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Abstract

Background: Sarcopeniaisacommon muscle disorder inolder adults, and its early identification and management in middle-aged
populations are essential for ensuring a healthier later life. Detecting sarcopenia at an earlier stage may reduce the future burden
on health care systems and enhance the quality of lifein older adults. Machine learning (ML) models can eval uate | arge datasets,
identify essential variables, and find complicated correlations between input variables. However, using ML models to detect
sarcopenia remains an unsatisfied need.

Objective: This study aimed to develop and externally validate an ML model to predict sarcopenia risk among middle-aged
adults using a nationally representative dataset.

Methods: We analyzed data from 1926 participants aged 40 to 64 years and enrolled in the 2022 Korea National Health and
Nutrition Examination Survey (KNHANES). Sarcopenia was diagnosed and defined based on the 2019 Asian Working Group
for Sarcopenia criteria, which incorporate both low muscle mass and reduced muscle strength. Muscle mass was assessed using
bioelectrical impedance analysis with cutoffs of <7.0 kg/m? for men and <5.7 kg/m? for women. Muscle strength was measured
viahandgrip strength using adigital dynamometer with thresholds of <28 kg for men and <18 kg for women. Participants meeting
both criteria were classified as those with sarcopenia. Four ML algorithms, random forest, support vector machine, extreme
gradient boosting, and logistic regression, were used to identify risk factors of sarcopenia and predict its likelihood. The
top-performing model was subsequently validated in an external cohort of 2247 middle-aged adults from the 2023 KNHANES.
Model performance was assessed using the F,-score, area under the curve of a receiver operating characteristic curve, and
sensitivity. All analyses were conducted using Python 3.13.2 (Python Software Foundation).

Results:  Among the 4 models, the logistic regression model demonstrated the strongest performance, yielding an area under
the curve of 0.85, a sensitivity of 0.92, and an F,-score of 0.66. External validation using the 2023 KNHANES dataset confirmed
the model’s robust performance, indicating its potential for widespread applications.

Conclusions: This study developed and externally validated an ML model that accurately identified sarcopeniain middle-aged
adults. Leveraging data from a comprehensive national survey, our findings underscore the significance of early detection and
customized interventions in midlife to mitigate sarcopenia risk and optimize long-term health outcomes.

(JMIR Med Inform 2025;13:e75760) doi: 10.2196/75760
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Introduction

Sarcopenia is increasingly recognized as a significant muscle
disease characterized by progressive and generalized loss of
skeletal muscle mass and function, resulting in an elevated
susceptibility to falls, fractures, infections, cardiovascular
diseases, disability, and mortality [1].

In 2019, both the European Working Group on Sarcopenia in
Older People[2] and the Asian Working Group for Sarcopenia
(AWGS) [1] updated their definitions to emphasize the clinical
importance of low muscle strength and function and reduced
muscle mass.

Various causes for early-life sarcopenia have been identified,
and the gap between sarcopenia progression and normal
processes starts early in life [3-5]. The loss of muscle mass
occurs as early as age 55 years in men and 45 years in women
[6]. Midlife is also a period commonly associated with the
emergence or escalation of chronic diseases and metabolic
syndrome, which can further exacerbate muscle loss and
functional decline. Skeletal muscle mass declines by about 6%
every decade beyond middle age. Sarcopenia has a prevalence
of up to 29% in middle-aged adults depending on the diagnostic
criteriaused [7]. Increased hospitalization expenditures due to
sarcopeniaare considerably greater in patients younger than 65
years than in those older than 65 years [8]. In addition,
sarcopenia develops gradually and without obvious signs until
a substantial decrease in muscle function occurs. Therefore, it
is critical to detect risk factors for early sarcopenia in
middle-aged adults. Neverthel ess, the majority of risk prediction
modelsfor sarcopeniahave been created to work for older adults
because sarcopenia is a severe form of senescence that only
affects older people [3,7]. Thus, these prediction models have
restricted use in midlife populations. This gap emphasizes the
importance of developing and validating new, data-driven
modelsfor early detection and intervention, promoting healthier
trajectories into retirement and beyond.

