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Abstract
Background: Accurate staging of esophageal cancer is crucial for determining prognosis and guiding treatment strategies,
but manual interpretation of radiology reports by clinicians is prone to variability and limited accuracy, resulting in reduced
staging accuracy. Recent advances in large language models (LLMs) have shown promise in medical applications, but their
utility in esophageal cancer staging remains underexplored.
Objective: This study aims to compare the performance of 3 locally deployed LLMs (INF-72B, Qwen2.5-72B, and
LLaMA3.1-70B) and clinicians in preoperative esophageal cancer staging using free-text radiology reports.
Methods: This retrospective study included 200 patients from Shanghai Chest Hospital who underwent esophageal cancer
surgery from May to December 2024. The dataset consisted of 1134 Chinese free-text radiology reports. The reference
standard was derived from postoperative pathological staging. A total of 3 LLMs determined tumor classification (T1-T4),
node classification (N0-N3), and overall staging (I-IV) using 3 prompting strategies (zero-shot, chain-of-thought, and a
proposed interpretable reasoning [IR] method). The McNemar test and Pearson chi-square test were used for comparisons.
Results: INF-72B+IR achieved a superior overall staging accuracy of 61.5% and an F1-score of 0.60, substantially higher
than the clinicians’ accuracy of 39.5% and F1-score of 0.39 (all P<.001). Qwen2.5-72B+IR also demonstrated an advantage,
achieving an overall staging accuracy of 46% and an F1-score of 0.51, which was better than the clinicians’ performance
(P<.001). LLaMA3.1-70B showed no statistically significant difference in overall staging performance compared to clinicians
(all P>0.5)
Conclusions: This study demonstrates that LLMs, particularly when guided by the proposed IR strategy, can accurately and
reliably perform esophageal cancer staging from free-text radiology reports. This approach not only provides high-performance
predictions but also offers a transparent and verifiable reasoning process, highlighting its potential as a valuable decision-sup-
port tool to augment human expertise in complex clinical diagnostic tasks.
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Introduction
Esophageal cancer is a type of malignant tumor in the
digestive system and remains one of the leading causes
of cancer-related death, seriously affecting human health
worldwide [1-3]. Accurate preoperative staging of esophageal
cancer is essential, as it directly impacts prognosis estima-
tion and guides treatment decisions such as surgical resec-
tion, chemotherapy, or radiotherapy [4,5]. The tumor–node
metastasis classification system is currently the standard for
staging according to the eighth edition of the AJCC Tumor–
Node Metastasis Classification of Malignant Tumors [6].

In clinical practice, preoperative staging of esophageal
cancer relies predominantly on imaging modalities, with
computed tomography (CT) and positron emission tomogra-
phy (PET)–CT serving as the cornerstone examinations [7].
These imaging studies generate detailed radiology reports
that contain crucial information about tumor characteristics,
local invasion, and metastatic spread. Clinical tumor–node
metastasis (cTNM), determined from these imaging studies, is
pivotal for formulating individualized treatment plans [8].

However, a major challenge is that radiology reports are
usually documented in an unstructured, free-text format [9].
These narrative reports can be ambiguous, lack key details, or
vary in descriptive style among radiologists. This may result
in key findings being missed or misinterpreted, leading to
significant discrepancies between cTNM and the gold-stand-
ard pathological tumor–node metastasis (pTNM) determined
after surgery. Moreover, the complexity and variability
inherent in these reports make the process of extracting
structured, actionable staging information both time-consum-
ing and prone to human error. Thus, automatic classification
of esophageal cancer stage from free-text radiology reports
may provide significant benefits.

Recent advances in artificial intelligence (AI), particularly
large language models (LLMs), offer promising solutions for
these challenges [10-14]. LLMs are capable of understanding
and processing natural language, making them well-suited
for extracting structured information from free-text medi-
cal documents and supporting complex reasoning tasks in
medical natural language processing [15-17]. Their strengths
include parsing unstructured narratives, performing multi-
step reasoning, and learning from vast medical corpora,
which have enabled progress in information extraction,
report classification, and automated summarization in medical
contexts [18,19].

