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Abstract
Background: The burden of paralytic ileus (PI) in the intensive care unit remains high, and the Charlson Comorbidity
Index (CCI) is strongly associated with the prognosis of several acute and chronic diseases. However, evidence specifically
evaluating the prognostic value of CCI in intensive care unit patients with PI remains limited.
Objective: This study aimed to investigate the association between CCI and clinical prognosis in critically ill patients with PI.
Methods: In this study, data were extracted from the Medical Information Mart for Intensive Care IV (version 2.2), a large,
publicly available critical care database, and used to determine the optimal cut-off value of CCI for predicting mortality
in patients with PI using the receiver operating characteristic curves, and the association between CCI and mortality was
evaluated using Cox regression and restricted cubic spline analysis. A machine learning (ML) prediction model was then
constructed to predict hospital mortality by combining CCI and other clinical characteristics.
Results: The study included 863 patients with PI (age: median 65.4, IQR 54.6‐75.5 y; male: 575/863, 66.6%). The receiver
operating characteristic curve identified an optimal cut-off value of 4.5 for CCI. The multivariate Cox regression analysis
showed that compared to the lowest CCI quartile, patients with elevated CCI levels were more likely to have elevated hospital
(Q4: hazard ratio [HR] 2.447, 95% CI 1.210‐4.951), 28-day (Q4: HR 3.891, 95% CI 1.956‐7.740), and 90-day (Q4: HR 3.994,
95% CI 2.224‐7.173) all-cause mortality were significantly associated with elevated CCI levels; however, the association with
ICU mortality (Q4: HR 1.892, 95% CI 0.653‐5.480) was weak. Among the 11 ML models, the light gradient boosting machine
model performed best, with internal validation results showing an area under the curve of 0.811, a geometric mean of 0.670,
and an F1-score of 0.895.
Conclusions: The CCI is an important predictor of hospital, 28-day, and 90-day all-cause mortality in critically ill patients
with PI, and the optimal threshold is 4.5. ML models, including the CCI, show high accuracy in predicting hospital mortality,
and the CCI occupies an important position in the model. This suggests that the CCI helps to identify high-risk patients,
supports clinical decision-making, and improves prognosis.
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Introduction
Background
Paralytic ileus (PI) is a common functional intestinal
obstruction due to decreased or loss of intestinal motil-
ity, with etiological factors including electrolyte imbalance,
severe infection, substance abuse, and abdominal surgery
[1,2]. The global incidence is approximately 1‐5 cases per
100,000 people, with a higher incidence in women but
a higher mortality rate in men [3]. The overall mortality
rate for PI is 5%‐6%, but this increases to 10%‐20% in
the intensive care unit (ICU) patients [1,4]. Patients with
PI are often associated with chronic diseases or comor-
bidities such as diabetes, neurological diseases, systemic
sclerosis, and malignant cancer, and the cumulative burden
of these underlying diseases may have a significant impact
on mortality [5-8]. Given the high morbidity and mortality
associated with PI, it is important to accurately identify
high-risk patients and assess their prognostic risk.

The Charlson Comorbidity Index (CCI) is a widely used
scoring system that quantifies the burden of chronic comor-
bidities (eg, diabetes, malignant cancer, and connective tissue
disorders) and evaluates their impact on overall prognosis,
thereby providing an estimate of mortality risk [9,10]. It has
demonstrated significant prognostic value across a variety
of clinical scenarios, including older patients, critically ill
populations, and cancer cohorts [11-14], and has been
validated in settings such as chronic granulocytic leukemia
[15], the assessment of postoperative complications [16],
and fracture risk prediction [17]. These findings highlight
the use of the CCI in capturing the cumulative effect of
chronic disease burden on patient outcomes. In critically
ill patients with PI, comorbidities such as cardiovascular
disease, diabetes, and chronic kidney disease are common
and may substantially influence prognosis, making the CCI
particularly relevant for this cohort [1,4]. Moreover, unlike
scoring systems such as Sequential Organ Failure Assessment
(SOFA) or Acute Physiology and Chronic Health Evaluation
that primarily reflect acute illness severity, the CCI captures
the cumulative impact of chronic conditions on outcomes,
thereby complementing conventional acute severity scores
[9]. However, evidence specifically evaluating the prognostic
value of the CCI in ICU patients with PI remains limited.
Objective
With the rapid development of big data and machine learning
(ML), mortality prediction models based on electronic health
records have become a research focus, as ML can capture
complex associations in high-dimensional data and often
outperform traditional methods [18-20]. Recently, explain-
able ML approaches have been applied in critical care,
with several studies using the Medical Information Mart for
Intensive Care (MIMIC) database to develop interpretable
mortality prediction models that enhance clinical applicabil-
ity [21,22]. For instance, a deep-learning model for mortal-
ity prediction based on MIMIC used neural networks with
Shapley Additive Explanations (SHAP) analysis to predict
outcomes in ICU patients with PI [23]. Building on these

advances, the primary objective of this study was to eval-
uate the association between CCI and all-cause mortality,
including hospital, ICU, 28-day, and 90-day mortality, in ICU
patients with PI. The exploratory objective was to assess the
feasibility of incorporating CCI into ML models for mortality
prediction in this population.

Methods
Study Participants
This is a retrospective cohort study. The Massachusetts
Institute of Technology and Beth Israel Deaconess Medi-
cal Center (BIDMC) collaborated to develop the MIMIC-
IV electronic database (version 2.2), which was used for
this study [24]. The database contains information on more
than 50,000 patients who received ICU care at BIDMC
between 2008 and 2019. The database provides a wide
range of clinical data and has been used extensively in
critical care medicine research [25-27]. Detailed informa-
tion about the database, including access instructions, is
available at PhysioNet [28]. The institutional review board
(IRB) of BIDMC waived informed consent and allowed
sharing of research resources because all data were dei-
dentified. Therefore, this study did not require additional
informed consent (2001-P-001699/14; 0403000206). To
comply with the regulations, the author, HF, obtained a
Cooperative Institutional Training Initiative license (certifi-
cation: 61863057) and the necessary permission to use the
MIMIC-IV database.