Machine learning (ML) models can evaluate large datasets,
identify essential variables, and find complicated correlations
between input variables, making them practical tools for
predicting health outcomes [9]. Clinical prediction models that
use ML alow for integrating many elements to predict
individual outcomes, providing deeper insightsinto disease risk
determinants and enhancing prognosis precision [10].
L everaging datafrom apopul ation-based Korea National Health
and Nutrition Examination Survey (KNHANES), this study
aimed to provide areliable, generalizable ML-based tool that
can beintegrated into clinical or public health settingsfor early
detection and intervention in sarcopeniafor middle-aged adults.
The findings of this study could help develop approaches for
improving the management and treatment of sarcopenia.
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This direction is substantiated by growing evidence indicating
that the risk factors for sarcopenia vary meaningfully across
different age groups [4,11]. Specifically, our findings suggest
that low body weight and insufficient protein intake are more
influential in middle-aged adults, whereas sarcopenic obesity
patterns are more frequently reported in older adults [12,13].
These distinctions highlight the need for age-specific prediction
models throughout the course of life.

Methods

Datasets

The data for this study were obtained from the KNHANES, a
nationwide dataset compiled by the Korea Ministry of Health
and Welfare to investigate the nutritional and overall health
status of the general public since 1998. Since 2007,
cross-sectional datasets of around 10,000 people have been
produced annually by stratified multilevel cluster sampling to
ensure the representativeness of samplesand alow the findings
of research to be combined [14]. In this study, we categorized
all selected variables into four domains to improve clarity and
interpretability: (1) demographic variables (eg, age, gender,
education level, marital status, and residence), (2) clinical
variables (eg, BMI category, hypertension, diabetes mellitus,
hypercholesterolemia, high-sensitivity C-reactive protein
(hs-CRP), number of comorbid conditions, and subjective hedlth
perception), (3) health behavioral variables (eg, current smoking,
current alcohol use, average sitting time per day, proteinintake,
and weekly aerobic and strength exercise participation), and (4)
psychological variables (eg, perceived stress and generalized
anxiety) based on the Generalized Anxiety Disorder-7 (GAD-7)
score. A complete list of these variables and their distributions
is provided in Table 1. Feature selection was guided by a
combination of theory-driven rationale and data-driven
evaluation. Initialy, variables were selected based on their
clinical relevance to sarcopenia as supported by existing
literature. Subsequently, model-based methods, including
L1-regularized logistic regression (LR) and recursive feature
elimination, were used to refine the feature set based on
contribution to model performance. To refine variable selection
beyond theoretical rationale, we applied L 1-regularized LR and
recursive feature elimination as supplementary strategies. These
approaches helped identify variables that consistently
contributed to model performance while maintaining
interpretability. Because KNHANES measurement items differ
dightly from year to year, we only used datasets from years
that included measurements of al relevant features (2022: test
and training set; 2023: external validation set). We examined
data of middle-aged adults (aged 19-64 years) from 1926
participants in 2022 and 2247 in 2023 in this study. After
excluding participants who were missing variables, 1119
participantsin 2022 and 1359 in 2023 wereincluded in the final
analysis (Multimedia Appendix 1).
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Table 1. Baseline population characteristics of middle-aged adults from the 2022 Korea National Health and Nutrition Examination Surveys (N=1119).

