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Abstract
Background: Osteoporotic vertebral fractures (OVFs) are common in older adults and often lead to disability if not properly
diagnosed and classified. With the increased use of computed tomography (CT) imaging and the development of radiomics and
deep learning technologies, there is potential to improve the classification accuracy of OVFs.
Objective: This study aims to evaluate the efficacy of a deep learning radiomics model, derived from CT imaging, in
accurately classifying OVFs.
Methods: The study analyzed 981 patients (aged 50‐95 years; 687 women, 294 men), involving 1098 vertebrae, from 3
medical centers who underwent both CT and magnetic resonance imaging examinations. The Assessment System of Thoraco-
lumbar Osteoporotic Fractures (ASTLOF) classified OVFs into Classes 0, 1, and 2. The data were categorized into 4 cohorts:
training (n=750), internal validation (n=187), external validation (n=110), and prospective validation (n=51). Deep transfer
learning used the ResNet-50 architecture, pretrained on RadImageNet and ImageNet, to extract imaging features. Deep transfer
learning–based features were combined with radiomics features and refined using Least Absolute Shrinkage and Selection
Operator (LASSO) regression. The performance of 8 machine learning classifiers for OVF classification was assessed using
receiver operating characteristic metrics and the “One-vs-Rest” approach. Performance comparisons between RadImageNet-
and ImageNet-based models were performed using the DeLong test. Shapley Additive Explanations (SHAP) analysis was used
to interpret feature importance and the predictive rationale of the optimal fusion model.
Results: Feature selection and fusion yielded 33 and 54 fused features for the RadImageNet- and ImageNet-based models,
respectively, following pretraining on the training set. The best-performing machine learning algorithms for these 2 deep
learning radiomics models were the multilayer perceptron and Light Gradient Boosting Machine (LightGBM). The macro-
average area under the curve (AUC) values for the fused models based on RadImageNet and ImageNet were 0.934 and
0.996, respectively, with DeLong test showing no statistically significant difference (P=2.34). The RadImageNet-based model
significantly surpassed the ImageNet-based model across internal, external, and prospective validation sets, with macro-aver-
age AUCs of 0.837 versus 0.648, 0.773 versus 0.633, and 0.852 versus 0.648, respectively (P<.05). Using the binary “One-vs-
Rest” approach, the RadImageNet-based fused model achieved superior predictive performance for Class 2 (AUC=0.907, 95%
CI 0.805‐0.999), with Classes 0 and 1 following (AUC/accuracy=0.829/0.803 and 0.794/0.768, respectively). SHAP analysis
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provided a visualization of feature importance in the RadImageNet-based fused model, highlighting the top 3 most influential
features: cluster shade, mean, and large area low gray level emphasis, and their respective impacts on predictions.
Conclusions: The RadImageNet-based fused model using CT imaging data exhibited superior predictive performance
compared to the ImageNet-based model, demonstrating significant utility in OVF classification and aiding clinical decision-
making for treatment planning. Among the 3 classes, the model performed best in identifying Class 2, followed by Class 0 and
Class 1.
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Introduction
Osteoporotic vertebral fractures (OVFs) have a subtle onset
and complex progression, affecting about 40% of postme-
nopausal women and 25%‐33% of older men. In China,
a new OVF case is reported approximately every 17.4
seconds [1]. OVFs are linked to high disability and mor-
tality rates [2]. Accurate classification of OVFs is widely
recognized as critical for early diagnosis, treatment plan-
ning, and prognosis evaluation [3]. Current classification
systems, including the Genant semi-quantitative method [4],
Heini classification [5], osteoporotic fractures classification
[6], and the Assessment System of Thoracolumbar Osteo-
porotic Fractures (ASTLOF) [7], differ in methodology but
lack global agreement [8]. Among these, the ASTLOF
system has demonstrated good reproducibility and clinical
utility, integrating vertebral morphology, magnetic resonance
imaging (MRI) signal characteristics, bone mineral den-
sity (BMD), and pain severity into a preoperative scoring
framework. This system supports targeted treatment selection
and provides valuable clinical guidance [9]. Accordingly, the
ASTLOF classification was adopted as the standard in this
study.

Computed tomography (CT) imaging, with its high spatial
resolution, allows for detailed observation of subtle changes
in vertebral endplates, cortical bone, and cancellous bone,
providing a more reliable basis for OVF classification and
clinical guidance [10]. Currently, CT equipment is widely
available in secondary and tertiary hospitals, and some
community hospitals have also introduced CT systems [11].
CT imaging is crucial for accurately classifying OVFs
and has substantial clinical importance. Radiomics aids in
analyzing trabecular bone microstructure [12], assessing
BMD [13], differentiating acute from chronic OVFs [14],
and predicting residual back pain in these patients [15].
Deep learning radiomics (DLR) uses network architectures
such as ResNet, pretrained on ImageNet, to extract deep
imaging features from images, a widely adopted approach.
RadImageNet, as an open-access, public medical imaging
dataset, theoretically provides better performance for deep
transfer learning (DTL) in medical imaging tasks compared to
ImageNet [16]. Our research team has preliminarily validated

this hypothesis [17]. However, whether it can improve the
performance of 3-class prediction models still requires further
exploration and verification.