Adult patients who were first admitted to the hospital with
a diagnosis of PI according to the International Classification
of Diseases (ICD-9: 560.1 and ICD-10: 56.0) were included
in this study. Individual patient consent was not required due
to the anonymized nature of patient health information in this
database. Exclusion criteria included: (1) patients who stayed
in the ICU for <6 hours; (2) multiple ICU admissions for
which only data from the first admission were extracted; and
(3) patients who lacked information on CCI. Finally, a total
of 863 patients were included in this study and divided into 4
groups according to the quartiles of CCI.
Patient Characteristics
Data collection involved the use of structured query lan-
guage and PostgreSQL (version 16.3.7; PostgreSQL Global
Development Group) to extract baseline patient characteris-
tics. The following data were obtained: (1) demographic
information includes sex, age, and race; (2) comorbidities
identified according to ICD-9 or ICD-10: congestive heart
failure, renal disease, malignant cancer, sepsis, diabetes, and
hypertension; (3) mean vital signs include respiratory rate
(RR), mean blood pressure (MBP), heart rate, and oxygen; (4)
laboratory parameters include white blood cell (WBC) count,
red blood cell distribution width (RDW), platelets, hemo-
globin, anion gap, blood urea nitrogen (BUN), creatinine,
total calcium, chloride, sodium, and potassium; (5) severity
scores include Simplified Acute Physiology Score II (SAPS
II), Oxford Acute Severity of Illness Score (OASIS), Acute
Physiology Score III (APS III), SOFA score, and CCI; and
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(6) therapeutic agents include ondansetron and neostigmine.
All laboratory variables were obtained from the first 24 hours
after the patient’s admission to the ICU. Follow-up began on
the date of ICU admission and ended on the date of death.
Variables with more than 10% missing values were excluded
to mitigate potential bias [29]. The proportions of missing
values for variables are shown in Figure S1A in Multime-
dia Appendix 1, and variables with less than 10% missing
values were interpolated using the random forest interpolation
method implemented in the missForest package of the R
software (R Foundation for Statistical Computing) [30]. In
the ML section, the patients with PI were divided into a 70%
training cohort and a 30% test cohort.
Clinical Outcome
The primary outcome of this study was all-cause hospital
mortality, and secondary outcomes were ICU mortality and
mortality at 28 and 90 days after ICU admission. In addition,
the primary objective of the ML modeling was all-cause
hospital mortality.
Statistical Analysis
The normality of continuous variables was assessed using
the Kolmogorov-Smirnov test. Continuous variables that
followed a normal distribution were analyzed using the
2-tailed t test or ANOVA, and those that were not nor-
mally distributed were analyzed using the Mann-Whitney
U test or the Kruskal-Wallis test. Categorical variables
were compared by the chi-square test. The CCI was catego-
rized into 4 quartiles, Kaplan-Meier survival analysis was
used to assess differences in mortality between groups, and
log-rank tests were used to compare differences between
groups. The optimal cut-off value for CCI was determined by
receiver operating characteristic (ROC) curve analysis using
the Youden index maximization method. Variance inflation
factor (VIF) was used to assess multicollinearity between
variables, and variables with a VIF>5 were removed (Figure
S1B in Multimedia Appendix 1).

Cox regression analysis was used to assess the associa-
tion between CCI and hospital mortality, ICU mortality, as
well as 28- and 90-day mortality, with model 1 including
only CCI and model 2 including age and sex as correction
variables. Model 3 was developed based on clinical exper-
tise, a previous study by Zhao et al [4], and the results of
feature importance selection from the least absolute shrink-
age and selection operator (LASSO) algorithm. The follow-
ing variables were included: sex, age, CHF, renal disease,
malignant cancer, sepsis, diabetes, hypertension, RR, SpO₂,
WBC, RDW, platelets, anion gap, BUN, creatinine, SAPS
II, OASIS, APS III, and SOFA. In addition, restricted cubic
spline (RCS) analyses were performed to explore the potential
nonlinear relationship between CCI levels and hospital, ICU,
and 28- and 90-day all-cause mortality rates. The CCI was
used as a continuous or ordinal variable entered into the
model (the first quartile of CCI served as the reference
group). P values for trends were calculated using IQRs.
Further stratified analyses were performed according to sex,
age (≤65 and >65 y), CHF, malignant cancer, sepsis, and
diabetes to determine the consistency of the prognostic value

of CCI for the primary outcome. Likelihood ratio tests
were used to examine the interaction between CCI and
the variables used for stratification. A 2-sided P<.05 was
considered statistically significant.

To test the robustness of the results of the primary
analysis, several sensitivity analyses were performed. First,
patients who died within 3 days of ICU admission were
excluded to assess whether these patients had a significant
impact on the primary outcome. Second, patients were
grouped according to the optimal cut-off value of the CCI
to test the stability of the main results by different CCI
groupings. Finally, a stratified analysis of SOFA scores was
performed: patients were divided into 3 groups based on their
24-hour SOFA scores after ICU admission: low (first 1/3
quartile), intermediate (1st or 3rd to 2nd or 3rd quartile), and
high (last 1/3 quartile). This grouping method helps to further
validate the effect of different SOFA score groups on the
association between CCI and mortality.

In addition, an ML model was constructed to predict
all-cause hospital mortality in patients with PI using a
binary classification approach. First, the correlation between
variables was assessed using a Pearson correlation test,
and those with coefficients >0.5 were excluded to reduce
multicollinearity. Continuous variables were standardized and
categorical variables were encoded. Feature selection was
performed using LASSO regression and 3 ML algorithms,
and the top 10 features were identified. These features
were then tested again for Pearson correlation and VIFs
before being incorporated into 11 common ML algorithms
(eg, light gradient boosting machine [LightGBM], random
forest, and extreme gradient boosting). The dataset was
divided into a training and internal validation cohort in a
7:3 ratio. Model training and evaluation were performed
using 10-fold cross-validation (repeatedcv, repeats =1) to
reduce the risk of overfitting. Hyperparameter tuning was
conducted with a random search strategy in R using the
trainControl function, and the optimal parameters are shown
in Table S1 in Multimedia Appendix 1. Model perform-
ance was compared with SOFA and SAPS II scores using
ROC curves and multiple metrics, including AUC, accuracy,
sensitivity, specificity, F1-score, geometric mean, precision,
and recall. For the best-performing ML models, Shapley
Additive Explanations (SHAP) were used to assess feature
importance and generate partial dependence plots. Finally, a
web-based prediction platform was developed based on the
best-performing models to improve clinical accessibility.

All statistical analyses were performed using SPSS
(version 23.0; IBM Corp), R (version 4.3.2), and Python
(version 3.11.1; Python Software Foundation).
Ethical Considerations
This study was a retrospective observational cohort study
using the publicly available MIMIC-IV database (version
2.2), which contains deidentified patient data. The IRB of
BIDMC waived the requirement for informed consent, as all
data in the MIMIC-IV database are deidentified. The use of
the database for this research was approved by the IRB of
BIDMC. To comply with relevant regulations, the author,
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HF, obtained a Collaborative Institutional Training Initia-
tive certification (61863057) and the necessary permissions
to access and use the MIMIC-IV database. All procedures
involving human subjects in this study adhered to the ethical
standards of the institutional and national research councils as
well as the 1964 Declaration of Helsinki and its subsequent
amendments or equivalent ethical standards. As this study
used the publicly available MIMIC-IV data, no participants
were directly involved and no compensation was provided.

