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Abstract

Background: Integrated health data are foundational for secondary use, research, and policymaking. However, data quality
issues—such as missing values and inconsistencies—are common due to the heterogeneity of health data sources. Existing
frameworks often use static, 1-time assessments, which limit their ability to address quality issues across evolving data pipelines.

Objective: This study evaluates the AIDAVA (artificial intelligence–powered data curation and validation) data quality
framework, which introduces dynamic, life cycle–based validation of health data using knowledge graph technologies and SHACL
(Shapes Constraint Language)–based rules. The framework is assessed for its ability to detect and manage data quality
issues—specifically, completeness and consistency—during integration.

Methods: Using the MIMIC-III (Medical Information Mart for Intensive Care-III) dataset, we simulated real-world data quality
challenges by introducing structured noise, including missing values and logical inconsistencies. The data was transformed into
source knowledge graphs and integrated into a unified personal health knowledge graph. SHACL validation rules were applied
iteratively during the integration process, and data quality was assessed under varying noise levels and integration orders.

Results: The AIDAVA framework effectively detected completeness and consistency issues across all scenarios. Completeness
was shown to influence the interpretability of consistency scores, and domain-specific attributes (eg, diagnoses and procedures)
were more sensitive to integration order and data gaps.

Conclusions: AIDAVA supports dynamic, rule-based validation throughout the data life cycle. By addressing both
dimension-specific vulnerabilities and cross-dimensional effects, it lays the groundwork for scalable, high-quality health data
integration. Future work should explore deployment in live clinical settings and expand to additional quality dimensions.

(JMIR Med Inform 2025;13:e75275) doi: 10.2196/75275
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Introduction

Background
The integration of high-quality, complete, and interoperable
patient health records is essential to modern health care and

medical research [1-4]. Accurate and well-structured data
enhance research reproducibility [5-7], which in turn drives
more effective clinical decision-making and improved patient
outcomes. However, as health data is collected across diverse
and heterogeneous sources [8,9], its quality can be compromised
by fragmentation [10,11], variability [12,13], and incomplete
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information [14-16]. These challenges compromise data usability
and hinder the development of unified, clinically meaningful
datasets suitable for both primary and secondary uses [17,18].

Existing efforts on health data quality often focus on defining
standardized quality dimensions and organizing these into
structured frameworks [19-23]. However, many current
approaches rely on static, 1-time evaluations that do not reflect
the dynamic and iterative nature of the entire data life cycle
[24,25]. This limits their effectiveness in identifying evolving
quality issues that emerge across stages of data
transformation—such as extraction [26,27], harmonization
[28,29], or final validation [21]—as they do not provide
continuous, iterative assessment.

To address this gap, the AIDAVA (artificial
intelligence–powered data curation and validation) project [30],
launched in 2022 as part of a Horizon Europe initiative, proposes
a dynamic data quality framework that enables continuous
assessment throughout the data life cycle. At its core is the
personal health knowledge graph (PHKG), a patient-centered,
interoperable data model built using knowledge graph (KG)
technologies and validated with SHACL (Shapes Constraint
Language)–based rules. This approach allows for the assessment
of data quality constraints across multiple integration stages.

For instance, if a patient record includes a diagnosis of prostate
cancer but the patient is listed as a female, or if a discharge date
appears earlier than the admission date, AIDAVA’s rule-based
validation will automatically detect and flag these
inconsistencies during the integration process.

This paper also demonstrates how completeness directly
influences the interpretability of consistency scores.

This paper evaluates the AIDAVA framework’s effectiveness
in detecting and improving data quality issues, with a particular
focus on completeness and consistency. The framework’s ability
to validate data dynamically across stages of integration is
essential for supporting artificial intelligence–driven, automated
curation workflows, a central goal of the AIDAVA project. As
health care systems increasingly rely on semantic technologies
and automation to manage large-scale, heterogeneous data, life
cycle–based quality monitoring becomes a requirement. By
situating this work within that broader vision, we aim to
demonstrate how dynamic rule-based validation can enhance
the reliability and scalability of next-generation health data
integration pipelines. It also investigates how these dimensions
evolve across the data transformation pipeline, highlighting
their interdependencies and implications for integrated health
data (Textbox 1).

Textbox 1. Main contributions of this paper.

• Introduces the AIDAVA (artificial intelligence–powered data curation and validation) framework for dynamic health data quality validation
using SHACL (Shapes Constraint Language) and knowledge graphs.

• Defines and applies completeness and consistency rules across the integration pipeline.

• Simulates realistic data quality issues using controlled noise in the MIMIC-III (Medical Information Mart for Intensive Care-III) dataset.

• Evaluates SHACL validation across different integration sequences and noise levels.