In this study, we used thoracolumbar medical imaging
data from multiple health care centers. We applied DTL on
both RadImageNet and ImageNet datasets to extract DTL
features and also used the open-source PyRadiomics package
(developed by the Computational Imaging & Bioinformat-
ics Lab, Brigham and Women’s Hospital/Harvard Medi-
cal School; lead developer: Joost J. M. van Griethuysen)
to extract traditional radiomics features. We developed a
predictive model for OVF classification using CT imaging by
integrating and selecting DTL and radiomics features within
the ASTLOF system. The model was validated, tested, and
compared for its predictive performance using multicenter
data.

Methods
Patient Selection
This study used medical imaging data from 3 Chinese
hospitals, with ethics committee approval from each
institution. The retrospective study design negated the need
for informed patient consent. CT and MRI data from patients
diagnosed with OVFs at Center I (Taizhou People’s Hospi-
tal, Nanjing Medical University) and Center II (Affiliated
Hospital of Nanjing University of Chinese Medicine) between
December 2018 and December 2024 were used to create the
training, internal validation, and external validation datasets.
Textbox 1 shows the inclusion criteria and exclusion criteria.
An independent test dataset was acquired from Center III
(Sir Run Run Hospital, Nanjing Medical University) spanning
January to December 2024. The dataset’s inclusion and
exclusion criteria matched those of the training and validation
datasets.

Figures 1 and 2 provide detailed information on case
collection, grouping, image preprocessing, feature extraction,
analysis, and model development through flowcharts and the
DLR workflow.
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Textbox 1.
Inclusion criteria

• Patients aged ≥50 years, meeting osteoporotic vertebral fracture diagnostic criteria [18], with no trauma history or
only minor trauma.

• Complete computed tomography and magnetic resonance imaging DICOM data, with no more than a 2-week interval
between the 2 scans.

• Comprehensive clinical records encompassing gender, age, and dual-energy X-ray absorptiometry outcomes.
• Clinical presentations, such as absence of significant pain, back pain triggered by posture, persistent pain, or

neurological symptoms.
Exclusion criteria

• Suspected infections or pathological fractures related to tumors.
• Poor image quality or artifacts caused by foreign objects.
• Uncertain osteoporotic vertebral fracture classification.

Figure 1. The flowchart in this study outlines the key steps and processes involved in the research workflow.
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Figure 2. The workflow of the deep learning radiomics process illustrates the systematic steps involved in data processing, feature extraction, model
development, and validation. ROC: receiver operating characteristic; ROI: region of interest.

CT and MRI Acquisition Protocol

CT Scans
CT scans were performed across 3 centers using multidetector
or dual-source CT systems, including: GE Lightspeed Ultra
(16-slice, USA), Siemens Somatom Definition (128-slice
and 256-slice, Germany), Siemens Sensation64 (64-slice,
Germany), Philips Brilliance iCT (256-slice, Netherlands),
GE Optima CT670 (64-slice, USA). Key scan parameters
were: tube voltage 120 kVp (with or without automated
current modulation), tube current 118‐320 mA (with or
without automated current modulation), and image matrix
512×512, and layer thickness and interval 1 mm.
MRI Scans
MRI examinations were conducted on 3.0T scanners from
Siemens (Verio, Skyra, and Prisma), Philips (Ingenia CX
and Achieva TX), across the 3 centers. Image sequences
included short tau inversion recovery (STIR) and T2-weigh-
ted fat-suppressed images. All patients underwent STIR or
T2-weighted fat-suppressed MRI scans. Additional details
regarding the imaging devices and parameters for both CT
and MRI are available in Multimedia Appendix 1.
Classification
The ASTLOF system classifies OVFs by assigning scores
based on vertebral morphology, MRI findings, BMD, and
clinical symptoms. Changes in morphology seen in CT or
MRI scans are rated as normal (0 points), compression
(1 point), or burst fracture (2 points). MRI assessments