Variables Nonsarcopenia, n=894 Sarcopenia, n=135 P
Age (years), mean (SD) 54.85 (5.70) 56.61 (5.46) <.001
Protein intake (g/day), mean (SD) 69.94 (32.54) 61.76 (27.12) .002
hs-CRPA (mg/L), mean (SD) 1.30(3.79) 1.84 (7.99) 44
Sitting time per day (hours), mean (SD) 8.42 (5.24) 8.29 (3.27) .69
BMI category, n (%) <.001
Low weight 3(0.3) 14 (10.4)
Normal 277 (28.2) 110 (81.5)
Preobesity 247 (25.1) 9(6.7)
Obesity 457 (46.4) 2(L5)
Subjective health perceptionb, n (%) 59
1 33(3.4) 7(5.2)
2 279 (28.4) 33(24.4)
3 498 (50.6) 66 (48.9)
4 160 (16.3) 27 (20)
5 14 (1.4) 2(19)
Current smoking, n (%) .68
No 813 (82.6) 109 (80.7)
Yes 171 (17.4) 26 (19.3)
Current alcohol use, n (%) .007
No 457 (46.4) 80 (59.3)
Yes 527 (53.6) 55 (40.7)
Anxiety, n (%) 74
Low 945 (96) 131(97)
High 39(4) 4(3
Perceived stress, n (%) .50
Low 752 (76.4) 99 (73.3)
High 232 (23.6) 36 (26.7)
Hypercholesterolemia, n (%) .63
No 623 (63.3) 82 (60.7)
Yes 361 (36.7) 53(39.3)
Hypertriglyceridemia, n (%) 46
No 824 (83.7) 117 (86.7)
Yes 160 (16.3) 18 (13.3)
Hypertension, n (%) <.001
Normal 381(38.7) 78 (57.8)
Caution stage 73 (7.4) 10(7.4)
Prehypertension 179 (18.2) 24 (17.8)
Hypertension 351 (35.7) 23 (17)
Diabetes, n (%) .01
Normal 435 (44.2) 78 (57.8)
Prediabetes 405 (41.2) 40 (29.6)
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Variables Nonsarcopenia, n=894 Sarcopenia, n=135 P
Diabetes 144 (14.6) 17 (12.6)

Number of comor bid conditions, n (%) .07
0 403 (41) 67 (49.6)
1-2 465 (47.3) 59 (43.7)
>3 116 (11.8) 9(6.7)

Marital status, n (%) .80
Married 928 (94.3) 126 (93.3)
Single 56 (5.7) 9(6.7)

Gender, n (%) .001
Male 430 (43.7) 38(28.1)
Female 554 (56.3) 97 (71.9)

Residence, n (%) .55
City 783 (79.6) 111 (82.2)
Rural 201 (20.4) 24 (17.8)

Education level, n (%) .29
Under elementary school 65 (6.6) 15(11.1)
Middle school 85 (8.6) 10(7.4)
High school 411 (41.8) 55 (40.7)
College or above 423 (43) 55 (40.7)

Weekly aerobic exercise participation, n (%) 27
No 522 (53) 79 (58.5)
Yes 462 (47) 56 (41.5)

Weekly strength exercise participation, n (%) A1
No 760 (77.2) 113(83.7)
Yes 224.(22.8) 22(16.3)

%hs-CRP: high-sensitivity C-reactive protein.
bRanked on a 5-point scale from 1 (very good) to 5 (very bad).

Variables

For the diagnosis of sarcopenia, AWGS 2019 maintained the
origina cutoffs in a sarcopenia diagnosis as a bioelectrical
impedance analysis <7.0 kg/m? in men and <5.7 kg/m? in
women [15]. Predictable variables included the following 4
categories: demographic variables, clinical variables, health
behavioral variables, and psychological variables. Demographic
variablesincluded age, gender, level of education, marital status,
and residence. Clinica variablesincluded hypertension, diabetes
mellitus, hypercholesterolemia, hypertriglyceridemia, anemia
by diagnosis or medication, hs-CRP, number of comorbid
conditions, BMI categories, and subjective health perception.
For clinical variables, BMI was included as an important
predictor of sarcopenia. BMI categories were classified
according to the World Health Organization Asia-Pacific criteria
adopted by the KNHANES as underweight (<18.5 kg/m?),
normal (18.5-22.9 kg/m?), overweight (23-24.9 kg/m?), and
obese (=25 kg/mg?). Subjective health perception, often measured
via a single self-rated health question, is a key indicator in
KNHANES and internationally. This variable was recorded as