Despite these advances, research on the use of LLMs for
cancer staging from radiology reports has largely focused on
lung cancer, owing to the relatively straightforward criteria
in imaging for that disease [20-22]. In contrast, esophageal
cancer staging presents unique challenges: the anatomical

complexity of the esophagus, its proximity to multiple vital
structures, and the subtlety of early lymph node involvement
make accurate staging from radiology reports considerably
more difficult. This gap in the literature highlights the need
for dedicated research into LLM applications for esophageal
cancer staging.

While LLMs show great potential for medical applications,
they are not without limitations. The hallucination effect,
where models generate plausible but incorrect information,
poses risks in health care settings where accuracy is par-
amount [23]. Recent studies have focused on optimizing
prompting strategies and proposed approaches such as
few-shot learning [24] and chain-of-thought (CoT) [25]
to enhance the quality of model responses. However, as
black-box models, LLMs often fail to provide transparent
explanations for their outputs. This lack of explainability
poses a significant challenge in gaining trust for health care
applications, where a transparent decision-making process is
critical.

This study aims to evaluate 3 LLMs (INF-72B,
Qwen2.5-72B, and LLaMA3.1-70B) for automated esopha-
geal cancer staging from Chinese free-text radiology reports.
We introduce a novel prompting strategy called interpreta-
ble reasoning (IR) designed specifically to enhance both the
accuracy and transparency of LLM-based staging decisions.
By comparing LLM performance with that of clinicians, we
aim to provide a foundation for future research and safe
clinical translation of LLMs in cancer staging.

Methods
Data
This retrospective study was conducted at Shanghai Chest
Hospital with data collected from 617 patients who underwent
esophageal cancer surgery between May and December 2024.

Exclusion criteria were applied systematically to ensure
data quality and relevance to the study objectives. First,
307 patients who had received neoadjuvant therapy were
excluded, as such treatment alters the assessment of tumor
size and metastasis in radiology reports, and such patients are
staged using the ycTNM staging system, which is not within
the scope of the current dataset [26]. Second, 70 patients
lacking pathological diagnosis were excluded.

Of these, 1134 reports (934 CT and 200 PET-CT), from
200 unique patients, were randomly selected for inclusion
in the final sample. Figure 1 shows the flowchart of study
design. All reports were unstructured, free-text documents
(Figure 2). Each case comprised all reports from the patient’s
prior hospital visits, including both outpatient and inpatient
records.
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Figure 1. Flowchart of study design. CT: computed tomography; LLM: large language model; PET: positron emission tomography; pN: pathological
node; pT: pathological tumor.

Figure 2. Here are 3 cases from the dataset, accompanied by the key information extracted from the free-text reports. To better illustrate the
correlation between the reports and imaging, the corresponding PET-CT images are also presented. The staging of the 3 cases is T1N0 (Stage I),
T2N0 (Stage II), and T3N0 (Stage III), respectively. CA: cancer; CT: computed tomography; FDG: fluorodeoxyglucose; JES: Japan Esophageal
Society; PET: positron emission tomography; SUVmax: maximum standardized uptake value.
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Reference Standard
The reference standard for this study was the pTNM
staging information obtained from each patient’s postoper-
ative pathological report. This staging was determined by
pathologists and documented within the structured patho-
logical reporting system following surgical resection and
histopathological examination.

For comparison purposes, we collected each patient’s
cTNM from the admission notes completed by the attend-
ing physician prior to surgery, representing the clinician’s
preoperative assessment based on available imaging reports
and clinical data. After data collection, the cTNM information
was reviewed by 3 attending thoracic surgeons, each with
four years of clinical experience. The reviewers were not
informed of the postoperative pathological staging, ensur-
ing that their judgments relied solely on the preoperative
radiology reports.

Given that our dataset consisted exclusively of surgical
candidates, distant metastasis (M1) was absent, as patients
with metastatic disease would not have undergone cura-
tive surgery. Therefore, our evaluation focused on tumor
classification (T1-T4), node classification (N0-N3), and
overall stage groups (I-IV) as determined by the combination
of tumor and node categories.
Large Language Model
The LLMs were selected for evaluation based on their
availability, performance benchmarks, and number of
parameters. INF-72B is a homemade LLM developed by the
INF team that combines the pattern recognition capabilities of
neural networks with symbolic reasoning, offering advantages
for structured medical tasks [27].