use sagittal T2-weighted fat-suppressed or STIR sequences,
assigning scores based on normal appearance (0 points), high
signal alterations (1 point), or the presence of vacuum or
fluid signs within vertebrae (2 points). BMD is assessed via
T-scores, with values >−2.5 scoring 0, between −2.5 and
−3.5 scoring 1, and ≤−3.5 scoring 2. Clinical symptoms
are categorized as no significant pain (0 points), positional
low back pain (1 point), or persistent pain or neurological
symptoms (2 points). No significant pain refers to an absence
of discomfort during daily activities, while positional low
back pain is triggered by specific postures such as prolonged
standing, sitting, or bending. Persistent pain is continuous
and unrelieved by rest or posture changes, while neurolog-
ical symptoms indicate nerve involvement, manifesting as
numbness, tingling, or muscle weakness in the lower limbs.
OVFs are classified based on total scores: Class 0 (≤3) for
conservative treatment, Class 1 (=4) for either conservative
or surgical treatment, and Class 2 (≥5) for surgical interven-
tion. Evaluation scores were independently determined by
2 musculoskeletal radiologists (Doctor A with 6 years of
experience and Doctor B with 10 years of experience), with
disagreements resolved through discussion and consensus.
Clinical and CT Images Evaluation
Patient information, including age, gender, dual-energy X-ray
absorptiometry (DXA)-measured T-scores, and treatment
details, was obtained from the clinical case management
system. CT images were obtained using a bone window
setting (width 1500 and level 500) and reconstructed with a
1-mm slice thickness for subsequent processing and analysis.
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Region of Interest Segmentation
Radiologists manually segmented fractured vertebrae using
ITK-SNAP software (version 3.8.0; developed by the Penn
Image Computing and Science Laboratory, University of
Pennsylvania; lead developer: Paul A. Yushkevich) in this
study. Radiologist A outlined and filled the edges of the
fractured vertebrae on the CT images to create regions of
interest, carefully excluding adjacent intervertebral discs,

pedicles, and surrounding tissues to ensure precise delin-
eation. The segmented masks were then saved as “nii”
files for further analysis (Figure 3). Interobserver agreement
was evaluated by having Radiologist A and Radiologist B
independently resegment a random subset of 30 patients
from the training dataset after 1 month, using the intraclass
correlation coefficient (ICC) for assessment.

Figure 3. Segmentation of a fractured vertebral body for radiomic analysis in an 82-year-old woman with an acute osteoporotic vertebral fracture
is illustrated.(A) Sagittal non–contrast-enhanced spine computed tomography images show an osteoporotic vertebral fracture of L4. (B) Sagittal
T2-weighted fat-suppressed imaging reveals hyperintensity associated with the acute vertebral fracture. (C) The region of interest is delineated on
sagittal computed tomography images. (D) Three-dimensional volume meshes are reconstructed to visualize the segmentation.

Radiomics and DTL Features Extraction
All images were resampled using B-spline interpolation and
standardized with Z-score normalization to reduce variability
across centers. Feature extraction algorithms were standar-
dized in accordance with the Image Biomarker Standard-
ization Initiative [19]. Radiomic features, encompassing
first-order, shape, and texture characteristics, were extrac-
ted using the open-source Python package PyRadiomics
(developed by the Computational Imaging & Bioinformat-
ics Lab, Brigham and Women’s Hospital/Harvard Medical
School; lead developer: Joost J. M. van Griethuysen) [20].
These texture features include the gray level co-occurrence
matrix, gray level size zone matrix, gray level run length
matrix, neighboring gray tone difference matrix, and gray
level dependence matrix. For comprehensive details on the
extracted features, refer to the PyRadiomics documentation
[21]. To minimize variations across centers, the Combat
method was applied for feature harmonization [22]. To
mitigate bias and minimize overfitting risks from excessive
features, a 2-step feature selection process was implemen-
ted: initially, features demonstrating strong reliability were
retained using ICC evaluation, followed by further selection
through the Least Absolute Shrinkage and Selection Operator
(LASSO) algorithm.

Transfer learning is used because retraining a convolu-
tional neural network for a specific task demands extensive
image data and intricate parameter configurations, which are
challenging to obtain in this study. Transfer learning involves
fine-tuning a pretrained deep learning network to adapt it for
a new task, allowing deep learning to be applied effectively
on smaller datasets. Images were resampled to 64×64 (as

is common practice in deep learning pipelines) and pixel
intensities normalized to a mean of 0 and SD of 1. We
acknowledge that resampling to 64×64 may lead to some loss
of spatial detail. However, we chose this size after prelimi-
nary experiments demonstrated that it retained sufficient
image features for accurate classification, while balancing
computational efficiency and memory requirements. The
DTL approach, akin to previous studies [23], was implemen-
ted using the Python 3.6-based deep learning library (Guido
van Rossum), PyTorch. The study used ResNet50 as the
foundational model (Multimedia Appendices 2 and 3).