Results
Baseline Characteristics
After screening the data of patients with PI in the MIMIC
IV database, 863 patients who met the inclusion criteria were
included in this study and divided into 4 groups according to
the quartiles of CCI (Figure 1). Table 1 shows the baseline
characteristics of critically ill patients with PI stratified by
CCI quartiles. Patients were divided into 4 groups based

on their CCI level on admission (quartile 1: 0‐3; quartile
2: 3‐5; quartile 3: 5‐7; and quartile 4: 7‐14). The median
CCI values for each quartile in each group were 2 (IQR
1‐3), 4.5 (IQR 4‐5), 6 (IQR 6‐7), and 9 (IQR 8‐10),
respectively. The median age of the enrolled patients was
65.4 (IQR 54.6‐75.5) years, of which 575 (66.6%) were
male. The median CCI for all participants was 5 (IQR
3‐7). Compared to the lower group, patients in the highest
CCI quartile generally had higher age, RDW, anion gap,
BUN, creatinine, SAPS II, OASIS, APS III, SOFA, lower
MBP, heart rate, hemoglobin, higher CHF, renal disease,
malignant cancer, diabetes prevalence, and lower hyperten-
sion prevalence. Hospital mortality, ICU mortality, 28-day
mortality, and 90-day mortality were 157 (18.2%), 76 (9%),
171 (19.8%), and 233 (27%), respectively. As the Q4 group
was better associated with all-cause mortality, the differences
between Q4 and Q1-Q3 were further compared. The analysis
showed that different grouping methods gave similar results
(Table S2 in Multimedia Appendix 1).

Figure 1. Flowchart of patient selection for the study cohort. ICU: intensive care unit; MIMIC-IV: Medical Information Mart for Intensive Care IV.

Table 1. Characteristics and outcomes of intensive care unit (ICU) patients with paralytic ileus categorized by Charlson Comorbidity Index (CCI)
levelsa (N=863).
Categories Overall Q1 (n=268) Q2 (n=236) Q3 (n=169) Q4 (n=190) P value
Sex (male), n (%) 575 (66.6) 176 (65.7) 160 (67.8) 109 (64.5) 130 (68.4) .83
Age (y), median (IQR) 65.4 (54.6‐75.5) 52.8 (42‐59.3) 67.4 (58‐76.5) 71.4 (62.4‐80.3) 73.6 (66.7‐81.7) <.001
Race, n (%) .64
  White 576 (66.7) 175 (65.3) 153 (64.8) 115 (68.0) 133 (70)
  Others 287 (33.3) 93 (35) 83 (35) 54 (32) 57 (30)
Comorbidities, n (%)
  CHFb 220 (25.5) 17 (6) 53 (23) 68 (40) 82 (43) <.001
  Renal disease 194 (22.5) 4 (2) 26 (11) 59 (35) 105 (55.3) <.001
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  Malignant cancer 161 (18.7) 14 (5) 28 (12) 33 (20) 86 (45) <.001
  Sepsis 282 (32.7) 76 (28) 70 (30) 65 (39) 71 (37) .052
  Diabetes 226 (26.2) 34 (13) 55 (23) 45 (27) 92 (48) <.001
  Hypertension 355 (41.1) 97 (36) 133 (56.4) 74 (44) 51 (27) <.001
Vital signs, median (IQR)
  RRc (breaths/min) 18.8 (16.4‐21.9) 19.0 (16.6‐21.9) 19.1 (16.1‐21.7) 19.1 (16.6‐23.0) 18.3 (16.4‐21.9) .60
  MBPd (mmHg) 73.9 (68.6‐81.8) 77.4 (71.3‐84.7) 73.9 (68.5‐82.2) 73.3 (68.5‐79.0) 72.2 (66.5‐78.1) <.001
  Heart rate (bpm) 89.2 (79.2‐103) 93.0 (81.3‐106) 88.1 (79.1‐101) 88.6 (77.8‐102) 86.4 (76.5‐99.0) .001
  SpO2e(%) 97.0 (95.5‐98.4) 97.2 (95.8‐98.5) 96.7 (95.1‐98.2) 96.8 (95.2‐98.3) 97.3 (95.7‐98.4) .09
Laboratory test, median (IQR)
  WBCf (K/µL) 12.8 (9.15‐18.0) 13.2 (9.20‐18.2) 12.4 (8.90‐18.2) 13.4 (9.20‐19.7) 12.0 (8.98‐15.7) .28
  RDWg (%) 15.0 (13.9‐16.6) 14.5 (13.6‐15.7) 15.1 (13.8‐16.5) 15.6 (14.1‐17.0) 15.4 (14.4‐17.1) <.001
  Platelet (K/µL) 176 (113‐235) 190 (126‐241) 158 (99.5‐225) 171 (119‐233) 175 (119‐234) .15
  Hemoglobin (g/dL) 9.60 (8.40‐11.0) 10.0 (8.60‐11.5) 9.50 (8.20‐11.0) 9.70 (8.30‐11.0) 9.20 (8.10‐10.4) .001
  Anion gap

(mmol/L)
14.0 (12.0‐17.0) 14.0 (11.0‐16.0) 14.0 (11.0‐16.0) 14.0 (13.0‐17.0) 15.0 (12.0‐17.0) .001

  BUNh (mg/dL) 21.0 (14.0‐34.0) 15.0 (11.0‐23.0) 22.0 (15.0‐34.1) 26.0 (18.0‐38.0) 30.0 (18.2‐40.8) <.001
  Creatinine (mg/dL) 1.10 (0.80‐1.60) 0.90 (0.60‐1.20) 1.10 (0.80‐1.50) 1.20 (0.90‐1.63) 1.45 (1.00‐1.81) <.001
  Calcium (mg/dL) 8.10 (7.70‐8.60) 8.00 (7.60‐8.50) 8.10 (7.72‐8.60) 8.20 (7.80‐8.60) 8.12 (7.70‐8.60) .08
  Chloride (mEq/L) 105 (101‐109) 105 (101‐109) 105 (101‐109) 104 (99.0‐108) 105 (101‐108) .22
  Sodium (mEq/L) 138 (135‐141) 138 (136‐141) 138 (135‐141) 138 (135‐141) 139 (135‐141) .71
  Potassium (mEq/L) 4.20 (3.80‐4.50) 4.10 (3.70‐4.40) 4.20 (3.70‐4.60) 4.20 (3.80‐4.60) 4.20 (3.80‐4.60) .09
Severity scores, median (IQR)
  SAPS IIi 37.0 (30.0‐47.0) 30.0 (22.0‐38.0) 37.0 (31.0‐45.0) 40.0 (33.0‐51.0) 43.0 (37.0‐54.0) <.001
  OASISj 33.0 (27.0‐39.5) 31.0 (25.0‐38.0) 33.0 (29.0‐39.0) 34.0 (27.0‐40.0) 34.0 (28.0‐41.0) .001
  APS IIIk 47.0 (35.0‐63.5) 41.0 (30.0‐59.0) 48.0 (34.0‐63.0) 50.0 (41.0‐67.0) 51.0 (38.0‐69.6) <.001
  SOFAl 2.00 (1.00‐5.00) 2.00 (1.00‐4.00) 2.00 (1.00‐5.00) 3.00 (1.00‐5.00) 3.00 (1.00‐5.00) <.001
  CCI 5.00 (3.00‐7.00) 2.00 (1.00‐3.00) 4.50 (4.00‐5.00) 6.00 (6.00‐7.00) 9.00 (8.00‐10.0) <.001
Medication, n (%)
  Ondansetron 475 (55.0) 154 (57.5) 124 (52.5) 92 (54) 105 (55.3) .74
  Neostigmine 101 (11.7) 30 (11) 34 (14) 23 (14) 14 (7) .12
Events, median (IQR)
  Hospital LOSm (d) 14.6 (9.72‐23.1) 14.4 (9.27‐24.0) 14.1 (9.32‐24.5) 15.5 (10.6‐22.7) 15.0 (10.5‐20.8) .87
  ICU LOS (d) 3.65 (1.94‐7.85) 3.30 (1.91‐7.74) 3.92 (1.91‐8.79) 4.03 (2.08‐7.51) 3.30 (1.96‐7.61) .58
Mortality, n (%)
  Hospital 157 (18.2) 26 (10) 46 (20) 34 (20) 51 (27) <.001
  ICU 76 (9) 17 (6) 22 (9) 17 (10) 20 (10) .37
  28 days 171 (19.8) 23 (9) 44 (19) 40 (24) 64 (34) <.001
90 dayss 233 (27.0) 32 (12) 61 (26) 54 (32) 86 (45) <.001