https://medinform.jmir.org/2025/1/€75760

1 (very good) to 5 (very bad). Health behavioral variables
included current smoking, rate of alcohol drinking per month
(under 1 cup, O; over 1 cup, 1), sitting time per day, amount of
protein intake, aerobic exercise participation, and strength
exercise participation. Psychological variables included
perceived stress and generalized anxiety disorder evaluated
using the GAD-7 scale. Perceived stress assessed how strongly
respondents fedl stress in daily life from 1 (very high) to 4
(none). For reporting purposes, when analyzing the data,
KNHANEStypically collapses 1 and 2 together asahigh-stress
group and 3 and 4 as a low-stress group, deriving the variable
high perceived stress (yes or no) for analysis. The GAD-7 isa
self-report questionnaire with 7 items. Each item is scored on
a4-point Likert scale from O (not at al) to 3 (nearly every day),
yielding a total possible score from O to 21. Researchers
commonly create a binary variable for anxiety disorder (yes or
no) by using a cutoff of =10 on the total GAD-7 scale[16].

M odel Development

We sought to predict sarcopenia by first randomly partitioning
our dataset into training (75%) and test (25%) subsetsusing the
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2022 dataset and a stratified method to preserve the original
class distribution of sarcopenia. To enhance generalizability
and minimize overfitting, we applied 5-fold dtratified
cross-validation during model training. Thisapproach preserved
class distribution in each fold and ensured robust performance
evaluation across splits. Furthermore, to counteract class
imbalancein thetraining data, we applied the synthetic minority
over-sampling technique (SMOTE). Unlike simple random
oversampling, which merely duplicates existing minority-class
instances, SMOTE generates synthetic data points by
interpolating between similar minority samples, resulting in a
more generalized representation of the positive class. Following
SMQOTE, the number of sarcopenia-positive casesin thetraining
set achieved abalanced 1:1 ratio between positive and negative
classes. To prevent data leakage and ensure fair evaluation,
SMOTE was applied exclusively to the training dataset. The
test and external validation sets were left unaltered to reflect
real-world class distribution during evaluation.

M odel Evaluation and External Validation

We independently evaluated the predictive performance of 4
models using area under the curve (AUC), accuracy, precision,
recall, specificity, F;-score, and F,-score asthe primary metrics.
For external validation, the same 4 models were subsequently
tested on the 2023 dataset, and their predictive performances
were assessed and compared using the same evaluation criteria.
This approach facilitated a robust comparison of model
effectiveness acrossthe origina and external validation datasets.
Then, we conducted an original variable importance analysis
to evaluate each predictor's contribution to the model’s
performance because assessing the significance of input features
is critical in ML models [17]. In addition, a confusion
matrix—based comparison was conducted for the test set and
the external validation set. This method offers a detailed view
of each modd’s classification performance by explicitly
displaying true positives, false positives, true negatives, and
false negatives. By applying it to both data partitions, we could
directly assessthe consistency of model predictions and identify
misclassification patterns. This approach complements standard
summary metrics (eg, accuracy and precision) by illuminating
where errors occur, thereby enhancing the overall interpretability
and validating the generalizability of the models[18].