To execute transfer learning effectively, the learning
rate was carefully configured. Features were extracted
from the model’s penultimate layer (AveragePooling), with
model parameters divided into backbone and task-specific
components. The backbone component used pretrained
parameters from RadImageNet [24] or ImageNet for
initialization, whereas the task-specific component was
initialized randomly. Drawing inspiration from the cosine
annealing learning rate decay algorithm, optimizations were
implemented by fine-tuning the backbone component with
pretrained weights only when essential to maintain transfer
learning quality. Concurrently, task-specific parameters were
modified according to task demands, enabling the model to
effectively adapt to the target data.
Data Dimensionality Reduction
To identify reproducible and nonredundant radiomic features,
a systematic process was implemented. First, features with
ICC ≥0.8 from 2 independent evaluations were retained
for reproducibility [25]. Redundancy was minimized by
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computing the Spearman rank correlation coefficient between
features. Features with a correlation above 0.9 were subjec-
ted to a greedy recursive elimination strategy to remove
the most redundant ones, ensuring overall representation
was maintained. Stable features were then selected using
the LASSO algorithm, which applies a penalty parameter
(λ) to shrink regression coefficients, retaining only rele-
vant features. The optimal λ value was determined through
10-fold cross-validation, and features with nonzero coeffi-
cients were selected for the final set. To further reduce
redundancy, correlated features with a coefficient greater than
0.5 were excluded, resulting in a refined subset of independ-
ent features. For DTL features (initially with a dimension of
2048), principal component analysis was applied to reduce
dimensionality, balancing deep learning and radiomic features
while mitigating overfitting. The chosen radiomic and deep
learning features were combined through early fusion to
create a unified feature set, with all features standardized
using Z-score normalization for compatibility. Finally, after
fusion, LASSO-Cox regression was applied to select the most
robust features, which were further refined through dimen-
sionality reduction to define an optimal subset. This carefully
curated feature set represented the most relevant combination
of radiomic and deep learning features, facilitating reliable
model development.
Model Development
To prevent data leakage, all features used for building the
predictive model were exclusively derived from the training
set. Machine learning models were implemented using the
scikit-learn library following feature selection and fusion.
The models comprised logistic regression (LR), support
vector machine (SVM), k-nearest neighbor (KNN), decision
tree (DT), random forest (RF), extremely randomized trees
(ExtraTrees), eXtreme gradient boosting (XGBoost), Light
Gradient Boosting Machine (LightGBM), and multilayer
perceptron (MLP). We observed an imbalance in the
distribution of samples among the ASTLOF classification
categories, with notably fewer cases in Class 2. To reduce
the risk of biased model performance, we apply strategies
such as class weighting during model training. Model training
was conducted using the training set and optimized through
grid search with adjustable parameters specific to each
algorithm. Model performance was assessed using 5-fold
cross-validation on the training data, selecting the best
parameters to construct the optimal fused-feature model.
Using a larger k (such as 10 or more) would have increased
computational cost and training time substantially, without
necessarily providing a significant improvement in model
assessment, especially given the size of our dataset. There-
fore, 5-fold cross-validation was appropriate for our study
while maintaining a reasonable balance between thorough-
ness and practicality. The receiver operating characteristic
(ROC) curve was plotted, and model accuracy was validated
through 1000 iterations of bootstrap resampling. Performance
metrics such as area under the curve (AUC), accuracy (ACC),
sensitivity (SEN), and specificity (SPE) were evaluated.
Finally, statistically significant clinical baseline characteris-
tics were integrated with the best fused feature model to

develop a combined model, which was visualized through a
nomogram.

This study used the “One-vs-Rest” (OvR) strategy for
multiclass tasks by decomposing the problem into several
binary classification tasks. When Class 0 was labeled
positive, Classes 1 and 2 were negative; similarly, labeling
Class 1 or 2 as positive made the others negative, creat-
ing 3 OvR classification models. Model performance was
assessed by plotting ROC curves and calculating metrics
including AUC, ACC, SEN, and SPE. The generalization
ability was evaluated using internal, external validation, and
test datasets. Macro- and micro-average AUC were used for
a thorough assessment of multiclass tasks [26]. Macro-aver-
age AUC computes the AUC for each class and averages
them equally, which can be less representative in cases of
significant class imbalance. Conversely, micro-average AUC
aggregates predictions from all classes into a single confu-
sion matrix, emphasizing the influence of larger sample sizes
and providing a better reflection of overall performance on
imbalanced datasets.
Data Analysis
Statistical analyses were conducted using R software (R
Core Team; version 4.0.3), and radiomics and deep learn-
ing models were developed and implemented on Python
3.7 (Python Software Foundation). Continuous variables are
presented as mean (SD), while categorical variables are
shown as counts or percentages. Independent samples t tests
were used to assess differences in continuous variables, while
chi-square tests were applied for comparisons of categori-
cal variables. The DeLong test was used to compare ROC
curves and assess the predictive models’ overall performance.
In addition, bootstrap validation with 1000 resamples was
conducted to ensure robust evaluation of model accuracy.
P<.05 was considered statistically significant, serving as a
benchmark for assessing the reliability of observed differen-
ces and associations. These comprehensive statistical methods
ensured the rigor of model evaluation and the clarity of results
interpretation.
Explainable Artificial Intelligence
The Shapley Additive Explanations (SHAP) method (GitHub,
Inc [27]) was used to assess the importance of various
features by calculating their contributions to prediction
outcomes, offering a clear explanation of their significance
[28]. Using SHAP values, the predictive output for each
sample is decomposed into individual feature contributions,
providing a quantifiable measure of feature influence. The
magnitude of a SHAP value indicates the extent of a feature’s
influence on the model’s prediction, where positive values
signify a positive impact and negative values signify a
negative impact. For example, in a disease prediction model,
a feature with a SHAP value greater than 0 suggests it
increases the predicted likelihood of disease occurrence,
whereas a value below 0 implies a reduced likelihood.
Beyond individual predictions, SHAP also ranks features by
their overall importance across the model and reveals the
relationships between features and prediction outcomes. This
integration of quantitative contribution, directional influence,
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and feature importance ranking facilitates a comprehensive
understanding of the model’s decision-making, revealing how
particular features influence predictions and their signifi-
cance.
Ethical Considerations