Qwen2.5-72B is an open-source LLM, exhibiting strong
performance in Chinese language tasks [28]. LLaMA3.1-70B
is one of Meta’s foundational model series, selected for
its general-purpose capabilities and widespread adoption in
the research community [29]. Both are open-source models,
characterized by relatively large parameter sizes and strong

performance, and have been the subject of substantial
research in medical text natural language processing [30,31].

All models were deployed locally within the hospital’s
secure computing environment using 8 NVIDIA A30 GPUs.
This local deployment was essential to ensure patient data
privacy and comply with institutional data governance
policies. Model inference was performed using greedy
decoding (temperature=0) to maximize determinism.
Prompting Strategy
In this study, we propose a prompting strategy called IR, in
which the model is instructed not only to provide its staging
decision but also to output the underlying reasoning and
explicitly cite relevant excerpts from the original radiology
report. This design aims to improve transparency, facilitate
verification by clinicians, and reduce the risk of unsupported
or hallucinatory outputs.

Specifically, the model’s cited excerpts from the radiol-
ogy report were automatically checked against the original
input text to ensure exact matches. If any cited text was
not found in the original report, the output was rejected,
and the model was prompted to regenerate its response.
In addition, the model was instructed to perform internal
reasoning before producing the final prediction and explana-
tion, which encourages the use of evidence grounded in the
report and further reduces the likelihood of hallucinations. In
addition, the esophageal cancer staging rules were incorpora-
ted into the prompt in a structured format according to the
AJCC Eighth Edition. The prompt template is presented in
Figure 3.

A total of 2 additional prompting strategies, zero-shot
(ZS) and CoT, were implemented for comparison with the
proposed method. For ZS, the LLM was provided with the
reports and instructions to directly return the predicted cancer
stage. For CoT, the LLM was instructed to first “think step
by step” to retrieve the reasoning and use it as context for
predicting the cancer stage.
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Figure 3. Interpretable reasoning prompt template in markdown format. CT: computed tomography; PET: positron emission tomography.

Statistical Analysis
For each LLM and clinical stage, the tumor category, node
category, and overall stage groups were classified as correct
if matching the reference-standard assignment (pathological
staging). To measure the performance of cancer staging,
accuracy, precision, recall, and F1-score were used as key
evaluation metrics. These metrics were calculated individ-
ually for each component (eg, T1-T4, N0-N3, and I-IV).
Corresponding 95% CIs were derived using the Wilson
method. Comparisons were performed using McNemar
and Pearson tests. P values were 2-sided and considered
statistically significant when less than .05.·
Ethical Considerations
This study was approved by the Ethics Committee of
Shanghai Chest Hospital (IS25024). As this was a retrospec-
tive study, the Ethics Committee of Shanghai Chest Hospi-

tal waived the requirement for participants or their legal
guardians or next of kin to provide written informed consent.

Results
Overview
This section presents the research findings. First, we
evaluated the performance of 3 LLMs in the clinical
staging of esophageal cancer and compared their results with
clinicians. Next, we further analyzed the outcomes in terms
of clinical management categories. Finally, we compared the
runtime consumption of the 3 models.
Characteristics of Patients and Radiology
Reports
A total of 200 patients (mean age 65.2, SD 7.4 years)
comprising 145 males and 55 females. Within this group, a
total of 1134 radiology reports (934 CT and 200 PET-CT)
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were collected. The distribution of pathological tumors,
pathological nodes, and overall stage groups is listed in Table
1.

Table 1. Characteristics of patients and radiology reports.
Categories Values (N=200)
Patient information
  Gender, n (%)
   Male 145 (72.5)
   Female 55 (27.5)
  Age (years), mean (SD) 65.2 (7.4)
Report quantity, n (%)
  CTa 934 (82.4)
  PET-CTb 200 (17.6)
Tumor grade, n (%)
  T1 54 (27)
  T2 40 (20)
  T3 98 (49)
  T4 8 (4)
Node grade, n (%)
  N0 94 (47)
  N1 52 (26)
  N2 36 (18)
  N3 18 (9)
Overall stage groups, n (%)
  I 46 (23)
  II 72 (36)
  III 60 (30)
  IV 22 (11)

aCT: computed tomography.
bPET-CT: positron emission tomography-computed tomography.