Data Analysis

All statistical analyses were performed with Python 3.9.13
(Python Software Foundation). All continuous variables were
standardized using z-score normalization, and categorical
variables were 1-hot encoded. To address extreme values,
particularly in hssCRP, which exhibited high skewness, we
applied percentile-based trimming by capping values at the 99th
percentile. This preprocessing strategy ensured comparability
across variables, mitigated theimpact of outliers, and enhanced
model stability. All continuous variables were normalized via
z-score standardization, and categorical variables were coded
as dummy features. A t test was performed to compare the
characteristics of the sarcopenia and nonsarcopenia groups.
Variables with P values of <.05 were defined as statistically
significant.
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To achieve our research objective of developing a fast and
accurate predictive model for sarcopenia diagnosis in
middle-aged adults, we conducted analyses as follows. Several
different ML models were selected and applied to determine
the model with the best accuracy and speed. We implemented
LR, atraditional statistical model, to compare its performance
with the relatively recently introduced ML models.
Hyperparameter tuning was performed using GridSearchCV
for LR and RandomizedSearchCV for tree-based models,
namely, random forest (RF) and extreme gradient boosting
(XGBoost). The tuning process aimed to optimize parameters
such as regularization strength, tree depth, and learning rate
based on validation performance. Moreover, we used several
ML algorithms, including support vector machine (SVM), RF,
and XGBoost. To support reproducibility, all datapreprocessing
and modeling steps have been documented in Multimedia
Appendix 1. A deidentified version of the analysis code will be
made publicly available via GitHub upon manuscript acceptance.

Ethical Consider ations

This study was approved by the Ethics Committee of Sunchon
National University (1040173-202503-HR-010-02).

Results

Population Characteristics

The study analyzed 1119 middle - aged adults, comprising 984
(88%) individuals in the group without sarcopenia
(nonsarcopenia group) and 135 (12%) in the group with
sarcopenia (sarcopenia group). As shown in Table 1, the mean
age was significantly higher in the sarcopenia group (mean
56.61, SD 5.46 years) than in the nonsarcopenia group (mean
54.85, SD 5.70 years, P<.001); protein levels differed
significantly between the groups (sarcopeniagroup: mean 61.76,
SD 27.12 g/day; nonsarcopenia group: mean 69.94, SD 32.54
g/day; P=.002). Obesity was more prevalent in the
nonsarcopenia group (n=457, 46.4%) than in the sarcopenia
group (n=2, 1.5%; P<.001). Conversely, the proportion of low
weight individuals was much higher in the sarcopenia group
(n=14, 10.4%) than in the nonsarcopenia group (n=3, 0.3%).
Health behavioral and psychosocia factors, such as current
smoking (P=.68) and stress (P=.50) did not differ significantly
between the 2 groups; however, drinking status did (P=.007).
Gender showed anotable association (P=.001), with individuals
with sarcopenia more likely to be female (n=97, 71.9%) than
male (n=38, 28.1%). Hypertension (P<.001) and diabetes status
(P=.011) aso differed significantly between the 2 groups. Other
variables, including hs- CRP, sitting time, anxiety,
hypercholesterolemia, and hypertriglyceridemia, were not
significantly different between the 2 groups. Marriage status
(P=.80), residence (P=.55), aerobic exercise participation
(P=.27), and strength exercise participation (P=.11) similarly
showed no statistical differences between the sarcopenia and
nonsarcopenia groups.

Model Evaluation and External Validation

Figure 1 and Table 2 show that in comparing 4 ML models for
predicting sarcopenia, LR demonstrated the most stable
performance in the test set, with an AUC of 0.82, an F,-score
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of 0.64, and a sensitivity of 91%. Notably, its high sensitivity
and F,-score for the minority class (patients with sarcopenia)
suggest a strong potential for clinical application. In contrast,
SVM, RF, and XGBoost exhibited extremely high performance
on the training set but significant drops in F,-score in the test

Chong

set, indicating a risk of overfitting. Their sengitivities ranged
from 24% to 29% in the test set, reflecting limited practical
utility in detecting sarcopenia. Given its consistent performance
across the training and test sets, along with advantages in
identifying the minority class, LR was selected as the final

predictive model in this study.

Figure 1. The receiver operating characteristic (ROC) curves of the predictive models. AUC: area under the curve; SVM: support vector machine;

XGBoost: extreme gradient boosting.
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Table 2. Model evaluation metrics.