Related Work
Ensuring the quality of integrated health care data, particularly
for the secondary use of electronic health records, has been the
subject of extensive research [31]. Prior efforts generally focus
on defining and measuring data quality along dimensions such
as completeness, consistency, conformance, and plausibility
[20-24]. These dimensions serve as the foundation for several
frameworks and tools developed to detect anomalies and enforce
standards across clinical datasets [15,22,32].

Framework-based approaches have sought to structure and
formalize the assessment of health data quality. Notably, Kahn
et al [21] introduced a widely adopted framework that groups
quality concerns into 3 core dimensions—completeness,
conformance, and plausibility—further divided into verification
and validation contexts. This framework laid the groundwork
for systematic quality checks but remains limited to static
evaluations that do not adapt to the changing nature of data
pipelines.

Dimension-specific studies have also provided deeper insights.
Issa et al [33] conducted a comprehensive review of
completeness in KGs, identifying 7 distinct subtypes, including
3 previously unclassified forms. Their findings emphasized the
interplay between completeness and other quality dimensions

such as consistency and correctness—further highlighting the
need for more context-aware, dynamic quality assessments.

Tool-based solutions, such as Achilles Heel [34], offer practical
mechanisms for identifying data quality issues. As part of the
Observational Health Data Sciences and Informatics (OHDSI)
ecosystem, Achilles Heel applies 70 predefined validation rules
to detect anomalies in large-scale clinical datasets. While
effective in identifying static inconsistencies, these tools
typically evaluate data quality at a single point in time and
cannot accommodate the iterative transformations that occur
during integration workflows.

In contrast to these prior approaches, the AIDAVA framework
introduces a life cycle–based, dynamic model of data quality
validation. By embedding SHACL-based validation rules
directly into a KG pipeline, AIDAVA allows for continuous
monitoring and enforcement of constraints during data ingestion,
transformation, and integration. It extends existing
methodologies by addressing data quality not as a 1-time task,
but as an ongoing process—ensuring that completeness and
consistency are maintained across evolving data structures.

AIDAVA Data Quality Framework
The AIDAVA data quality framework is designed to ensure
semantic and structural standardization across the entire health
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data life cycle, addressing the complexities of integrating
heterogeneous health data sources. The framework operates
across 4 levels, each targeting specific points in the health data

integration process. These 4 levels of the framework are
illustrated in Figure 1.

Figure 1. The 4 levels of the AIDAVA data quality framework. AIDAVA: artificial intelligence–powered data curation and validation; PHKG: personal
health knowledge graph; SKG: source knowledge graph.

Level 1: Raw Data Collection
At the initial level, the framework relies on data providers to
provide data that meets baseline standards. Given the variability
of data sources, direct transformations or validations at this
stage are limited. Instead, the framework ensures compliance
with transfer specifications, verifying that incoming data adheres
to structural and format requirements before progressing to the
next level.

Level 2: Transformation Into Source Knowledge
Graphs
In this stage, raw data are transformed into source knowledge
graphs (SKG) by executing a data curation tool from the library
of tools available in AIDAVA and delivering data sources in a
KG format aligned with the AIDAVA Reference Ontology. The
AIDAVA Reference Ontology plays a dual role in enabling
semantic interoperability and systematic quality evaluation. It
provides a formal semantic layer that aligns PHKGs with
standards such as Health Level Seven International Fast
Healthcare Interoperability Resources (FHIR), SNOMED CT
(Systematized Nomenclature of Medicine–Clinical Terms), and
Clinical Data Interchange Standards Consortium. This process
ensures semantic and structural standardization of each data
source, which is critical for interoperability. Standardizing the
data at this level minimizes inconsistencies and enables proper
integration with multiple sources.

Level 3: Integration Into the PHKG
In this phase, multiple SKGs are integrated into a unified PHKG,
creating a longitudinal representation of an individual’s health
history. This step consolidates fragmented patient data sources
while maintaining consistency and logical coherence in the
integrated patient record. The integration process ensures that
patient data is well-structured, complete, and free of inconsistent

and redundant information to support clinical decision-making
and research applications. For example, during PHKG
integration, a birth year recorded as 1875, implying an
implausible age of over 140 years, would be flagged by
age-consistency rules. This type of anomaly is automatically
detected through SHACL-based validation during the integration
process.

Level 4: Transformation for Secondary Use
In the final stage, the PHKG is transformed into formats tailored
for secondary use. This step adapts integrated data to align with
specific output formats, enabling accurate analysis (eg, Breast
Cancer registry in Observational Medical Outcomes Partnership
[OMOP] compliant format), improved patient care (eg, patient
International Patient Summary in FHIR format), and effective
reuse across clinical and research settings.