This study comprised a retrospective component and a
prospective validation cohort. For the retrospective compo-
nent, the local Ethics Committees of the Affiliated Hospi-
tal of Nanjing University of Chinese Medicine and the
Affiliated Taizhou People’s Hospital of Nanjing Medical
University waived the requirement for ethical approval and
informed consent because the analysis involved existing data
collected during routine clinical care and posed minimal
risk to participants. The prospective validation cohort was
approved by the Institutional Ethics Committee of Sir Run
Run Hospital, Nanjing Medical University, on November
25, 2023 (approval no. 2023-SR-055). All participants in
the prospective cohort provided written informed consent
before enrollment. To protect privacy, all images and relevant
data were deidentified prior to analysis and reporting. No
individually identifiable information was used. Participants
did not receive financial or other material compensation for
participation. The study was conducted in accordance with

the principles of the Declaration of Helsinki and relevant
institutional guidelines and regulations.

Results
Clinical Features of the Studied Patients
The study enrolled 981 patients aged 50 to 95 years, with
an average age of 69.56 (9.88) years. Of these, 687 were
females (70%) and 294 were males (30%). Based on T-
scores, 30 patients (3.1%) were classified as having normal
bone mass, 257 (26.2%) as having low bone mass, and 694
(70.7%) as having osteoporosis. Among the participants, 87
patients presented with 2 OVFs, and 15 patients had 3 OVFs,
resulting in a total of 1098 fractured vertebrae included in
the analysis. The dataset was partitioned into a training set
(750 cases, 68.4%), an internal validation set (187 cases,
17%), an external validation set (110 cases, 10%), and a
prospective validation set (51 cases, 4.6%). Table 1 summa-
rizes the demographic and clinical characteristics of each
dataset, and Table 2 details the treatment conditions across
the 3 classifications. Figure 4 illustrates the case selection
process, emphasizing the random 8:2 allocation of cases into
the training and internal validation sets.

Table 1. Baseline characteristics of patients with osteoporotic vertebral fracture in the training, internal and external validation, and prospective
validation cohorts.

Characteristics
Training set
(n=750)

Interval validation set
(n=187)

External validation set
(n=110)

Prospective validation set
(n=51)

Sex, n (%)
  Female   541 (72.1)   138 (73.8)   78 (70.9)   36 (70.6)
  Male   209 (27.9)   49 (26.2)   32 (29.1)   15 (29.4)
Age (years)
  Mean (SD)   68.25 (11.18)   70.19 (10.56)   69.56 (10.23)   69.51 (10.32)
DXAa T-score
  Mean (SD)   −2.82 (0.82)   −2.79 (0.81)   −2.85 (0.75)   −2.83 (0.77)
Fracture location, n (%)
  Thoracic   247 (32.9)   52 (27.8)   32 (29.1)   17 (33.3)
  Lumbar   503 (67.1)   135 (72.2)   78 (70.9)   34 (66.7)
Fracture staging, n (%)
  Acute   492 (65.6)   112 (59.9)   69 (62.7)   33 (64.7)
  Chronic   258 (34.4)   75 (40.1)   41 (37.3)   18 (35.3)
ASTLOFb score, n (%)
  1‐3 points   345 (46.0)   88 (47.1)   51 (46.4)   24 (47.1)
  4 points   338 (45.1)   76 (40.6)   46 (41.8)   22 (43.1)
  5‐8 points   67 (8.9)   23 (12.3)   13 (11.8)   5 (9.8)
Therapeutic method, n (%)
  Conservative treatment   435 (58)   106 (56.7)   62 (56.3)   28 (54.9)
  PVAc   258 (34.4)   73 (39)   40 (36.4)   19 (37.3)
  Open surgery   57 (7.6)   8 (4.3)   8 (7.3)   4 (7.8)

aDXA: dual-energy X-ray absorptiometry.
bASTLOF: Assessment System of Thoracolumbar Osteoporotic Fracture.
cPVA: percutaneous vertebral augmentation.
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Table 2. Distribution of osteoporotic vertebral fractures based on the Assessment System of Thoracolumbar Osteoporotic Fractures classification and
their association with different therapeutic methods.
Classification Conservative treatment (n=631, %) PVAa (n=390, %) Open surgery (n=77, %)
Class 0 (1-3 points) 411 (80.9) 71 (14) 26 (5.1)
Class 1 (4 points) 162 (33.6) 289 (60) 31 (6.4)
Class 2 (5-8 points) 58 (53.7) 30 (27.8) 20 (18.5)

aPVA, percutaneous vertebral augmentation.