Performance of Large Language Models
and Clinicians in Esophageal Cancer
Staging
Table 2 shows the accuracies of the LLMs and clini-
cians in esophageal cancer staging. The clinicians achieved
accuracy of 44.5%, 42%, and 39.5% for tumor classifica-
tion, node classification, and overall staging, respectively.
Among LLMs, INF-72B demonstrated the highest overall

performance. Specifically, INF-72B+IR achieved the best
accuracy, significantly outperforming the clinicians (68%,
65.5%, and 61.5%, respectively; P<.001). Qwen2.5-72B+IR
achieved its best accuracy of 46% in overall staging,
better than the clinician (46% vs 39.5%, P<.001). Although
LLaMA3.1-70B+IR achieved higher accuracy than clinicians
in tumor classification (55% vs 44.5%, P<.001), there was
no statistically significant difference between the 2 in overall
staging performance (39% vs 39.5%, P=.99).

Table 2. Staging accuracies of clinicians and large language models using different prompting strategies.
Tumor classification Node classification Overall stage groups

Evaluator Accuracy (95%CI) P valuea Accuracy (95%CI) P valuea Accuracy (95%CI) P valuea

Clinicians 44.5 (43.5‐45.0) —b 42.0 (41.0‐43.0) — 39.5 (38.5‐40.0) —
INF-72B+ZS 65.0 (65.0‐66.0) <.001 55.0 (54.0‐56.5) <.001 53.0 (51.5‐54.0) <.001
INF-72B+CoT 65.0 (64.5‐66.0) <.001 57.0 (56.0‐58.0) <.001 57.0 (56.0‐58.0) <.001
INF-72B+IR 68.0 (67.5‐69.0) <.001 65.5 (64.5‐66.5) <.001 61.5 (60.5‐62.5) <.001
Qwen2.5-72B+ZS 42.0 (41.5‐43.0) .12 40.5 (40.0‐41.0) .42 42.0 (41.0‐43.0) .15
Qwen2.5-72B+CoT 42.5 (41.0‐43.0) .23 42.0 (41.0‐43.0) .99 45.0 (44.0‐46.5) .008
Qwen2.5-72B+IR 46.0 (45.0‐47.0) .76 43.5 (42.5‐44.0) .81 46.0 (45.0‐47.5) <.001
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Tumor classification Node classification Overall stage groups

Evaluator Accuracy (95%CI) P valuea Accuracy (95%CI) P valuea Accuracy (95%CI) P valuea

LLaMA3.1-70B+ZS 49.0 (48.0‐49.5) .007 33.0 (31.5‐34.0) <.001 38.0 (37.0‐39.0) .79
LLaMA3.1-70B+CoT 50.0 (48.5‐51.0) <.001 36.0 (34.0‐37.5) <.001 37.5 (36.5‐37.5) .25
LLaMA3.1-70B+IR 55.0 (54.0‐56.0) <.001 35.0 (34.0‐36.0) <.001 39.0 (38.0‐40.0) .99

aP values represent comparisons with the accuracies of clinicians.
bNot available.

Table 3 shows the performance of clinicians and LLMs
using different prompting for determining overall stage
groups. INF-72B+IR achieved the best performance, with the
F1-score of 0.62, significantly higher than clinician’s 0.43
(P<.001). INF-72B+ZS and INF-72B+CoT also performed
better than clinicians (0.56, 0.58, P<.001). Qwen2.5-72B
performed well under CoT and IR, significantly better than

clinicians (0.50, 0.51, P<.001). LLaMA3.1-70B showed no
statistically significant differences from clinicians (0.42, 0.43,
0.44, all P>0.5). Tables S1 and S2 in Multimedia Appendix
1 present the precision, recall, and F1-score of the LLMs and
clinicians for determining tumor category and node category,
respectively.