aContinuous data are presented as median (IQR), whereas categorical data are presented as n (%), Q1 (0‐3), Q2 (3–5), Q3 (5–7), Q4 (7–14).
bCHF: congestive heart failure.
cRR: respiratory rate.
dMBP: mean blood pressure.
eSpO2: saturation of peripheral oxygen.
f WBC: white blood cell.
gRDW, red blood cell distribution width.
h BUN: blood urea nitrogen.
i SAPS II: Simplified Acute Physiological Score II.
jOASIS: Oxford Acute Severity of Illness Score.
kAPS III: Acute Physiology Score III.
l SOFA: Sequential Organ Failure Assessment.
mLOS: length of stay.
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Table 2 shows the differences in baseline characteristics
between survivors and nonsurvivors during hospitalization.
Patients in the nonsurvivor group were more likely to have
higher RR, heart rate, RDW, anion gap, BUN, creatinine,
SAPS II, OASIS, APS III, SOFA, CCI, higher prevalence
of CHF, sepsis, lower prevalence of hypertension, lower
SpO2, platelets, hemoglobin, calcium, lower ondansetron, and

neostigmine use. CCI values were significantly higher in the
nonsurvivors than in the survivors (6 vs 5; P<.001). Figure
S1 in Multimedia Appendix 1 shows the distribution of CCIs
stratified by mortality status for inpatient deaths, ICU deaths,
28-day deaths, and 90-day deaths (Figure S2 in Multimedia
Appendix 1).

Table 2. Baseline characteristics of intensive care unit (ICU) survivors and nonsurvivors with paralytic ileusa (N=863).

Categories Overall
Survivor
(n=706)

Nonsurvivor
(n=157) P value

Sex (male), n (%) 575 (66.6) 469 (66.4) 106 (67.5) .87
Age (y), median (IQR) 65.4 (54.6‐75.5) 65.3 (54.1‐75.4) 66.1 (56.0‐75.9) .29
Race, n (%) 1.00
  White 576 (66.7) 471 (66.7) 105 (66.9)
  Others 287 (33.3) 235 (33.3) 52 (33)
Comorbidities, n (%)
  CHFb 220 (25.5) 169 (23.9) 51 (33) .03
  Renal disease 194 (22.5) 149 (21.1) 45 (29) .05
  Malignant cancer 161 (18.7) 123 (17.4) 38 (24) .06
  Sepsis 282 (32.7) 187 (26.5) 95 (61) <.001
  Diabetes 226 (26.2) 188 (26.6) 38 (24) .60
  Hypertension 355 (41.1) 308 (43.6) 47 (30) .002
Vital signs, median (IQR)
  RRc (breaths/min) 18.8 (16.4‐21.9) 18.4 (16.3‐21.4) 20.5 (17.6‐23.9) <.001
  MBPd (mmHg) 73.9 (68.6‐81.8) 74.6 (69.4‐82.4) 71.4 (66.4‐77.5) <.001
  Heart rate (bpm) 89.2 (79.2‐103) 88.6 (78.6‐102) 92.5 (80.9‐105) .03
  SpO2e (%) 97.0 (95.5‐98.4) 97.2 (95.7‐98.4) 96.2 (94.8‐98.1) <.001
Laboratory test, median (IQR)
  WBCf (K/µL) 12.8 (9.15‐18.0) 12.6 (9.20‐17.7) 14.0 (8.90‐19.7) .10
  RDWg (%) 15.0 (13.9‐16.6) 14.9 (13.8‐16.3) 16.4 (14.5‐17.6) <.001
  Platelet (K/µL) 176 (113‐235) 180 (121‐237) 147 (67.0‐227) .001
  Hemoglobin (g/dL) 9.60 (8.40‐11.0) 9.70 (8.40‐11.1) 9.11 (8.20‐11.0) .04
  Anion gap (mmol/L) 14.0 (12.0‐17.0) 14.0 (12.0‐16.0) 15.0 (13.0‐18.0) <.001
  BUNh (mg/dL) 21.0 (14.0‐34.0) 20.0 (14.0‐31.0) 31.0 (18.0‐41.9) <.001
  Creatinine (mg/dL) 1.10 (0.80‐1.60) 1.00 (0.80‐1.50) 1.30 (0.90‐1.80) <.001
  Calcium (mg/dL) 8.10 (7.70‐8.60) 8.11 (7.70‐8.60) 8.00 (7.50‐8.50) .04
  Chloride (mEq/L) 105 (101‐109) 105 (101‐109) 104 (99.0‐109) .16
  Sodium (mEq/L) 138 (135‐141) 138 (136‐141) 138 (134‐141) .14
  Potassium (mEq/L) 4.20 (3.80‐4.50) 4.10 (3.73‐4.50) 4.20 (3.80‐4.70) .23
Severity scores, median (IQR)
  SAPS IIi 37.0 (30.0‐47.0) 35.0 (28.0‐43.0) 47.0 (37.0‐56.0) <.001
  OASISj 33.0 (27.0‐39.5) 32.0 (27.0‐39.0) 36.0 (30.0‐44.0) <.001
  APS IIIk 47.0 (35.0‐63.5) 44.0 (33.0‐58.0) 68.0 (50.0‐77.4) <.001
  SOFAl 2.00 (1.00‐5.00) 2.00 (1.00‐4.00) 4.00 (2.00‐6.27) <.001
  CCIm 5.00 (3.00‐7.00) 5.00 (3.00‐7.00) 6.00 (4.00‐8.00) <.001
Medication, n (%)
  Ondansetron 475 (55.0) 413 (58.5) 62 (40) <.001
  Neostigmine 101 (11.7) 96 (14) 5 (3) <.001

aContinuous data are presented as median (IQR), whereas categorical data are presented as frequency (%).
bCHF: congestive heart failure.
cRR: respiratory rate.
dMBP: mean blood pressure.
eSpO2: saturation of peripheral oxygen.
fWBC: white blood cell.
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g RDW: red cell distribution width.
hBUN: blood urea nitrogen.
iSAPS II: Simplified Acute Physiological Score II.
jOASIS: Oxford Acute Severity of Illness Score.
kAPS III: Acute Physiology Score III.
lSOFA: Sequential Organ Failure Assessment.
mCCI: Charlson Comorbidity Index.