Figure 4. The flowchart summarizes patient selection and allocation to the training set, internal and external validation set, and prospective validation
set of the multicenter study. CT: computed tomography; MRI: magnetic resonance imaging; OVFs: osteoporotic vertebral fractures.

Radiomics Feature Selection
(RadImageNet-Based)
The LASSO-Cox regression analysis model was used to
perform dimensionality reduction on the fused features.
The penalty coefficient (λ=0.0031) was chosen to optimize
feature selection, with Multimedia Appendix 4 depicting the
changes in feature coefficients as λ varied. Following the final
feature selection, 17 radiomics features and 16 DTL features
were retained. The DTL_Radscore was constructed using the
fused features and their regression coefficients, as shown in
Multimedia Appendix 5.
Radiomics Feature Selection (ImageNet-
Based)
The LASSO-Cox regression model, with a penalty coeffi-
cient of λ=0.0295, was used to optimally select features by
reducing the dimensionality of the fused dataset. Multimedia
Appendix 6 displays the feature selection process and the
curve showing the change in feature coefficients with λ.
Following the final selection, 17 radiomics features and 37
DTL features were retained. Using these fused features and
their associated regression coefficients, the DTL_Radscore
was constructed, as detailed in Multimedia Appendix 7.

Overall Validation of Different Radiomics
Models
The optimal machine learning algorithms for fused feature
models trained on RadImageNet and ImageNet datasets,
based on macro-average AUC, ACC, and F1-score, were
identified as MLP and LightGBM, respectively. Table 3
summarizes the validation results for the 2 fused feature
models in the 3-class classification task. In the training
set, the DeLong test indicated no statistically significant
difference between the 2 fused feature models (0.934 vs
0.996, P=2.34). In the internal, external, and prospective
validation sets, the RadImageNet-based fused feature model
demonstrated significantly higher macro-average AUC values
than the ImageNet-based model (0.837 vs 0.648, 0.773 vs
0.633, and 0.852 vs 0.648, respectively), as confirmed by the
DeLong test (P<.05). Figure 5 displays the ROC curves for
both models predicting OVF classifications in the prospec-
tive validation set. The RadImageNet-based fused feature
model, using the binary OvR strategy, excelled in predicting
classification 2 with an AUC of 0.907 and an ACC of 0.857.
For classifications 0 and 1, the model achieved AUCs and
ACCs of 0.829, 0.803 and 0.794, 0.768, respectively. Figure 6
highlights instances where the ImageNet-based fused feature
model made incorrect predictions, while the RadImageNet-
based model successfully identified the correct classifications.
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Table 3. The performance of the models across the training set, internal and external validation sets, and the prospective validation set.

Model
Training set Interval validation set External validation set Prospective validation set
Accuracy AUCa Accuracy AUCa Accuracy AUCa Accuracy AUCa

RadImageNet-based
  Class 0 0.867 0.939

(0.924‐0.955)
0.777 0.834

(0.779‐0.889)
0.715 0.794

(0.714‐0.875)
0.803 0.829

(0.719‐0.938)
  Class 1 0.825 0.905

(0.884‐0.925)
0.726 0.768

(0.700‐0.836)
0.681 0.747

(0.658‐0.836)
0.768 0.794

(0.673‐0.915)
  Class 2 0.886 0.953

(0.934‐0.973)
0.746 0.898

(0.839‐0.957)
0.767 0.756

(0.593‐0.920)
0.857 0.907

(0.805‐0.999)
  Three

classificationsb
0.793 0.934

(0.914‐0.951)
0.660 0.837

(0.773‐0.894)
0.647 0.773

(0.655‐0.877)
0.732 0.852

(0.732‐0.951)
ImageNet-based
  Class 0 0.969 0.995

(0.992‐0.997)
0.619 0.619

(0.540‐0.698)
0.655 0.675

(0.576‐0.774)
0.625 0.586

(0.433‐0.739)
  Class 1 0.964 0.996

(0.994‐0.999)
0.624 0.576

(0.488‐0.664)
0.560 0.551

(0.445‐0.656)
0.607 0.545

(0.385‐0.705)
  Class 2 0.952 0.995

(0.993‐0.999)
0.756 0.737

(0.631‐0.843)
0.621 0.654

(0.480‐0.827)
0.803 0.767

(0.580‐0.953)
  Three

classificationsb
0.916 0.996

(0.993‐0.998)
0.533 0.648

(0.553‐0.735)
0.551 0.633

(0.501‐0.753)
0.429 0.648

(0.466‐0.799)
aData in parentheses are 95% CIs.
bDate are macro-average.

Figure 5. The receiver operating characteristic curves for the predictive performance of the 2 models (A. RadImageNet, B. ImageNet). AUC: area
under the curve; MLP: multilayer perceptron; LightGBM: Light Gradient Boosting Machine.
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Figure 6. A case from the prospective validation cohort involves a 60-year-old female patient with osteoporotic vertebral fractures and an
Assessment System of Thoracolumbar Osteoporotic Fractures score of 6. It was misclassified by the ImageNet model, but was correctly classified by
the RadImageNet model. (A) Computed tomography imaging; (B) MRI imaging; (C) Postpercutaneous vertebroplasty showing bone cement leakage.