Table 3. Performance of clinicians and large language models using different prompting strategies in overall staging. Values in parentheses represent
the 95% CI. The P values represent comparisons with the F1-scores of clinicians.
Evaluator Precision, (95% CI) Recall, (95% CI) F1-score, (95% CI) P value
Clinicians 0.45 (0.43-0.44) 0.40 (0.40-0.41) 0.43 (0.42-0.45) —
INF-72B+ZS 0.57 (0.55-0.58) 0.52 (0.50-0.53) 0.56 (0.54-0.57) <.001
INF-72B+CoT 0.59 (0.56-0.60) 0.54 (0.50-0.58) 0.58 (0.55-0.60) <.001
INF-72B+IR 0.64 (0.61-0.65) 0.59 (0.58-0.61) 0.62 (0.60-0.64) <.001
Qwen2.5-72B+ZS 0.46 (0.44-0.47) 0.41 (0.36-0.46) 0.44 (0.40-0.46) .87
Qwen2.5-72B+CoT 0.51 (0.48-0.52) 0.49 (0.48-0.49) 0.50 (0.49-0.50) <.001
Qwen2.5-72B+IR 0.52 (0.50-0.53) 0.50 (0.49-0.52) 0.51 (0.49-0.52) <.001
LLaMA3.1-70B+ZS 0.54 (0.51-0.57) 0.36 (0.34-0.37) 0.42 (0.40-0.43) .97
LLaMA3.1-70B+CoT 0.50 (0.49-0.51) 0.40 (0.40-0.41) 0.43 (0.41-0.45) .99
LLaMA3.1-70B+IR 0.55 (0.51-0.57) 0.41 (0.38-0.43) 0.44 (0.42-0.45) .89

Stratification by Clinical Management
Categories
Table 4 summarizes the performance of LLMs using IR
and clinicians in terms of clinical management categories.
A total of 46 reports indicated early esophageal cancer,
132 indicated locally advanced esophageal cancer, and 22
indicated advanced esophageal cancer. For reports indicating
early esophageal cancer, the proportion that was overstaged

was 82.6% for clinicians versus 28.3%, 60.9%, and 82.6%
for INF-72B, Qwen2.5-72B, and LLaMA3.1-70B using IR.
For reports indicating locally advanced cancer, the proportion
that was understaged was 2.3% for clinicians versus 9.1%,
3.8%, and 0% for the 3 LLMs, and the proportion that was
overstaged was 6.8% for clinicians versus 3.0%, 2.3%, and
5.3% for the 3 LLMs. For reports indicating advanced cancer,
the proportion that was understaged was 90.9% for clinicians
versus 63.6%, 100%, and 77.3% for the 3 LLMs.

Table 4. Staging by large language models and clinicians, stratified by clinical management categories.

Categories
Early esophageal cancer
(Stage I; n=46)

Locally advanced esophageal cancer
(Stage II and III; n=132)

Advanced esophageal cancer
(Stage IV; n=22)

Evaluator Correct Overstaged Correct Overstaged Understaged Correct Understaged
Clinicians 8 (17.4) 38 (82.6) 120 (90.9) 9 (6.8) 3 (2.3) 2 (9.1) 20 (90.9)
INF-72B+IR 33 (71.7) 13 (28.3) 116 (87.9) 4 (3) 12 (9.1) 8 (36.4) 14 (63.6)
Qwen2.5-72B+IR 18 (39.1) 28 (60.9) 124 (93.9) 3 (2.3) 5 (3.8) 0 (0) 22 (100)
LLaMA3.1-70B+IR 8 (17.4) 38 (82.6) 125 (94.7) 7 (5.3) 0 (0) 5 (22.7) 17 (77.3)

Task Completion Times
The mean task completion times per report were 1.2 (SD
0.56), 1.7 (SD 0.58), and 1.4 (SD 0.62) seconds for
INF-72B with different prompting strategies, respectively; 1.5
(SD 0.44), 2.5 (SD 0.50), and 2.1 (SD 0.51) seconds for

Qwen2.5-72B, respectively; and 1 (SD 0.42), 1.4 (SD 0.43),
and 1.2 (SD 0.44) seconds for LLaMA3.1-70B, respectively.
Figure 4 shows the variation across LLMs in overall staging
F1-score and mean task completion time per report.
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Figure 4. The graph shows comparisons of F1-score for esophageal cancer staging and mean task completion time per report for 3 large language
models (INF-72B, Qwen2.5-72B, and LLaMA3.1-70B) with different prompting strategies (ZS, CoT, and IR). The green line and its associated
values indicate mean task completion time in seconds per report for each evaluator. CoT: chain-of-thought; IR: interpretable reasoning; ZS: zero-shot.