This study focuses on levels 2 and 3, as they are the earliest
feasible and scalable stages for enforcing semantic
standardization and integrating fragmented, heterogeneous data
sources. Performing this at level 1 is not practical due to diverse
formats and limited control over data provider systems. Level
4 is only partially addressed, as downstream transformation is
performed, but full data quality assessment from the perspective
of a specific use case lies outside the scope of this paper.

Data Quality Dimensions and Categories
To evaluate data quality, the AIDAVA framework adopts a
structured approach based on dimensions and categories.
Dimensions provide a high-level perspective on data quality,
grouping related categories to help identify systemic issues.
Recent research underscores the increasing need to evaluate
diverse data quality dimensions, especially when repurposing
health data for secondary use [19]. While multiple dimensions
contribute to ensuring high-quality health data, the AIDAVA
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framework currently focuses on 2 data quality dimensions:
completeness and consistency. Completeness ensures that all
necessary data elements are present, preventing critical
information gaps. Consistency verifies that data adheres to
defined constraints and logical relationships, such as ensuring
that diagnoses and procedures align with a patient’s
demographic details. Within these dimensions, categories
provide a more granular level of assessment, as outlined in Table
1.

The decision to focus on completeness and consistency is driven
by their widespread use in data quality research [35-37] and

their suitability for automated assessment [23]. Unlike other
dimensions, which often require subjective interpretation or
manual validation, completeness and consistency can be
systematically measured using predefined rules and automated
validation techniques. By prioritizing completeness and
consistency, the AIDAVA framework establishes a scalable
approach to data quality assessment. These dimensions not only
support automated validation but also provide a foundation for
expanding the framework to address more complex data quality
dimensions.

Table 1. Overview of data quality dimensions and categories in the AIDAVAa framework.

ExampleDescriptionDimension and category

Completeness

Missing patient date of birthIdentifies when critical data elements are
missing

Essential variable completeness

Diagnosis present, but no recorded genderDetects cases where missing variables pre-
vent consistency checks

Conditional variable completeness

Consistency

Text found in a numeric age fieldEnsures values conform to expected data
types

Data type for property

Discharge date before admission dateIdentifies implausible event sequencesTime sequence consistency

Prostate cancer assigned to a female patientDetects diagnoses incompatible with a pa-
tient’s gender

Diagnosis for gender consistency

Lung cancer diagnosed in an infantFlags diagnoses that are incompatible with
a patient’s age

Diagnosis for age consistency

Hysterectomy assigned to a male patientDetects gender-incompatible proceduresProcedure for gender consistency

Radiotherapy procedure in a toddlerFlags procedures that are inappropriate for
the patient’s age

Procedure for age consistency

aAIDAVA: artificial intelligence–powered data curation and validation.

Data Quality Instruments
The AIDAVA framework relies on a robust instrument for
scalable and automated data quality assessment: the SHACL.
As a World Wide Web Consortium standard, SHACL defines
and enforces semantic and structural constraints on Resource
Description Framework (RDF) KGs, enabling rule-based
validation to detect inconsistencies, missing elements, and
structural misalignments.

Within the AIDAVA framework, SHACL validation rules are
categorized into 2 types, as outlined in Table 2: ontology-based
and domain-specific rules. Each category includes several
validation rules, technically known as SHACL shapes—an
SHACL term referring to rule templates that define how data
should conform to expected structures or values. The number
of rules differs between categories due to the nature of the
information being encoded. For instance, completeness checks
such as “essential variable” rely on the fully connected structure
of the admission node to validate the presence of key attributes
(eg, admission date and discharge status) across sources. In

contrast, rules such as “diagnosis for gender” require a distinct
SHACL shape for each valid gender related pairing (eg,
“prostate cancer – male” and “ovarian cancer – female”),
increasing the number of shapes. Table 2 shows the number of
SHACL shapes associated with each rule category, reflecting
the complexity and granularity of the validations.

To enable meaningful evaluation of data quality across different
rule categories, we use normalized data quality scores rather
than raw violation counts. This is necessary because the number
of rules (SHACL shapes) and corresponding checked nodes
varies significantly by category (Table 2). Violation counts
alone would disproportionately reflect rule volume rather than
actual quality trends. We calculate a category-specific quality
score using the formula:

Quality score = 1 – e

Where e represents the error rate, calculated as the violation
count divided by the total number of checked nodes. This
provides a relative measure of how well the data conforms to
the specified rules within each category.
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Table 2. Categories and counts of SHACLa validation rules in the AIDAVAb framework.