Chong

Metric Logistic ~Random gypm2  XG- Logitic ~Random SVM XG- Logistic Random SVM XG-
regres- forest (train- Bood  regres forest (evalua- Boost(eval- regress forest (vaida- Boost(vali-
sion (rain- jpg) (train-  Sion (evalua-  tion) uation) sion (valida- tion) dation)
(training)  ing) ing) (evalua-  tion) (valida- tion)

tion) tion)

AUCE 0.850 10 0.999 1.000 0.825 0.797 0.809 0.826 0.798 0.743 0.764 0.521

Accuracy  0.746 10 0.995 0.993 0.721 0.864 0.839 0.825 0.748 0.141 0.840 0.141

Fi-score  0.466 10 0.981 0.970 0.443 0.321 0.262 0.290 0.486 0.246 0.264 0.246

Fo-score  0.662 10 0.992 0.970 0.640 0.283 0.245 0.292 0.653 0.450 0.225 0.450

Precision  0.312 10 0.962 0.970 0.292 0.409 0.296 0.286 0.340 0.141 0.375 0.141

Recall 0.921 10 1.000 0.970 0.912 0.265 0.235 0.294 0.848 1.000 0.204 1.000

(sensitivi-

ty)

Specificity 0.722 10 0.995 0.996 0.695 0.947 0.923 0.898 0.731 0.000 0.944 0.0000

83V M: support vector machine.
bX GBoost: extreme gradient boosting.
CAUC: area under the curve.

In externa validation, LR exhibited stable and consistent results
across the training, test, and external validation sets. Notably,
it achieved an AUC of 0.80, sensitivity of 0.85, and F,-score
of 0.65 in the validation dataset, indicating the most balanced
capability for detecting the clinically significant minority class.
In contrast, RF and XGBoost showed extremely high
performance in the training set (AUC 1.00), yet demonstrated
severe overfitting during validation, with a sensitivity of 1.00
but a specificity of 0.00, predicting all cases as patients.
Although SVM achieved ahigh specificity of 0.94, its sensitivity
was only 0.20 in the validation set, revealing limited utility for

actual patient detection. These observations support that LR
should be selected as the final predictive model in this study.

Model Interpretation

Table 3 shows the top ten important variables. Using the LR
coefficients, we evaluated each predictor’s importance by
aggregating dummy-coded levelsinto the original variable units
and calculating the mean absolute coefficient values. Obesity
emerged as the most critical predictor, indicating the strongest
association with sarcopeniarisk in thismodel. Age and protein
intake were also identified asinfluential factors.

Table 3. Top10 important variables based on the mean of absolute |ogistic regression coefficients across dummy-coded variables. This table represents

the relative contribution of predictors to the model.

Variable |Coefficient|, mean (SD)
Obesity 0.84, 0.41 (0.50)

Age 0.44, 55.06 (5.70)
Protein 0.39, 68.95 (32.04)
Drinking 0.14, 0.52 (0.50)

Hypercholesterolemia
Gender

Subjective health perspective
Comorbidity

Anxiety

Hypertension

0.14, 0.37 (0.48)
0.12, 0.42 (0.49)
0.12, 2.85 (0.79)
0.08, 0.58 (0.49)
0.08, 0.04 (0.19)
0.08, 0.33 (0.47)

Figure 2 presents the confusion matrices for the LR model in
the test set (left panel) and external validation set (right panel).
Inthetest set, asensitivity (recall) of 91.2% (true positives=31,
false negatives=3) and a specificity of 69.5% (true
negatives=171, false positives=75) were achieved, suggesting
that the model correctly identifies a high proportion of
sarcopenia cases and maintains reasonable accuracy in
classifying nonsarcopenia instances. A similar pattern was

https://medinform.jmir.org/2025/1/€75760

observed in the validation set, with a sensitivity of 84.8% (true
positives=162, false negatives=29) and a specificity of 73.1%
(true negatives=854, false positives=314). Theseresultsindicate
that the model generalizeswell, maintaining stable classification
performance when applied to external data. Although SMOTE
was applied only to the training set, we acknowledge that class
imbalance remained in the test and validation datasets.
Nonetheless, the LR model maintained high sensitivity and a
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stable AUC, suggesting good generalizability even under
imbalanced evaluation conditions.