Examples of Esophageal Cancer Staging
Using Large Language Model +
Interpretable Reasoning
Figure 5 shows 2 examples of esophageal cancer staging
using LLM with IR, including 1 correct case and 1 incorrect

case. Multimedia Appendix 1 presents the complete input and
output of the model, including the prompts and the radiology
reports. Appendix S2 and S3 in Multimedia Appendix 1 show
another 2 error examples for tumor classifications and node
classifications, including the original reports and the model’s
output.

Figure 5. A total of 2 example cases to show how LLMs read the radiology reports and provide cancer stage using interpretable reasoning. The
yellow and green underlined texts represent the classification basis of the large language model cited from the computed tomography reports and
positron emission tomography-computed tomography reports, respectively. In the first example (top row), the reference standard was T3N1. The
large language model extracted relevant information from the reports and gave the correct stage. In the second example (bottom row), the reference
standard was T3N1. The large language model extracted incomplete information from the reports, resulting in an incorrect stage (T2N2). CT:
computed tomography; FDG: fluorodeoxyglucose; JES: Japan Esophageal Society; LLM: large language model; PET: positron emission tomography.
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Discussion
Principal Findings
This study evaluated 3 LLMs for preoperative esophageal
cancer staging from Chinese free-text radiology reports,
comparing their performance with that of clinicians. Our
proposed IR prompting strategy enabled INF-72B to achieve
significantly higher accuracy and F1-scores than clinicians in
tumor classification, node classification, and overall staging.
Qwen2.5-72B also demonstrated improvements in overall
staging under IR strategies, while LLaMA3.1-70B showed no
consistent advantage over clinicians.

Recent studies have demonstrated the potential applica-
tions of LLMs in medical data analysis. In the context of
radiology reports, most research has focused on using LLMs
to convert free-text radiology reports into structured formats
[11,18]. LLMs have been used to extract cancer stage from
pathology reports, which is a relatively straightforward task
due to the clearer descriptions of tumors in pathology reports
[32-34]. But these approaches do not aid in formulating
preoperative treatment plans for patients. Thus, this study
highlights the potential of LLMs for preoperative esophageal
cancer staging from radiology reports. The findings support
the effective use of LLMs in assisting clinicians in real-world
clinical tasks.

In this study, the IR prompting strategy played a pivotal
role in enabling LLMs to clearly articulate the reasoning
process behind tumor and node classification. IR guided
the models to provide not only their answers but also the
supporting rationale, citing key information from the original
reports—such as extracting tumor status and the number
of lymph nodes. This approach made the model outputs
more transparent and reliable, reduced hallucinations, and
highlighted the advantages of IR in complex clinical decision-
making tasks such as cancer staging. Moreover, when the
model produced an incorrect answer, the reasoning provided
allowed for analysis of the underlying causes of the error.
Such a feature is particularly valuable in the highly rigorous
context of medical applications.
Error Analysis
The predictive performance of all models for stage IV
esophageal cancer was suboptimal, which may be attributa-
ble to multiple factors. First, T4 involves tumor invasion
of adjacent critical structures (eg, major vessels, trachea,
pericardium), where the boundaries of invasion can be
difficult to delineate on imaging. Limitations in image
resolution and acquisition techniques may further introduce
diagnostic uncertainty, resulting in insufficient information in
the radiology reports to support a T4 determination. Sec-
ond, N3 is defined as distant or multiregional lymph node
metastases. However, small metastatic foci or atypical lymph
node morphology can be difficult to detect on conventional
imaging, leading to false negatives. In addition, accord-
ing to National Comprehensive Cancer Network guidelines,
definitive concurrent chemoradiotherapy is recommended as
the initial treatment for stage IV cases. Since this study

included only patients who underwent surgery, the proportion
of stage IV cases was relatively low, which limited further
analysis of the contributing factors.