SHACL shape countType and category

Ontology-based checks

14Essential variable completeness (eg, admission date must be present)

1Conditional variable completeness (eg, discharge status cannot be validated without discharge time)

6Data type for property (eg, age must be a number, not text)

Medical and common-sense checks

6Time sequence consistency (eg, admission after discharge flagged as invalid)

5208Diagnosis for gender consistency (eg, female patient assigned prostate cancer code)

130Diagnosis for age consistency (eg, infant patient assigned prostate cancer code)

640Procedure for gender consistency (eg, male patient assigned hysterectomy code)

79Procedure for age consistency (eg, infant patient assigned colonoscopy procedure)

aSHACL: Shapes Constraint Language.

Ontology-based rules in the AIDAVA framework are derived
from the AIDAVA reference ontology [38], which builds on
established standards such as Health Level Seven International
FHIR, SNOMED (Systematized Nomenclature of Medicine),
and LOINC (Logical Observation Identifiers Names and Codes)
to ensure interoperability and support automated curation. These
rules ensure conformance with predefined semantic standards,
such as verifying data types, relationships, and the presence of
mandatory variables. Domain-specific rules are informed by
health care–specific knowledge. These rules address real-world
data quality challenges, including validating gender-appropriate
procedures and ensuring consistency in clinical attributes. The

definition and validation of domain-specific rules require expert
consensus. However, data quality research has established a
variety of validated domain-specific rules over time [39]. The
AIDAVA framework leverages these existing,
literature-validated rules, allowing it to build upon proven
methodologies while avoiding redundancy, ensuring alignment
with best practices in health data quality management.

These SHACL shapes are applied within SKGs (intrasource
consistency and completeness) and PHKGs (across data source
consistency and completeness), ensuring semantic and structural
standardization at each stage. Figure 2 illustrates this validation
process, applied at both the SHKG and PHKG levels.

Figure 2. SHACL-based data quality check pipeline. RDF: Resource Description Framework; SHACL: Shapes Constraint Language.

The SHACL engine processes health data represented as an
RDF graph—a structured format used to build KGs—by
applying predefined constraints (SHACL shapes). These rules
define the expected structure and content of the data, including
semantic relationships and required elements. As the engine

executes these rules, it produces an SHACL validation report
that highlights data quality violations, such as missing values,
incorrect data types, or inconsistent relationships. This validation
step is critical for identifying and addressing quality issues
before integration into the PHKG.
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Methods

Study Design
To evaluate the robustness and effectiveness of the AIDAVA
framework in detecting and managing data quality issues, we
conducted a controlled experiment using the MIMIC-III
(Medical Information Mart for Intensive Care-III) dataset, a
publicly available and well-structured critical care database.
While MIMIC-III offers a rich and diverse set of clinical
variables, it does not contain the types of data quality issues
typically encountered in real-world health information systems.
As such, this study introduced artificial noise to simulate
common completeness and consistency problems found in
heterogeneous clinical data. This approach allows us to
systematically assess how well the AIDAVA framework,
particularly its SHACL-based validation rules, can identify
quality issues under different conditions and at multiple stages
of data integration. The following subsections describe the
dataset, noise injection methodology, and the process of KG
construction and validation.

Data Source and Data Preparation
We used the MIMIC-III dataset due to its structured format and
breadth of clinical variables, offering an optimal foundation for
simulating real-world integration scenarios. The dataset includes
deidentified health records from over 58,000 admissions. For
this study, hospital admissions lacking relevant diagnosis or
procedure codes (as required for SHACL validation) were
excluded, resulting in a final cohort of 13,607 admissions. A
total of 4 tables were used: PATIENTS, ADMISSIONS,
DIAGNOSES_ICD, and CPTEVENTS.

Data cleaning was performed using OpenRefine [40], with date
fields standardized to ISO 8601 format
(YYYY-MM-DDThh:mm:ss+zz:zz) and gender values mapped
to SNOMED CT codes to support interoperability and nonbinary
classifications. These steps ensured alignment with the AIDAVA
reference ontology and interoperability across sources.

Adding Noise to the Dataset
To simulate real-world data quality challenges [41-43], artificial
noise was introduced into the dataset based on 2 parameters:
noise level and completeness ratio. Noise level (∈ [!0,1]) defines
the proportion of KG statements impacted by errors. The
completeness ratio specifies the share of this noise that results
in missing values (as opposed to logically inconsistent entries).
For example, a noise level of 0.50 and a completeness ratio of
0.25 imply that 50% of selected statements are altered, with
25% of them made incomplete and the remainder made
inconsistent. Noise was introduced across 2 categories:
consistency noise, reflecting logical contradictions, and
completeness noise simulating missing information. All
injections were performed in a reproducible manner using a
fixed randomization seed.

Consistency Noise
We targeted error types that frequently occur in clinical data
entry or integration processes [41-43]. These methods included:

1. Gender swapping: male and female values in the
PATIENTS table were randomly exchanged. This
modification introduced inconsistencies in gender-specific
diagnoses and procedures, affecting validation rules such
as diagnosis for gender consistency and procedure for
gender consistency. Gender values are sampled from a
binomial distribution with 2 trials and success probability,
P=.5, ensuring a balanced distribution of changes.