Table 4 provides acritical comparison of sarcopeniaincidence
across predicted risk categories (low, medium, high) in the test
set and the external validation set, visually demonstrating the

Figure 2. Confusion matrix for the logistic regression model.

Confusion matrix — test set

True Label

Predicted label

Chong

consistent classification performance and clinical applicability
of the LR model. In the high-risk group, sarcopeniaincidence
was 29.2% in the test set and 30.8% in the validation set,
reflecting a high degree of consistency and underscoring that
the risk dtratification threshold effectively functions in a
clinically meaningful way.

Confusion matrix — validation set

314

True Label

Predicted label

Table 4. Observed sarcopeniaincidence rate by risk group in the logistic regression model.

Predicted risk group Test set Validation set
Low 1.7 0.0
Medium 0.0 5.9
High 29.2 30.8
: : By ducidating how individual variables contribute to sarcopenia
Discussion y g P

Principal Findings

The primary objective of thisstudy wasto develop an ML -based
model for predicting sarcopenia in middle-aged adults and to
identify the optimal model among various agorithms. As a
result, our study demonstrated that an ML-based risk prediction
model, particularly using LR, can reliably identify sarcopenia
in middle-aged adults. The LR model showed strong and
consistent performanceininternal testing and external validation
(AUC range 0.80-0.85), underscoring its clinical applicability
for early detection. One notable strength of this model is that
its coefficients allow us to discern both the direction (positive
or negative) and the relative magnitude of each variable's
impact, thereby providing more than just strong predictive
capabilities. Whileinterpretation tools, such as Shapley additive
explanationsand local interpretable model agnostic explanation,
are valuable for complex models, they were not applied in this
study because LR, our final model, isinherently interpretable.
The model coefficients provide both direction and magnitude
of each predictor's impact, making additional posthoc
interpretability tools unnecessary. This preserves clarity and
enhances clinical applicability.

https://medinform.jmir.org/2025/1/€75760
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risk, the model offers enhanced explanatory power and
actionableinsightsinto clinical and public health interventions.
Moreover, the high generalizability and strong clinical
applicability of themodel are evident in its consistently superior
performance relative to a random classifier (AUC=0.5) across
the training, test, and external validation sets. This robust and
stable performance, maintained regardless of the dataset used,
underscores the model’s potential for broad clinical
implementation. Although direct comparisons are challenging
dueto alack of research on predicting models for middle-aged
adults, wewere successful in devel oping asarcopeniaprediction
model for middle-aged adults that might serve as a valuable
diagnostic tool in clinical settings.

Our findings that obesity, age, and protein intake are key
predictors highlight the importance of addressing modifiable
risk factors before substantial muscle function decline setsin.
By leveraging a large, population-based dataset, our work
provides robust evidence that targeted interventions and
screening in midlife can potentially mitigate the burden of
sarcopenia in later life. Our findings indicate that, among
middle-aged adults, lower body mass, rather than obesity, was
associated with anincreased risk of sarcopenia. Thisobservation
contrasts with several prior studies conducted in older
populations where obesity, particularly sarcopenic obesity, has
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been frequently cited as a contributing factor for poor muscle
function and outcomes [12,13]. However, our findings,
comprising individuals in midlife, may reflect a different
trajectory of muscle decline, wherein low body weight, often
indicative of inadequate nutritional reserves or underlying
muscle wasting, emerges as a more salient predictor [19].
Previous evidence suggests that body composition plays a
distinct role depending on life stage: in older adults, excess fat
mass may exacerbate functional limitations, while in younger
or middle-aged adults, insufficient muscle and fat mass (as seen
in underweight individuals) may indicate early sarcopenic
changes[20]. Our findings thus support alife course perspective
on sarcopenia, emphasizing that underweight status in midlife
is not benign and may serve as a precursor to more severe
muscle dysfunction in later life. This underscores the need for
early lifestyle interventions aiming at maintaining healthy
muscle mass and adequate protein intake before the onset of
significant age-related musculoskeletal decline [21]. On the
other hand, age and protein intake emerged as key predictive
factors, aligning with arobust body of evidence, indicating that
advancing age is a primary risk factor for sarcopenia due to
age-related muscle mass decline and that insufficient protein
intake significantly contributes to muscle loss and functional
impairment [19,22]. Conversely, factors such as strength
training, urban versusrural residence, and anemiademonstrated
comparatively lower variable importance in the model, which
further highlightsthe central role of obesity, age, and nutritional
intake in sarcopenia pathogenesis and prediction [21-24].