Primary Outcomes
Kaplan-Meier survival analyses showed that patients with
higher CCI scores had a significantly higher risk of hospital,
28-day, and 90-day all-cause mortality (Figure 2). ROC curve
analyses assessed the clinical efficacy of the CCI (Figure S3
in Multimedia Appendix 1) and showed that the AUCs of
the CCIs were all greater than 0.5, which to some extent
discriminated patients who died in hospital, ICU, 28-day, and

90-day from those who did not (AUC for hospital deaths:
0.631, odds ratio [OR] 1.17, 95% CI 1.10‐1.24, P<.001; AUC
for ICU deaths: 0.58, OR 1.10, 95% CI 1.02‐1.20, P=.02;
28-day death AUC: 0.678, OR 1.24, 95% CI 1.17‐1.32,
P<.001; 90-day ICU death AUC: 0.687, OR 1.27, 95% CI
1.20‐1.34, P<.001). The optimal CCI cut-off for hospital,
ICU, 28-day, and 90-day death was 4.5.

Figure 2. Kaplan-Meier survival curves for all-cause hospital, intensive care unit (ICU), 28-day, and 90-day mortality in ICU patients with paralytic
ileus. Charlson Comorbidity Index quartiles were defined as Q1 (0‐3), Q2 (3–5), Q3 (5–7), and Q4 (7–14). Panels show cumulative probability of
all-cause mortality at (A) hospital, (B) ICU, (C) 28-day, and (D) 90-day follow-up.

Cox regression analysis was used to assess the association
between CCI and in-hospital mortality. The results showed
that when CCI was a continuous variable, CCI was a
significant risk factor in the unadjusted model (hazard ratio

[HR] 1.159, 95% CI 1.099‐1.222; P<.001), the partially
adjusted model (HR 1.158, 95% CI 1.088‐1.233; P<.001),
and the fully adjusted model (HR 1.204, 95% CI 1.099‐1.319;
P<.001). When CCI was the ordinal variable, patients in
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higher quartiles of CCI were significantly associated with a
higher risk of in-hospital death compared with participants
in the lowest quartile in all 3 established Cox regression
analysis models: unadjusted model (HR 3.124, 95% CI
1.945‐5.017; P<.001), partially adjusted model (HR 2.950,
95% CI 1.708‐5.097; P<.001), and fully adjusted model (HR
2.447, 95% CI 1.210‐4.951; P=.01) and showed an increasing
trend with increasing CCI (Table 3 and Figure 3A). Similar
results were observed in multivariate Cox regression analyses

for 28-day mortality (Table 3 and Figure 3) and 90-day
mortality (Table S3 in Multimedia Appendix 1; Figure 3),
but less favorable results were observed in multivariate Cox
regression analyses for CCI and ICU mortality (Table S3 in
Multimedia Appendix 1; Figure 3). In addition, the use of an
RCS regression model showed a linear increase in the risk of
hospital, ICU, 28-day, and 90-day mortality with increasing
CCI (nonlinear P values of .73, .87, .64, and .29, respectively;
Figure 3).

Table 3. Cox proportional hazard ratios (HRs) for all-cause hospital and 28-day mortality in intensive care unit (ICU) patients with paralytic ileus.
Categories Model 1a Model 2b Model 3c

HR
(95% CI) P value

P for
trend

HR
(95% CI) P value

P for
trend

HR
(95% CI) P value

P for
trend

Hospital mortality

Continuou
s variable

1.159 (1.099‐1.222) <.001 1.158 (1.088‐1.233) <.001 1.204 (1.099‐1.319) <.001

  Per unit
quartiled

<.001 <.001 .01

   Q1
(n=190)

Ref Ref

   Q2
(n=162)

1.936 (1.196‐3.135) .007 1.868 (1.119‐3.117) .02 1.442 (0.832‐2.499) .19

   Q3
(n=159)

2.091 (1.254‐3.487) .004 2.003 (1.140‐3.518) .02 1.643 (0.857‐3.149) .14

   Q4
(n=170)

3.124 (1.945‐5.017) <.001 2.950 (1.708‐5.097) <.001 2.447 (1.210‐4.951) .01

28-day mortality

Continuou
s variable

1.202 (1.143‐1.264) <.001 1.237 (1.166‐1.311) <.001 1.255 (1.154‐1.366) <.001

  Per unit
quartiled

<.001 <.001 <.001

   Q1
(n=190)

Ref Ref

   Q2
(n=162)

2.315 (1.398‐3.833) .001 2.683 (1.567‐4.594) <.001 1.849 (1.054‐3.245) .03

   Q3
(n=159)

3.035 (1.817‐5.069) <.001 3.660 (2.087‐6.427) <.001 2.375 (1.256‐4.493) .008

   Q4
(n=170)

4.563 (2.833‐7.349) <.001 5.668 (3.267‐9.833) <.001 3.891 (1.956‐7.740) <.001

aModel 1: unadjusted.
bModel 2: unadjusted.
cModel 3: adjusted for sex, age, congestive heart failure (CHF), renal disease, malignant cancer, sepsis, diabetes, hypertension, respiratory rate (RR),
saturation of peripheral oxygen (SpO2), white blood cell (WBC), red blood cell distribution width (RDW), platelets, anion gap, blood urea nitrogen
(BUN), creatinine, Simplified Acute Physiological Score II (SAPS II), Oxford Acute Severity of Illness Score (OASIS), Acute Physiology Score III
(APS III), Sequential Organ Failure Assessment (SOFA), and Charlson Comorbidity Index (CCI).
dCCI: Q1 (0‐3), Q2 (3–5), Q3 (5–7), Q4 (7–14)
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Figure 3. Hazard ratios (HRs) and restricted cubic spline curves for all-cause mortality from Charlson Comorbidity Index (CCI) after adjustment
for confounders. All models were adjusted for multiple confounders, including sex, age, congestive heart failure (CHF), renal disease, sepsis,
hypertension, diabetes, white blood cell count, red blood cell distribution width, anion gap, creatinine, and CCI. The bar graph shows the HRs
for all-cause mortality between different CCI quartiles, with the CIs for each group. The first quartile of CCI is the reference group to which the
other quartiles are compared. The central thick solid line represents the estimated HR after adjustment, the shaded area represents the CIs, and the
horizontal dashed line represents the HR of 1.0. The vertical dashed line corresponds to the CCI value where the HR is 1.0. (A) Hospital mortality:
the vertical dashed line corresponds to a CCI value of 3.65. (B) Intensive care unit (ICU) mortality: the vertical dashed line corresponds to a CCI
value of 2.68. (C) 28-day mortality: the vertical dashed line corresponds to a CCI value of 4.47. (D) 90-day mortality: the vertical dashed line
corresponds to a CCI value of 4.39.