2. Age alteration: instead of randomly changing a patient’s
age, we introduced interval-based errors by defining
plausible age groups. These age groups were determined
based on clustering patterns observed in diagnosis for age
consistency and procedure for age consistency rules (Figure
3). In this implementation, age groups were defined as [!0,1]
for infants, [!1,12] for children, [!12,56] for teens and
adults, and [!56,124] for seniors. Birth years in the
PATIENTS table were altered so that a new age was
randomly selected from another age group, triggering
violations in age-dependent diagnosis and procedure rules.
To ensure realistic distribution, the selection of a new age
group was sampled using a multinomial distribution with
4 trials, where the event probabilities were weighted based
on the frequency of each age group in the dataset.

3. Swapping admission and discharge dates: in the
ADMISSIONS table, admission, and discharge dates were
swapped. This modification introduced inconsistencies
relevant to time-sequence validation rules and triggered
errors in age calculations that depended on the admission
date.

4. Day-month swapping in dates: day and month values in
date fields across PATIENTS, ADMISSIONS, and
CPTEVENTS were randomly swapped, leading to invalid
date formats where month values exceeded 12, or sequences
where the chronological order of events became disrupted.
These errors mirrored common data entry mistakes in
hospital settings, where clinicians or administrative staff
may mistakenly invert date components.

5. Inconsistencies in medical coding: we randomly changed
diagnosis and procedure codes in the DIAGNOSES_ICD
and CPTEVENTS tables. ICD-9 (International
Classification of Diseases, Ninth Revision) diagnosis codes
and Current Procedural Terminology procedure codes were
replaced with alternative codes randomly drawn from their
respective rulesets. This change indirectly caused invalid
gender and age violations in both diagnoses and procedures
because certain codes are only applicable to specific
demographic groups. To implement this, each affected
record had its original code excluded and replaced with
another randomly sampled value from the remaining
choices, ensuring a uniform distribution of errors across
the dataset.
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Figure 3. Age distribution histogram.

Completeness Noise
Missing data, based on real-world completeness issues, was
introduced to replicate the effects of incomplete records on
validation outcomes [41-43]. The affected tables and fields
were:

1. Patient demographic records: missing values were
introduced by randomly removing gender (GENDER) or
date of birth fields in the PATIENTS table with equal
probabilities of being chosen. This noise is intended to
represent missing or deidentified patient information.

2. Hospital admission records: missing values were introduced
by deleting admission or discharge timestamps
(ADMITTIME, DISCHTIME) as well as admission or
discharge locations (ADMISSION_LOCATION,
DISCHARGE_LOCATION) from the ADMISSIONS table.
As with demographic records, the field to be deleted is
chosen with equal percentages of 25%. The selection of
omitted records was performed randomly yet consistently
across the experiment, preserving the dataset’s structural
integrity while reflecting real-world gaps in clinical
administrative case documentation.

3. Procedure records: missing values were introduced by
removing procedure chart dates (CHARTDATE) or
procedural codes (CPT_CD) in the CPTEVENTS table.
Same with the others, equal probabilities of 0.5 decided
which cell type should be deleted. The omission process
was randomized across the experiment, replicating common
record-keeping errors that lead to incomplete procedural
documentation.

4. Diagnosis records: missing values were introduced by
deleting ICD-9 diagnosis codes (ICD9_CODE) from the
DIAGNOSES_ICD table. As there is only 1 column type
able to be deleted, it is chosen with the probability of 1,
dissimilar to other categories of introducing completeness
noise. This modification simulates errors observed by not

typing ICD (International Classification of Diseases) codes
for billing purposes.

While these noise injection scenarios may overlap in their
effects, the incompleteness was introduced independently at
this stage. The combined effects of the above, as they relate to
triage and patient data acquisition progressions, are further
elaborated and investigated in the following section. To account
for the randomness in choosing the cell types to be deleted, this
process was carried out in a reproducible manner using a fixed
randomization seed.

Data Integration and Data Quality Assessment
After noise injection, the dataset was mapped into SKGs using
RDFCraft [44], aligning data elements to the AIDAVA reference
ontology. These SKGs were then integrated into a unified
PHKG, following a typical data ingestion workflow. We began
with demographic information from the PATIENTS table, which
provided key patient attributes. Next, temporal data from the
ADMISSIONS table was incorporated, establishing admission
and discharge events. This was followed by procedural details
from the CPTEVENTS table, and finally, diagnostic information
from the DIAGNOSES_ICD table. This stepwise integration
reflects a typical hospital workflow, where patient registration
occurs first, followed by admissions, treatments, and recorded
diagnoses. At each step, SHACL validation rules were applied
to assess data quality in terms of completeness and consistency.
As each patient is modeled as an independent SKG, SHACL
validation can be parallelized across patients, supporting scalable
execution on large datasets. This staged validation aligns with
levels 2 and 3 of the AIDAVA framework and reflects both
intrasource and cross-source quality checks.