The models exhibited a high frequency of overstaging
in cases of stage I esophageal cancer. In instances where
T1 was misclassified as T2 or T3, a common pattern was
LLMs often relied on report descriptions such as “localized
irregular thickening of the esophageal wall with moderate,
heterogeneous enhancement” as the primary basis for staging,
while overlooking more critical information such as “clear
demarcation from adjacent tissues” or “no mention of tumor
invasion into the muscularis propria or adventitia.” Nota-
bly, INF-72B demonstrated markedly better performance in
identifying stage I esophageal cancer compared with the
other 2 LLMs and the clinicians, suggesting that a model’s
reasoning capability can substantially influence the accuracy
of esophageal cancer staging.

Errors in node classification were attributable to 2 primary
causes. First, PET-CT reports sometimes lacked sufficient
information to reconcile with pathological findings. Although
the models correctly extracted the number of lymph node
metastases documented in the PET-CT report, those counts
did not always match the numbers reported in the pathol-
ogy. Second, models sometimes misidentified the anatomic
nodal regions when summing metastatic nodes, which led to
incorrect node staging. For example, a PET-CT report might
list the JES regions (104R, 104L, 106tbR, 107, 109L, 112ao,
113), whereas the model’s cited evidence mentioned only
“104R, 104L, 106tbR,” omitting the other stations and thus
producing a misclassification.
Operational and Clinical Implications
INF-72B+IR demonstrated superior performance compared
with clinicians in identifying both early-stage and advanced-
stage esophageal cancer. This has several potential clin-
ical benefits. First, improved recognition of early-stage
disease (eg, T1N0) can facilitate timely initiation of curative-
intent interventions such as endoscopic mucosal resection,
endoscopic submucosal dissection, or minimally invasive
esophagectomy, thereby reducing surgical morbidity and
improving long-term outcomes [4]. Early and accurate
identification may also prevent unnecessary chemoradiother-
apy or extensive surgical procedures, reducing treatment-rela-
ted complications and health care costs. Conversely, precise
identification of advanced disease (eg, T4 or N3) allows
for prompt initiation of multimodal treatment strategies—
including concurrent chemoradiotherapy, immunotherapy,
and palliative interventions—while avoiding futile surgical
attempts. By reducing the risk of misclassification, the
model can help ensure that patients receive stage-appropriate
treatment in a timely manner.

In addition, the model processes radiology reports and
generates staging predictions within seconds. This capabil-
ity can improve clinical workflow efficiency by enabling a
“screen-then-review” approach, in which the model pre-
screens cases and flags high-risk patients for expedited review
by clinicians. Such an approach is particularly valuable in
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high-volume oncology centers, as well as in resource-limi-
ted settings. Integrating the model into multidisciplinary
team discussions could further streamline decision-making, as
staging information would be immediately available without
requiring additional report interpretation during the meeting.

Importantly, the implementation of this model should
be viewed not as a replacement for clinicians, but as
an intelligent decision-support tool. By augmenting human
expertise with automated, high-accuracy staging predictions,
it has the potential to enhance diagnostic accuracy, reduce
inter-observer variability, and optimize patient management
across the entire care pathway.
Ethical Issues in the Use of Large
Language Models in Health Care
The first concern is privacy and data security. Medical
information is inherently sensitive, requiring robust protec-
tion measures. In this study, all models were deployed
locally within the hospital’s secure computing environment
to prevent data exposure. Future implementation must ensure
strong network security, compliance with regulations such
as Health Insurance Portability and Accountability Act
(HIPAA) and General Data Protection Regulation (GDPR),
and minimal data exposure during model training and
deployment. Working within these legal and ethical parame-
ters is crucial for maintaining the credibility and trustworthi-
ness of AI applications in health care.

In addition, the emphasis on explainable artificial
intelligence methods underscores the importance of transpar-
ency to build trust among health care providers and ensure the
interpretability of AI-generated outputs [35]. Building trust in
AI systems requires explainable outputs and clear accounta-
bility structures. Our IR approach addresses this by providing
explicit rationales for staging decisions, allowing clinicians to
verify and understand model predictions. However, ongo-
ing assessment and performance monitoring are essential
for long-term accountability. Regular audits, error analysis,
and feedback mechanisms must be established to maintain
trustworthiness.