Subgroup Analysis
Subgroup analyses by sex, age, CHF, malignancy, sepsis, and
diabetes showed no interaction (all interactions P>.05), that
is, the association between CCI and the risk of all-cause

hospital mortality did not change with changes in the
stratification variables of sex, age, CHF, malignant cancer,
sepsis, and diabetes levels (Figure 4).
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Figure 4. Subgroup analyses of the association between Charlson Comorbidity Index (CCI) and all-cause mortality in intensive care unit (ICU)
patients with paralytic ileus. (A) Hospital mortality. (B) ICU mortality. (C) 28-day mortality. (D) 90-day mortality. CHF: congestive heart failure;
HR: hazard ratio.

Sensitivity Analysis
Table S4 in Multimedia Appendix 1 shows that the associa-
tion between CCI and mortality outcomes in patients with PI
remained stable and similar after excluding patients who died
within 3 days of ICU admission.

Table S5 in Multimedia Appendix 1 shows that the
sample was divided into groups of ≤4.5 and >4.5 based on
the optimal cut-off value for CCI. The results show that
regardless of the grouping method used, the conclusions
obtained are consistent with the results of the main analysis.

A further sensitivity analysis of the SOFA score for the
3 groups was performed. The analysis showed that for the
different subgroups of SOFA scores, consistent associations
were observed between CCI in the higher quartiles and
mortality from PI, supporting the stability of the findings
(Table S6 in Multimedia Appendix 1).

Feature Preselection for ML Models
Baseline characteristics of patients in the training and test
cohorts are shown in Table S7 in Multimedia Appendix
1. Figure S4 in Multimedia Appendix 1 shows the heat-
maps of all variables for which correlations are provided.
Because BUN and creatinine (r=0.69), SAPS II and APS III
(r=0.69) or OASIS (r=0.68), OASIS and APS III (r=0.62),
age and CCI (r=0.59), and chloride and sodium (r=0.66),
BUN, SAPS II, OASIS, age, and chloride were excluded in
the next step. In the training queue, the 3 ML algorithms
with default parameters and the LASSO algorithm preselected
the 10 features used to construct the model (Figure S5 in
Multimedia Appendix 1), with CCI ranking in the top 10 in
each algorithm. Importantly, there is no strong correlation or
multicollinearity between the selected features (Figure S6 in
Multimedia Appendix 1).
ML Model Construction and Evaluation
The best hyperparameters were determined after inputting
the selected features into the 11 ML models. Then, Figure
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5A is the confusion matrix of the LightGBM model, and
the ROC curves (Figure 5B) and other metrics (Figure 5C)
were evaluated among all the ML models. LightGBM was
considered the best model, outperforming other ML models
including random forest and extreme gradient boosting

model. This is because the internal validation results show
that it has the highest AUC (0.811), F1-score (0.895), and
geometric mean (0.670) and outperforms both the traditional
SOFA score and the APS III score (Table 4).

Table 4. Performance evaluation of 11 machine learning models for predicting hospital mortality in intensive care unit (ICU) patients with paralytic
ileus.
Model Accuracy Recall Precision F1-score Specificity Gmean AUC
SVMa 0.824 0.234 0.524 0.324 0.953 0.472 0.751
NNb 0.831 0.191 0.600 0.290 0.972 0.431 0.808
MLPc 0.793 0.277 0.394 0.325 0.907 0.501 0.745
GPd 0.828 0.149 0.583 0.237 0.977 0.381 0.807
GBMe 0.808 0.404 0.463 0.432 0.897 0.602 0.771
LRf 0.839 0.340 0.593 0.432 0.949 0.568 0.806
AdaBoostg 0.774 0.319 0.357 0.337 0.874 0.528 0.771
XGBoosth 0.824 0.213 0.526 0.303 0.958 0.451 0.799
RFi 0.824 0.255 0.522 0.343 0.949 0.492 0.774
KNNj 0.816 0.191 0.474 0.273 0.953 0.427 0.778
LightGBMk 0.824 0.875 0.916 0.895 0.514 0.670 0.811
APS IIIl 0.787 0.966 0.806 0.879 0.059 0.238 0.742
SOFAm 0.802 0.99 0.807 0.889 0.039 0.197 0.646

aSVM: support vector machine.
bNN: neural network.
cMLP: multilayer perceptron.
dGP: Gaussian process.
eGBM: gradient boosting machine.
fLR: logistic regression.
gAdaBoost: adaptive boosting.
hXGBoost: extreme gradient boosting.
iRF: random forest.
jKNN: k-nearest neighbor.
kLightGBM: light gradient boosting machine.
lAPS III: Acute Physiological Score III.
mSOFA: Sequential Organ Failure Assessment.
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Figure 5. (A) Machine-learning model development, evaluation, and feature importance visualization. Confusion matrix of the light gradient boosting
machine (LightGBM) model. (B) Receiver operating characteristic (ROC) curves of 11 machine-learning models. (C) Various evaluation metrics of
11 machine-learning models. (D) Feature importance plot of the LightGBM model. (E) Shapley Additive Explanations (SHAP) plot of the Charlson
Comorbidity Index (CCI) feature. (F) SHAP dependence plot of the CCI. AdaBoost: adaptive boosting; APS III: Acute Physiology Score III; AUC:
area under the curve; GP: Gaussian process; LR: logistic regression; KNN: k-nearest neighbor; MLP: multilayer perceptron; NN: neural network;
RDW: red blood cell distribution width; RF: random forest; RR: respiratory rate; SOFA: Sequential Organ Failure Assessment; SPO2: peripheral
capillary oxygen saturation; SVM: support vector machine; XGBoost: extreme gradient boosting.
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Visualization of Feature Importance
The corresponding SHAP values for each feature in the
internal validation cohort of the LightGBM model were
calculated and ranked (Figures 5D and 5E), and CCI
ranked third in significance compared to the other predictor
variables. The SHAP dependence plot of the CCI (Figure 5F)
showed that increased CCI was associated with an increased
risk of hospital death in patients with PI.