When contextualized within prior research, our study offers
several distinct advancements in the domain of sarcopenia
prediction. First, while much of the existing literature has
predominantly focused on older adults and hasfrequently relied
on conventional analytical techniques, such as LR, without
incorporating robust sampling strategies, our research addresses
a gap by targeting middie-aged populations and using
state-of-the-art ML agorithms in conjunction with SMOTE to
mitigate class imbalance, an approach shown to enhance
classification performance in imbalanced biomedical datasets
[25,26]. Prior studies have recognized the significance of age
and nutritional status in sarcopenia etiology [3], but they have
often lacked external validation. In contrast, our 2-step
validation strategy comprising internal cross-validation and
external dataset testing strengthens the model’s generalizability
and clinical utility, in line with recent calls for more rigorous
validation frameworks in predictive modeling [27]. Second,
conventional sarcopenia prediction tools often rely on limited
indicators, such as grip strength alone. Our model adheres to
the updated AWGS 2019 guidelines, integrating both handgrip
strength and bioel ectrical impedance analysisto provide amore
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comprehensive diagnostic foundation [28]. Thisalignment with
contemporary clinical standards enhances the trandlational
potential of our findings. Third, although muscle deterioration
is known to begin in midlife, especially from the mid-40s
onward [11], few studies have systematically investigated the
interplay of obesity, protein intake, and age within this
demographic. Our findings identify obesity and low protein
intake as significant risk factors for sarcopeniain middle-aged
adults, thereby extending earlier work on modifiable lifestyle
components in muscle preservation [21,23]. Lastly, we
demonstrate the utility of ML-based variable importance
analyses, offering refined insights into the predictive strength
of individual risk factors. This granularity supports the
development of personalized interventions, such as tailored
dietary strategiesand exercise programs, for an often-overlooked

age group [29].
Limitations and Future Directions

This study has several limitations and offers opportunities for
future research. First, although the large national dataset
strengthens generalizability, the cross-sectional design precludes
establishing causal relationshipsamong variables. A longitudinal
cohort study would be beneficial to determine temporal patterns
and causation in sarcopeniaonset. Second, certain lifestyleand
dietary variables relied on self-reported data, which may
introduce recall bias. Due to limitations in the KNHANES
dataset, which lacked harmonized continuous measures of
physical activity across the 2022 and 2023 waves, we adopted
a categorical representation to ensure consistency and
comparability across cohorts. This methodological choice is
acknowledged as a limitation. Future research should integrate
more objective measures, such as wearable device data, to
improve accuracy. Third, while our model performed robustly
overal, additional tuning or integration with newer ML
techniques could further enhance prediction metrics. Larger,
multicountry cohorts and diverse popul ations are recommended
for validating and extending the applicability of our findings.

Conclusions

Our ML-based prediction model offers a valuable framework
for the early identification of sarcopenia risk in middle-aged
adults, addressing a gap left by previous studies that have
predominantly focused on older populations. These findings
underscore the significance of proactive, personalized
interventions targeting key modifiable risk factors, particularly
obesity and nutrition, to mitigate muscle decline and related
morbidities. By advocating for earlier detection and tailored
preventive strategies, this study paves the way for improved
midlife health care protocols, contributing to healthier aging
trajectories globally.

All data supporting the findings of this study are available from the Korea National Health and Nutrition Examination Survey
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