Feature Contribution and Model
Interpretation
The SHAP value for each feature was calculated. Figure 7
presents the global SHAP values for both the overall 3-class
classification and each specific class, evaluating their impact
on the model’s predictions. The highest-ranked features were

cluster shade, mean, and large area low gray level emphasis.
Figure 8 presents the SHAP decision plot, illustrating the
prediction model’s workflow in classifying Class 0 (male,
65 years; ASTLOF 2 points), Class 1 (female, 72 years;
ASTLOF 4 points), and Class 2 (female, 68 years; ASTLOF 6
points) within the prospective validation set.
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Figure 7. The feature contributions of the optimal fusion model are visualized as follows: The y-axis displays features arranged in descending order
based on their mean absolute impact on the predictive model. The Shapley Additive Explanations (SHAP) value of a specific feature is represented
by its distance from x=0, where a greater distance signifies a stronger impact—either positive or negative—on the model’s output. Each point’s
color corresponds to the original value of that feature, transitioning from low (blue) to high (magenta) on the color scale. (A) The global feature
contribution bar chart illustrates the contributions for the 3-class classification, with blue, red, and dark green bars indicating classifications 0, 1, and
2, respectively. (B, C, D) Beehive summary plots depict the decreasing feature contributions for predictions corresponding to classifications 0, 1, and
2, respectively.
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Figure 8. Shapley Additive Explanation (SHAP) decision plots for the 3 classifications (A: Class 0, B: Class 1, C: Class 2) are presented. The x-axis
represents the model output, while the y-axis lists the feature names. The gray vertical line at the center shows the baseline value. Each line traces
the prediction process, starting from the baseline value and incorporating the contributions of various features, both positive and negative, to arrive at
the final model output. For classification 0, the baseline value is 0.468, with a final model output of 0.090. For classification 1, the baseline value is
0.423, with a final model output of 0.138. For classification 2, the baseline value is 0.108, with a final model output of 0.062.
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Discussion
Principal Findings
This study developed and validated a DLR model based
on CT imaging data from multiple medical centers for the
classification of OVFs according to the ASTLOF system.
By integrating radiomics and DTL features extracted from
both RadImageNet and ImageNet datasets, the fused model—
especially when using RadImageNet pretraining—demonstra-
ted superior predictive performance across internal, external,
and prospective validation cohorts. The model achieved the
highest accuracy in identifying Class 2, with SHAP analysis
indicating that features such as cluster shade, mean, and large
area low gray level emphasis played the most significant roles
in prediction. These findings highlight the model’s robustness
and generalizability, supporting its potential utility in guiding
clinical decision-making for OVF classification and treatment
planning.
Study Implications
Compared with obvious traumatic vertebral fractures, OVFs
are an insidious condition and are often misdiagnosed.
Improper treatment can affect spinal stability and balance,
and in severe cases, lead to neurological dysfunction and
increased risk of mortality [29]. A scientific classification of
OVFs is the prerequisite for appropriate treatment. How-
ever, existing classification methods are primarily based
on classification systems for early thoracolumbar fractures
(which do not differentiate between traumatic and osteo-
porotic vertebral fractures), resulting in confusion in the
treatment of OVFs [30]. These methods fail to adequately
consider the characteristics of osteoporotic vertebrae, are
overly complex, and lack widely accepted unified stand-
ards. Some even overly emphasize surgical treatment. A
systematic classification of OVFs is crucial for assessing
fracture risk, guiding treatment decisions, and forecasting
patient outcomes [31]. An ideal classification system for
OVFs should encompass several essential features to ensure
comprehensive and practical utility. First, it should integrate
imaging parameters from X-rays, CT, and MRI, enabling
a thorough multiperspective assessment of the fractures.
Second, it must incorporate patients’ clinical presentations,
such as lower back pain and neurological symptoms, to
provide a holistic understanding of the condition. Third,
the system should offer treatment guidance tailored to each
classification type, facilitating targeted clinical interventions.
Fourth, it is essential that the system demonstrates high
reliability and reproducibility, ensuring consistent application
across different clinical settings. Finally, it should effec-
tively evaluate the severity of the condition and provide
prognostic insights based on classification outcomes. The
ASTLOF classification system provides a thorough frame-
work for evaluation by integrating vertebral morphology,
MRI signal characteristics, BMD, and clinical symptoms.
Through its scoring system, it enables clinicians to select
targeted treatment plans, streamlining clinical workflows
while delivering significant clinical guidance. Furthermore,
existing studies have validated the system’s high consistency

and reproducibility, reinforcing its effectiveness in guiding
clinical treatment decisions.