To evaluate the effect of the order of data addition on data
quality, alternative sequences were also tested by changing the
ingestion order (eg, loading procedures or diagnoses before
demographics). This allows us to observe how quality issues
propagate or get masked depending on integration order.
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Results

Overview
The integration process followed a sequential order, beginning
with the PATIENTS table, followed by ADMISSIONS,
CPTEVENTS, and DIAGNOSES_ICD tables. The framework
assessed completeness and consistency at each stage, tracking
how data quality changed throughout the process. To evaluate
the robustness of the framework, we also conducted an
alternative integration sequence, starting with CPTEVENTS,
followed by DIAGNOSES_ICD, ADMISSIONS, and finally
PATIENTS.

In the following section, we first present the baseline data quality
assessment without noise, establishing a reference for
comparison. We then provide the final data quality scores after

full integration across varying noise levels for both integration
orders, highlighting key trends. A detailed breakdown of
progressive changes at specific noise levels is available in
Multimedia Appendix 1.

Data Quality Assessment Without Noise
The baseline analysis, presented in Table 3, was conducted
without artificial noise to establish a reference for data quality.
The results showed that most dimensions and categories
achieved nearly perfect quality scores, indicating that the
integration process preserved data integrity and did not amplify
errors. “Essential variable” completeness remained at 100%
(13,607 of 13,607 admissions), confirming that all mandatory
data elements were present in the KG. The domain consistency
checks for diagnosis and gender, as well as diagnosis and age,
yielded perfect quality scores. Similarly, data type adherence
at all integration stages is achieved with no errors.

Table 3. Baseline data quality analysis results.

DIAGNOSES_ICDCPTEVENTSADMISSIONSPATIENTSDimension and category

Completeness

100100100100Essential variable (%)

100N/AN/AN/AaConditional variable (%)

Consistency

99.999.999.9100Time sequence (%)

100100100100Diagnosis for gender (%)

100100100100Procedure for gender (%)

100100100100Diagnosis for age (%)

99.8999.89100100Procedure for age (%)

100100100100Data type for property (%)

aN/A: not applicable.

Although overall data quality is high, minor discrepancies were
observed in specific categories. “Conditional variable”
completeness category assesses whether all necessary concepts
from different sources are properly integrated and complete. As
SHACL rules evaluate conditional variables across every table,
an incomplete graph would return 0% (0 of 13,607 admissions)
quality score until the last stage of integration. To reflect this
dependency, the “conditional variable” completeness scores for
PATIENTS, ADMISSIONS, AND CPTEVENTS were marked
as “N/A” because these values would not be meaningful to
assess. Only at the DIAGNOSES_ICD stage could this category
be properly evaluated, where all variable nodes will be
reachable.

The procedure for gender and age categories received
near-perfect scores of 99.99% (13,606 of 13,607 admissions)
and 99.89% (13,593 of 13,607 admissions), respectively. These
errors were not due to integration issues, but rather pre-existing
errors in the MIMIC-III dataset. The errors in the “procedure
for age” category originated from the dataset’s deidentification
process, which assigned a few birth dates to years in the 1800s,
resulting in implausible patient ages exceeding 300 years—a
violation of age-related consistency rules. Similarly, errors in

the “procedure for gender” category were traced to a data entry
mistake in MIMIC-III, where a laparoscopic procedure on the
oviduct or ovary (Current Procedural Terminology 58660) was
attributed to a male patient. Additionally, time sequence
consistency scored 99.9% (13,594 of 13,607 admissions), with
errors primarily linked to discharge times recorded earlier than
admission times. This discrepancy is a known artifact of the
MIMIC-III data collection process, likely caused by inconsistent
timestamp recording practices [45].

Data Quality Assessment With Noise

Overall Trends Across All Noise Levels
To simulate real-world data quality challenges, we introduced
artificial noise and repeated the integration process under 2
different orders. Figure 4 presents the final data quality scores
after full integration for both orders. The results confirm that
data quality scores remained consistent regardless of integration
sequence, indicating that the order of data source integration
does not alter overall data quality scores. While intermediate
values may vary slightly, the progression of completeness and
consistency follows the same overall patterns.
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Figure 4. Final data quality scores after full integration.