Web-Based Forecasting Platform
To improve the usability of the LightGBM model, it has
been embedded in a user-friendly website for external users
and practitioners to validate or make predictions [31]. This
prototype website allows users to input clinical variables
such as APS III, SOFA, Charlson Comorbidity Index, and
laboratory parameters (platelet, RDW, creatinine, and others)
to estimate mortality risk in patients with PI. It is intended
solely for research demonstration, does not replace clinical
judgment, and does not store any protected health informa-
tion. For example, Figure S7A in Multimedia Appendix 1
illustrates the case of a patient with PI aged 48 years with the
characteristics shown. The final output probability of hospital
all-cause mortality is 0.68, indicating a high risk status. This
website also allows you to view and download this patient’s
SHAP force plot, as shown in Figure S7B in Multimedia
Appendix 1.

Discussion
Principal Findings
This study analyzed the association between CCI and clinical
outcomes in a US cohort of critically ill patients with PI, with
the following key findings:

1. Higher levels of CCI were significantly associated with
hospital, 28-day, and 90-day all-cause mortality in
patients with PI. Even after correction for confounders,
CCI remained strongly correlated with these mortality
indicators, with a trend towards a linear relationship.
Our study suggests that the critical value of 4.5 for CCI
levels provides a potential reference for mortality risk
stratification, helping clinicians to identify high-risk
patients who require closer monitoring.

2. A LightGBM model was developed combining CCI and
other clinical variables beyond the traditional critical
illness score, and the results showed that CCI had a
higher weight and contribution in the model. Overall,
this study highlights the critical role of CCI in risk
stratification of mortality in critically ill patients with
PI, helping to optimize clinical management strategies.

CCI affects the prognosis of patients with PI through several
interrelated biological mechanisms. First, CCI reflects a
patient’s chronic disease burden, including conditions such
as diabetes, neurological disorders, and malignant cancer, all
of which increase all-cause mortality [5,6,8]. Chronic disease
states are associated with persistent low-grade systemic
inflammation, which can lead to endothelial dysfunction,
oxidative stress, and vasoactive imbalances, which in turn

exacerbate gut microcirculatory disturbances [32-34]. In
addition, patients with high CCI often have suppressed
immune function, as evidenced by decreased monocyte
human leukocyte antigen–DR isotype expression, T-cell
dysfunction, and prolonged immune paralysis, making them
more susceptible to infectious complications [35,36]. The
development of infection and sepsis can further exacerbate
intestinal dysbiosis [37], leading to a vicious cycle of
gut flora translocation and toxin release [38]. Dysbiosis
may also affect the function of the enteric nervous system
through abnormalities in short-chain fatty acid metabolism,
thereby prolonging the course of PI [39-41]. In addition,
patients with a higher CCI usually have a poor nutritional
status, as evidenced by hypoproteinemia, muscle wasting,
and inadequate metabolic reserve [42-44]. These factors
may lead to reduced contractile function of the intestinal
smooth muscle, delaying recovery of bowel function in PI
and increasing the risk of death [45,46]. Taken together,
CCI affects several key pathophysiological aspects of patients
with PI, including chronic inflammation, immunosuppres-
sion, impaired intestinal barrier function, and malnutrition.
The interaction of these mechanisms may explain why CCI
is an important predictor of mortality in patients with PI
and emphasizes the need for early detection and targeted
intervention.

This study found that higher CCI was significantly
associated with hospital, 28-day, and 90-day all-cause
mortality in patients with PI, highlighting the importance
of CCI in predicting the prognosis of critically ill patients.
Patients with PI are often accompanied by a variety of
comorbidities, such as diabetes mellitus and malignant cancer
[5,8], and CCI, as a standardized measure of comorbidity
burden, is effective in reflecting the systemic health status of
the patient and in revealing the potential impact of comorbid-
ities [9,10]. An international multicenter and subgroup bias
assessment study showed that the risk of death in elderly
critically ill patients increased with elevated CCI, emphasiz-
ing the profound prognostic impact of comorbidity accumula-
tion [11]. In addition, this study also found that the critical
value of CCI was 4.5 for hospital death, 28-day death, and
90-day death, a finding that further supports the important
role of CCI in the prognostic assessment of patients with
PI. There is no literature on the clinical value of CCI as
a prognostic assessment tool for patients with PI, and this
study is the first to explore and present this important finding.
Compared with a single physiological parameter or laboratory
index, CCI can provide more comprehensive information to
the clinic by comprehensively assessing multidimensional
health status, which may help in fine risk stratification and
individualized treatment.

However, Cox regression analyses showed that patients
with elevated CCI scores were associated with subopti-
mal ICU all-cause mortality outcomes after adjustment for
confounders, while Kaplan-Meier survival analyses indicated
that higher CCI scores were not significantly correlated with
ICU mortality in patients with PI. This may be explained by
the predominant role of acute care factors, such as the extent
of organ failure, the intensity of systemic inflammation, and
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the severity of infection, which often outweigh the prognos-
tic contribution of chronic disease burden in critically ill
patients. For instance, prospective studies have demonstra-
ted that inflammatory markers are associated with delirium,
coma, and increased mortality risk [47], and multicenter
cohort studies have further shown that inflammation and
organ dysfunction are key determinants of 90-day mortal-
ity in acute respiratory distress syndrome [48]. In addition,
intensive interventions commonly administered in the ICU,
including mechanical ventilation, hemodynamic support, and
renal replacement therapy, may mitigate the short-term
impact of chronic comorbidities on mortality outcomes [49-
51]. Thus, although the CCI remains a valuable tool for
assessing chronic disease burden and predicting outcomes
in hospitalized patients, its prognostic effect in ICU settings
may be attenuated by acute care factors or interventions.
Moreover, the relatively small sample size and low ICU
mortality rate in this study may have limited statistical power.
Future research should expand sample size and incorporate
additional acute clinical indicators (eg, inflammatory markers
and organ dysfunction scores) to further clarify the associa-
tion between CCI and ICU mortality.

RCS regression analysis in this study showed that the
level of CCI was significantly and linearly related to hospital
mortality, ICU mortality, and 28- and 90-day mortality.
Specifically, the threshold for hospital mortality was 3.65,
the threshold for ICU mortality was 2.68, and the thresh-
olds for 28-day and 90-day mortality were 4.47 and 4.39,
respectively. These results suggest that lower CCI values
(eg, thresholds for hospital and ICU mortality) indicate that
the acute course of illness may be the primary risk factor
for death, whereas higher thresholds reflect the importance
of chronic disease burden in long-term prognosis. Chronic
diseases, such as diabetes and malignant cancer, may have
little impact on patient survival in the short term, but over
time they progressively affect the patient’s immune system,
organ function, and overall health [52,53], and may increase
the risk of patient death in acute conditions, such as PI. Thus,
the impact of chronic disease burden on prognosis was more
pronounced during the 28- and 90-day observation periods,
and long-term patient survival was closely linked to effective
management of comorbidities. The results highlight the need
to closely monitor and adjust patients’ CCI levels in clinical
practice to optimize their short- and long-term prognosis.