Recent advancements in artificial intelligence have shifted
OVF classification research toward detection, with stud-
ies showing that deep learning and radiomics methods
significantly surpass traditional visual analysis approaches
[32]. Most current research on OVF classification detec-
tion primarily uses single-center data split into training
and validation sets for internal validation. This method is
constrained by significant variability in radiomics analysis
results due to differences in imaging techniques, postpro-
cessing, reconstruction workflows, and scanning parameters
across devices from various manufacturers [33]. In addition,
single-center studies often lack data heterogeneity, increas-
ing the risk of overfitting and reducing the generalizability
of the findings. By contrast, multicenter studies leverage
diverse imaging data, and predictive models validated using
independent external datasets better account for the heteroge-
neity of OVFs, offering results that are more aligned with the
principles of precision medicine. Our study’s strength is the
use of CT imaging data from various hospitals combined with
the ASTLOF classification system. A fused predictive model
integrating radiomics and DTL features was developed using
datasets such as RadImageNet and ImageNet. The model was
thoroughly evaluated for its predictive performance in OVF
classifications, offering a robust and generalizable framework
for clinical application.

Studies indicate that the RadImageNet dataset notably
improves DTL performance in medical applications, offering
superior generalization over conventional datasets [34]. Our
study’s findings confirmed that prediction models using the
RadImageNet dataset surpassed those using the ImageNet
dataset. In situations where sample sizes are imbalanced, the
“OvR” strategy is commonly used for 3-class classification
tasks [35]. In this study, the use of the “OvR” strategy
in prediction models for CT images proved to be highly
effective. Notably, classification 2, despite having a smaller
sample size, was identified with the highest accuracy. The
enhanced spatial and density resolution of CT images enables
prediction models to more effectively identify radiomic
and DTL features. These results highlight the potential
of leveraging high-resolution imaging data and advanced
datasets such as RadImageNet to achieve robust and accurate
predictions, even under the challenge of imbalanced samples.
Comparison to Prior Work
Finally, our study used SHAP values to evaluate the
importance of features. SHAP values indicate the positive
or negative contributions of each predictive variable to the
target variable [36]. Based on game theory, SHAP is a
classical post hoc explanation framework used to analyze
typically incomprehensible black box models. Aggregating
SHAP values across features offers a comprehensive view
of each feature’s impact on the model’s predictions, clearly
explaining the decision-making process. In this study, the
feature with the highest contribution in CT images was
cluster shade, which measures the skewness and asymmetry
of the intensity distribution of grayscale in an image. It is
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inversely proportional to the number of asymmetric densities
in the image. High skewness in the co-occurrence matrix
results in lower cluster shade values, while smaller cluster
shade values suggest greater homogeneity in the distribu-
tion of lesions [37]. We hypothesize that a smaller cluster
shade value indicates a more homogeneous distribution of
lesions within the vertebral body. While our model incorpo-
rates SHAP analysis to provide post hoc interpretability, we
recognize that the deep learning component remains largely
a “black box,” which may limit clinician trust and accept-
ance. We acknowledge the importance of further enhancing
the model’s explainability—particularly in elucidating how
deep features correspond to specific anatomical or patholog-
ical findings relevant to ASTLOF classification. In future
work, we intend to explore and integrate advanced interpreta-
bility techniques such as attention maps, layer-wise relevance
propagation, and feature visualization. These methods have
the potential to provide more granular and intuitive explana-
tions for the model’s predictions, thereby facilitating broader
clinical adoption and understanding.
Limitations
Although this study has achieved certain results, it still
has some limitations. First, a key limitation of our study
is the unequal distribution of cases among the ASTLOF
classifications, particularly the small sample size for Class
2. This class imbalance may affect the statistical power
and generalizability of the model for underrepresented
classes. Moving forward, we intend to increase the sample
size for each class and explore robust solutions such as

synthetic oversampling, class weighting, or other augmen-
tation strategies to enhance model performance and clini-
cal applicability across all categories. Second, the lack of
interpretability of deep learning features limits its widespread
clinical adoption and trust to some extent. Moving forward,
strengthening research on the interpretability of deep learning
features will be crucial. This will improve model transpar-
ency, foster clinician trust, and guide clinical decision-mak-
ing, thus enhancing the practical application of deep learning
in medical imaging diagnosis and treatment planning. Third,
our study’s dataset was exclusively sourced from Chinese
hospitals, which may introduce geographic or ethnic bias,
potentially limiting the generalizability of the findings to
other regions and populations. Imaging protocols, equipment,
and patient demographics may differ significantly across
health care systems worldwide. Future work will focus
on expanding our dataset with more diverse, multinational
samples and performing external validation in independent
international cohorts. Such steps are essential for demonstrat-
ing the model’s robustness and ensuring clinical applicability
on a global scale.
Conclusions
Compared to the fusion feature model (ImageNet), the fusion
feature model based on CT images (RadImageNet) demon-
strated higher predictive performance. Notably, it achieved
the best performance in identifying classification 2, followed
by classifications 0 and 1. This may have significant clinical
value for predicting OVF classifications and guiding the
formulation of treatment plans.
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