrospective and
prospective data, are applicable to all patients with pro-
lapse irrespective of the preoperative SUI status or prolapse
surgical approach. Compared with previous random forest
and XGBoost prediction models, the validation set randomly
divided by our data had a higher AUC, and 2 other machine
learning models were constructed: SVM and CART.

The logistic regression prediction model developed in our
study demonstrated high AUC values in both the training
and validation sets, though sensitivity and F1-scores were
slightly lower. The low incidence of SUI after prolapse may
lead to an imbalance between positive and negative samples,
resulting in high specificity and low sensitivity. In contrast,
both the random forest and XGBoost models exhibited
notable discrepancies between the AUC of the training set
and that of the validation set, with validation AUCs remain-
ing above 0.7 yet still demonstrating signs of overfitting. As
ensemble methods based on decision trees, random forest
and XGBoost typically resist overfitting; however, exces-
sive tree numbers or depth may still lead to overfitting.
Despite employing various mitigation strategies, including
parameter tuning, bootstrap resampling, and 5-fold cross-vali-
dation, overfitting persisted. The reproducibility of machine
learning models remains a significant challenge in health care
applications [25,26]. Furthermore, the observed overfitting
in these models may be partially attributable to insufficient
sample size. For machine learning–based predictive mod-
els, larger datasets are typically required to ensure reprodu-
cibility. Although the CART model demonstrated inferior
overall performance compared to other algorithms, it showed
remarkable consistency between training and validation sets.
Its user-friendly nature made it more applicable in clinical
work. Notably, the SVM model exhibited better performance
in the validation set compared to the training set, suggesting
strong potential for clinical generalization.
Risk Factors for Postoperative SUI
Based on univariate analysis, multivariate logistic regression
analysis, and Lasso regression analysis, several influencing
factors of postoperative SUI were obtained: preoperative SUI,
UUI, UOSUI, anti-SUI surgery, genital hiatus, and anterior
colporrhaphy. SUI, UUI, and UOSUI are lower urinary tract
symptoms closely related to POP. SUI is caused by the laxity
of the local supporting structures of the bladder neck. In some
patients undergoing POP surgery, the anatomical defects
at the bladder neck remain uncorrected, leading to persis-
tent SUI symptoms postoperatively [4]. Studies indicate that
5.2%‐31% of urinary incontinence persists after surgery [27,
28]. In patients with UUI, surgery may not address the cause
of UUI, and the implanted mesh and other irritative fac-
tors may even aggravate UUI. Nationwide prolapse surgery

data from Finland suggested that de novo SUI occurs more
frequently in patients with preoperative UUI [3].

Occult SUI refers to SUI after prolapse reduction, with
an incidence of 23.5%‐42.5% [29,30]. With the progression
of POP, particularly in cases of advanced anterior vaginal
wall prolapse, the folding of the bladder and urethra may
lead to the disappearance of SUI symptoms. After prolapse
reduction, the fold of the lower urinary tract can be repaired,
and the masked SUI symptoms will appear again [31]. Data
from a randomized controlled trial suggested that 52% of
patients with occult SUI progressed to SUI after surgery
[32]. The International Continence Society, German Society
of Gynecology and Obstetrics, and International Consultation
on Incontinence recommend a preoperative urodynamic study
to uncover occult SUI [30,33-35]. A prolapse reduction stress
test for revealing occult SUI has been utilized in several
predictive models [9-11].

Anterior colporrhaphy is a standard surgical procedure,
just like appendectomy and tonsillectomy, and is widely
performed around the world [36]. The principle of anterior
colporrhaphy is based on the plication of the vesicovaginal
fascia at the midline to strengthen the tissue between the
vagina and bladder, previously known as the Kelly opera-
tion [37]. In the 1990s, multiple randomized controlled trials
demonstrated that anterior colporrhaphy alone significantly
improved SUI [38-40]. Bergman et al [38] reported an 82%
cure rate for SUI following simple anterior colporrhaphy.

Genital hiatus length is defined as the distance from the
external urethral meatus to the posterior edge of the hymen.
An increase in genital hiatus may lead to a weakening
of support for the urethra and bladder, contributing to the
development of incontinence. A study about pelvic floor
ultrasound and pelvic floor dysfunction found that women
with urinary incontinence exhibited a longer genital hiatus
[41,42]. A study by Huang et al [43] found that cystocele was
associated with longer genital hiatus.
Advantages, Limitations, and Future
Perspectives
This study developed CART and SVM models for predicting
SUI after prolapse for the first time, and our random forest
and XGBoost models also demonstrated superior discrimina-
tive ability compared to previous models. In addition, this
is the first study to develop models incorporating prospec-
tive data for SUI after prolapse surgery, thereby reducing
recall bias. Our 7:3 random split of the dataset into training
and validation sets for internal validation provides greater
representativeness than bootstrap resampling for internal
validation [22].

This study has several limitations. First, the sample
size was insufficient for robust machine learning predic-
tion, and some models still exhibited overfitting. Second,
external validation using independent datasets (eg, from other
hospitals or regions) was lacking. Third, the inclusion of
retrospective data introduced recall bias, and the absence
of objective postoperative SUI assessments, such as stand-
ardized symptom quantification and pad tests, may have
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led to information bias. Additionally, variability in POP-Q
measurements across different clinicians over this long-term
study might have contributed to measurement errors [44].

The 5 prediction models developed in this study demon-
strated overall strong performance, with acceptable perform-
ance in randomly split internal validation. When considering
discrimination, calibration, and clinical utility collectively,
the SVM model appeared to exhibit robust performance.
Based on both the current status of prediction models for
SUI after prolapse surgery and this study’s limitations, we
recommend: (1) the publication of experimental data, (2) the
establishment of large databases from prospective studies, and
(3) the standardization of the diagnosis and treatment of POP.
These steps are beneficial for reducing information bias, so
as to establish a generalizable prediction model with high
accuracy on a national and even global scale.

Conclusions
This study developed and internally validated 5 machine
learning–based prediction models for SUI after prolapse
surgery, which are applicable to all patients, regardless
of preoperative SUI status and surgical approach. The
model approaches included logistic regression, random forest,
XGBoost, SVM, and CART. The SVM model demonstrated
the most robust performance among all algorithms evaluated.
We identified the following 6 predictive factors for postop-
erative SUI: preoperative SUI, UUI, UOSUI, concomitant
anti-SUI surgery, genital hiatus, and anterior colporrhaphy.
External validation is required to evaluate generalizability and
determine the optimal model for clinical decision-making in
postoperative SUI management.
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AUC: area under the curve
CART: classification and regression tree
CUPIDO: Concomitant Surgery and Urodynamic Investigation in Genital Prolapse and Stress Incontinence: A
Diagnostic Study Including Outcome Evaluation
DCA: decision curve analysis
OPUS: Outcomes Following Vaginal Prolapse Repair and Midurethral Sling
POP: pelvic organ prolapse
POP-Q: Pelvic Organ Prolapse Quantification
SUI: stress urinary incontinence
SVM: support vector machine
UOSUI: urodynamic occult stress urinary incontinence
UUI: urge urinary incontinence
XGBoost: extreme gradient boosting
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