“Essential variable” completeness declined gradually from 100%
to 71% (9661 of 13,607 admissions), with the largest drop
occurring between 100_0 (100%) and 100_25 (93.65%),
continuing to decrease at higher noise levels. “Conditional
variable” completeness dropped sharply from 100% to 11.17%
(1521 of 13,607 admissions) at 100_25, reaching near zero at
higher noise levels, reflecting its strong dependence on
cross-source relationships.

Time sequence and data type consistency improved throughout
the integration, rising from 93.57% (12,732 of 13,607
admissions) and 92.51% (12,588 of 13,607 admissions) at 100_0
to 100% at 100_100. Procedure consistency for gender and age
increased, starting at 46.43% (6136 of 13,607 admissions) and
53.86% (7329 of 13,607 admissions), respectively, and reaching
99.01% (13,472 of 13,607 admissions) and 99.68% (13,563 of
13,607 admissions) at 100_100. Diagnosis consistency for
gender and age followed a different pattern, increasing steadily
from 40.98% (5576 of 13,607 admissions) and 50.91% (6927
of 13,607 admissions) at 100_0 to 58.94% (8021 of 13,607
admissions) and 66.82% (9089 of 13,607 admissions) at 100_75,
but both became unmeasurable at 100_100.

Detailed Analysis at 100% Consistency and 50%
Completeness Noise (100_50)
To gain deeper insights into how data quality changes during
data integration under specific noise levels, this section provides
a detailed analysis of the 100_50 noise level. Figure 5 presents

the data quality scores at each step of the integration process,
illustrating how completeness and consistency evolve as new
data sources are incorporated.

At this noise level, where consistency noise is set to 100% and
completeness noise to 50%, all relevant KG statements (100%)
are modified, with 50% of them containing missing data. The
introduction of ADMISSIONS caused time sequence
consistency to decrease slightly to 98.64% (13,422 of 13,607
admissions). With CPTEVENTS added, this metric dropped to
96.94% (13,191 of 13,607 admissions), where it remained stable
after DIAGNOSES_ICD. Procedure consistency for gender
declined to 59.14% (8047 of 13,607 admissions), while
procedure consistency for age dropped to 63.63% (8658 of
13,607 admissions).

As expected, missing data impacted completeness measures.
“Essential variable” completeness declined sharply, reaching
85% after DIAGNOSES_ICD. “Conditional variable”
completeness remained “N/A” for PATIENTS, ADMISSIONS,
and CPTEVENTS. Once DIAGNOSES_ICD was incorporated,
“conditional variable” completeness increased slightly to 1.45%
(195 of 13,607 admissions), reflecting a minimal recovery of
required data.

An analysis of data quality trends across other noise levels is
provided in Multimedia Appendix 1, detailing variations in
completeness and consistency scores under different conditions.

JMIR Med Inform 2025 | vol. 13 | e75275 | p. 9https://medinform.jmir.org/2025/1/e75275
(page number not for citation purposes)

Declerck et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 5. Data quality scores at each step of the integration process. CPT: Current Procedural Terminology; ICD: International Classification of
Diseases.

Discussion

Principal Findings
Our findings demonstrate consistent patterns in data quality
dynamics across all noise levels, characterized by a progressive
degradation in consistency scores and a steady decline in
completeness as noise levels increase. The category of “essential
variable” completeness deteriorates gradually as noise
accumulates, while “conditional variable” completeness declines
more sharply due to its dependence on relationships across data
sources. Meanwhile, “time sequence” and “data type
consistency” remain relatively stable, whereas procedure and
diagnosis consistency degrade significantly based on integration
order, underscoring the importance of cross-source attribute
alignment.

These trends confirm the adaptability of the AIDAVA data
quality framework, which maintains stability in core structural
checks (eg, time and data type validation) even as data volume
and disorder increase. AIDAVA’s patient-level modularity
enables SHACL validation to be performed independently per
patient, supporting parallel processing and scalability. This
design allows for incremental integration of new patient data
without reprocessing the full dataset, making the framework
suitable for real-time or batch-based deployments. However,
the results also revealed that procedure and diagnosis
consistency were more sensitive to integration order,
emphasizing the need for targeted, domain-specific validation
strategies during data merging.

To more explicitly frame these insights, the AIDAVA
framework not only detects data quality issues with high
granularity but also enables their continuous assessment
throughout the integration pipeline. By embedding
SHACL-based rules directly into the SKG and PHKG
construction process, AIDAVA captures completeness and
consistency violations both within and across data sources. This
staged, rule-based validation empowers the framework to not

only detect anomalies but also manage them by pinpointing
their origin and timing—enabling early intervention and
downstream reliability.