Another important factor is compliance with regulations.
The integration of AI in health care must align with
regional and international standards. This requires compre-
hensive documentation of model training, validation, and
clinical workflow integration processes. Clear, understanda-
ble documentation enables health care providers, patients,
and regulators to evaluate the technology’s ethical and legal
sustainability. Our study represents an initial evaluation
phase. Prospective clinical trials and regulatory approval
would be necessary before deployment.

To comprehensively address these ethical considerations,
ongoing assessment, open reporting, and collaboration
between AI developers, health care providers, and regula-
tors are essential. While our study demonstrates technical
feasibility, the path to clinical deployment must prioritize
patient rights, ensure equitable care delivery, and maintain
the highest ethical standards. Only through such careful
consideration can we realize the benefits of AI in health care

while safeguarding the fundamental principles of medical
ethics.
Limitations
This study has several limitations that should be acknowl-
edged. First, the most significant limitation of this study is the
imbalance in the dataset. Advanced esophageal cancer cases,
particularly those with T4 or N3 staging, are underrepresented
because such patients often do not undergo surgical resection
and thus lack postoperative pathological confirmation to serve
as a reference label. This constraint prevented us from fully
assessing the model’s performance in predicting advanced
cancer stage. In addition, the dataset size was relatively small,
which not only limits the statistical power of our findings
but also precludes the possibility of performing finetuning
experiments to further optimize the model.

Second, the preoperative cancer staging in this work was
derived exclusively from radiology reports, with patholog-
ical pTNM staging used as the reference standard. This
approach assumes that radiology report–based classifica-
tion can achieve equivalence to pTNM staging. However,
radiology reports may not always contain sufficient detail or
clarity to support an exact stage determination. The potential
discrepancy between radiological descriptions and pathologi-
cal findings could have contributed to misclassification.

Another limitation has to do with the model’s generaliza-
tion. The dataset was obtained from a single medical center.
As a result, the linguistic style, terminology usage, and
reporting conventions represented in the dataset may not fully
capture the diversity of radiology reports in other hospitals,
regions, or countries. This limits the immediate generalizabil-
ity of the model, and further validation using multi-center,
multi-national datasets is required to ensure robustness across
different clinical and cultural contexts.
Future Work
Future research should focus on addressing these limita-
tions to improve both the accuracy and generalizability
of the proposed approach. Multi-center collaborations will
be essential to collect a larger and more diverse dataset,
particularly including advanced-stage cases. For patients
who do not undergo surgical resection, alternative label-
ing strategies—such as consensus annotations by multiple
radiologists or incorporation of longitudinal clinical follow-up
data—could be explored to approximate reliable reference
standards. Increasing the dataset size would also enable
supervised fine-tuning of the model, potentially yielding
further performance gains over the current ZS or prompt–
based approach.

Moreover, integrating structured imaging-derived features
with the unstructured radiology text may help bridge
the gap between radiological descriptions and pathological
staging, improving classification consistency. Finally, future
validation should be conducted on datasets from differ-
ent institutions, regions, and languages to ensure robust-
ness across diverse clinical settings, thereby paving the
way for practical integration of the model into routine
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multidisciplinary workflows. In addition to retrospective
validation, prospective evaluation is essential before clinical
deployment. We plan to integrate the proposed model into the
hospital’s information system, enabling automatic generation
of stage recommendations when a patient is admitted and
diagnosed with esophageal cancer. Selected clinicians will
be invited to participate in a controlled pilot study to assess
the model’s impact on clinical decision-making, diagnostic
efficiency, and inter-observer agreement. All such testing will
strictly comply with institutional review board (IRB) and
ethical requirements, ensuring that patient safety and data
privacy remain paramount.
Conclusions
This study proposes an effective LLM-based approach
for esophageal cancer staging. Through comparison with

clinicians, INF-72B+IR demonstrated higher accuracy and
F1-scores in cancer staging, highlighting its potential as an
assistive tool in clinical practice. These results suggest that
LLM-based methods can serve as reliable decision-support
systems, complementing human expertise and potentially
improving the consistency and efficiency of oncologic care.
Future work will prioritize expanding the dataset, enhanc-
ing multimodal integration of imaging and text data, and
validating the model across diverse clinical settings through
prospective studies. Beyond esophageal cancer, the proposed
framework could be extended to staging and diagnosis in
other malignancies, contributing to the broader advancement
of intelligent health care systems.
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