Subgroup analyses showed no significant differences
between subgroups (sex, age, CHF, malignant cancer, sepsis,
and diabetes) in the effect of CCI on hospital, ICU, and
28-day and 90-day mortality. CCI levels have been shown
to be strongly associated with poor prognosis in patients
with CHF and malignant cancer [54,55]. Gadre et al [56]
concluded that CCI ≥2 is a high-risk factor for readmission
after sepsis hospitalization and may serve as an important
indicator of poor prognosis in sepsis. These findings highlight
the potential of CCI in a wide range of patient populations.
Notably, in the sensitivity analysis of this study, the associa-
tion between CCI and mortality outcomes in patients with PI
remained stable and similar after excluding patients who died
within 3 days of ICU admission. In addition, based on the

optimal cut-off value of 4.5 for CCI grouping, the results
obtained were consistent with the results of the primary
analysis, further validating the reliability of CCI for predict-
ing mortality. Finally, 3-group sensitivity analyses on SOFA
scores were performed, and consistent associations between
CCI and mortality were observed in the higher quartiles,
supporting the stability and consistency of the findings. These
sensitivity analyses demonstrate the strong robustness of CCI
in predicting mortality in patients with PI under different
subgroups and assumptions.

This study successfully developed and validated an ML
model incorporating CCI for predicting hospital mortality
in patients with PI. A total of 10 features were selected
by a combination of LASSO and other ML algorithms, of
which CCI ranked high in all algorithms, indicating the
importance of CCI in predicting hospital mortality. This is
similar to previous studies, many of which have demonstrated
the importance of CCI in predicting mortality in a vari-
ety of patient populations, particularly critically ill patients
[11,54,55]. This result is also consistent with the results
of our previous Cox regression analysis. The performance
of the ML model, SOFA [57] and APS III score [58],
was evaluated by several metrics such as confusion matrix,
ROC curve, and F1-score. It was found that the LightGBM
algorithm outperformed other ML models, traditional SOFA
and APS III scoring systems, achieving an AUC of 0.811 and
an F1-score of 0.895, demonstrating its excellent predic-
tive ability. These results are consistent with a growing
body of literature showing that LightGBM has significant
advantages in clinical prediction tasks, for example, Chen
et al [20] concluded that LightGBM models outperform ML
models such as random forest and support vector machines
in predicting mortality in critically ill patients with atrial
fibrillation. Feature importance analysis further highlighted
the critical role of CCI in predicting mortality. SHAP
value analysis, an interpretable ML technique, revealed that
increasing CCI was associated with a higher risk of death
in patients with PI, a finding consistent with the known
association between comorbidities and patient prognosis
[11,59]. The biased dependency plot also confirmed that
increasing CCI values were associated with an increased risk
of all-cause hospital mortality, further confirming its clinical
relevance. Interpretable ML provides a more transparent
model decision process and helps clinicians better understand
the impact of features on predicted outcomes [60,61]. Razo
et al [23] constructed a predictive model using deep learn-
ing and obtained an AUC of 0.887. However, because the
predictive goal of this model is different from that of our
study, it is not possible to directly compare the performance
of the 2 models.
Strengths and Limitations
This study has several important strengths. First, it provides
validation that elevated CCI is an independent risk factor
for short- and long-term mortality in critically ill patients
with PI in a large US cohort. While prior studies have
applied ML approaches to predict mortality in this popula-
tion using the MIMIC database [23], our work extends these
efforts by systematically evaluating the prognostic value of

JMIR MEDICAL INFORMATICS Feng et al

https://medinform.jmir.org/2025/1/e76003 JMIR Med Inform 2025 | vol. 13 | e76003 | p. 14
(page number not for citation purposes)

https://medinform.jmir.org/2025/1/e76003


comorbidity burden as captured by the CCI. Second, this
study methodologically advances by integrating CCI into
a LightGBM-based ML framework and combining it with
SHAP interpretability analysis. Finally, in practical terms,
this web-based platform can be applied at the time of
ICU admission to rapidly identify patients with PI at high
risk of mortality, thereby supporting early triage, intensified
monitoring, and timely interventions. By providing individu-
alized risk estimates together with SHAP-based explanations,
the tool not only enhances transparency of the prediction
process but also facilitates communication between clinicians
and patients’ families. Importantly, the model is designed
to complement, rather than replace, physician judgment, and
thus may serve as a practical decision-support tool within
routine ICU workflows.

However, this study has some limitations. First, although a
higher CCI was significantly associated with hospital, 28-day,
and 90-day all-cause mortality in patients with PI, as a
composite scoring tool, CCI still did not cover all clinical
factors that may affect prognosis, such as B-type natriuretic
peptide level, etiology of PI, individual patient differences,
nutritional status, and cause of death. These factors not
included in the analysis may have a significant impact on
the risk of death, thus introducing a potential confounding
bias. Second, given the retrospective design of this study, we
could only identify associations between variables and not
infer causality. Although there was a significant association
between CCI and all-cause mortality, this does not mean that
CCI was the direct cause of death. Third, CCI is mainly
based on patients’ past medical history and does not take into
account dynamic changes during the course of the disease,
which may lead to limitations in capturing the complexity
of the disease and the comprehensiveness of prognostic
assessment. Fourth, although the ML-based LightGBM model

performed well in internal validation, the absence of external
validation using independent datasets (eg, eICU or non-US
cohorts) limits its generalizability to broader populations.
Fifth, given the multiple disease states and comorbidities
of patients with PI, the model may be overly dependent
on certain specific variables, ignoring complex interactions
that may affect prognosis. Although multiple characteristics
were included, the interactions between disease progression
and comorbidities may not have been adequately considered.
Future studies should improve the modeling of interactions
between variables and dynamic factors to improve the
accuracy of prognosis prediction. Sixth, although mortality
was used as the primary end point in this study, consider-
ing the complexity of the prognosis of patients with PI,
a single mortality indicator may not be able to comprehen-
sively assess the health status and quality of life of patients.
Therefore, future studies should explore more dimensional
prognostic indicators, such as functional recovery, quality
of life, and long-term survival, to provide a more compre-
hensive prognostic assessment. In conclusion, although CCI
and ML-based models show promise in predicting mortality
in critically ill patients with PI, their limitations need to be
fully recognized in practical applications and combined with
external validation data and dynamic clinical information to
improve their clinical use and accuracy.
Conclusions
This study demonstrated that higher CCI levels were strongly
associated with hospital, 28-day, and 90-day all-cause
mortality in patients with PI and were valuable in mortality
risk stratification. Monitoring CCI levels in patients with PI
in the ICU may be useful for early identification of high-risk
patients and optimization of treatment strategies.
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