Completeness and Conditional Dependencies in Data
Integration
When examining the completeness dimension, the results reveal
distinct patterns of degradation across our 2 categories:
“essential variable” and “conditional variable” completeness.
As expected, both categories are increasingly affected as the
completeness ratio level rises. However, their rates of decline
differ, highlighting important nuances in their behavior during
the integration process. “Essential variable” completeness
steadily declines, suggesting that core patient attributes are
progressively impacted by noise—particularly those embedded
in the PATIENTS table. In contrast, “conditional variable”
completeness cannot be meaningfully assessed until the final
integration step, as it depends on the availability of
interconnected variables across all datasets. This explains why
intermediate scores are marked as “N/A” and only become
valuable after the final source (DIAGNOSES_ICD) is added.

These findings emphasize that “conditional variable”
completeness is inherently linked to the integration process
itself rather than noise alone. Unlike “essential variable”
completeness, which is primarily affected by missing values
within a single dataset, “conditional variable” completeness is
more directly influenced by the presence or absence of
cross-source relationships. As a result, its behavior differs from
other completeness measures, demonstrating that missing values
alone do not dictate “conditional variable” completeness
trends—rather, it is the sequence and completeness of integrated
sources that determine its final value.

Consistency Challenges in Stepwise Data Integration
The consistency results reveal that step-by-step integration of
data sources introduces challenges related to compliance with
data type and time sequence consistency. However, these
declines are relatively minor, suggesting that the overall format
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of the ontology remains stable and that temporal relationships
are preserved throughout the integration process. Notably, time
sequence consistency exhibits only minor fluctuations,
reinforcing its resilience to integration steps. In contrast, the
categories related to procedure consistency and diagnosis
consistency show more pronounced declines, highlighting the
critical role of integration order in determining data quality
outcomes. The results indicate that integrating the CPTEVENTS
table first has a substantial impact on procedure consistency,
causing notable drops in gender and age consistency. Similarly,
the integration of DIAGNOSES_ICD exacerbates
diagnosis-related inconsistencies, suggesting that diagnostic
data is particularly vulnerable to integration-induced errors.
This trend highlights that procedure and diagnosis consistency
are more reliant on cross-source relationships and attribute
alignment than on other categories, such as data type and time
sequence consistency.

The findings suggest that a case-specific data quality strategy
is essential when integrating different types of health data. This
underscores the need for tailored validation approaches that
consider the vulnerabilities of various clinical data types during
integration. This need for targeted strategies is evident both
within and across data quality dimensions. For instance, within
consistency, procedure, and diagnosis categories exhibit greater
instability, highlighting that medical domain-specific content
is more sensitive to inconsistencies than general data attributes
such as timestamps or data types.

Interdependencies Between Data Quality Dimensions
Beyond individual dimensions, these findings offer an in-depth
perspective on the interrelationships between data quality
dimensions, reinforcing the complex and dynamic nature of
data quality in health data integration. While previous research
has suggested that data quality dimensions are interrelated
[42,46], our results offer a unique demonstration of how these
interdependencies manifest in real-world integration scenarios.
A key finding from the results is that consistency measures
alone cannot be fully trusted without ensuring adequate
completeness. The results reveal that missing data directly
impacts the interpretability of consistency scores, making it
difficult to determine whether the observed consistency is
genuine or merely an artifact of incomplete data. When key
information is missing, certain contradictions—such as conflicts
between diagnoses and procedures—may go undetected, creating
a false impression of data reliability.

These insights highlight the critical need for health data
integration strategies that not only address individual data
quality dimensions but also account for their interdependencies.
Overlooking these relationships can lead to misleading
assessments, where high consistency scores mask underlying
data gaps, or missing values distort the true extent of
consistencies. To ensure reliable data quality assessment,
integration of data must prioritize completeness validation before
consistency assessment, ensuring that inconsistencies are
accurately detected rather than artificially hidden. By adopting
an approach that considers both dimension-specific
vulnerabilities and their cross-dimensional effects, we can
enhance the integrity of downstream analyses, clinical

decision-making, and secondary research
applications—ultimately improving the reliability of integrated
health data. Overall, our findings demonstrate that
ontology-constrained SHACL validation enables interpretable,
dynamic assessment of health data quality, with robustness
across integration orders and degradation levels. This paper also
extends prior research [47] (REF) by embedding semantic and
clinical context into the data validation process. While existing
tools such as OHDSI’s Data Quality Dashboard provide valuable
population-level data quality checks after extract, transform,
load into the OMOP common data model (eg, conformance,
completeness, and plausibility), AIDAVA complements these
approaches by offering patient-level validation throughout the
integration pipeline. This facilitates early detection and localized
resolution of issues that might otherwise remain hidden in
aggregate-level analyses.

Limitations
Several limitations must be acknowledged to contextualize the
findings and guide future research directions. First, this study
was conducted using the MIMIC-III dataset, a structured and
deidentified critical care database. While this dataset provides
a controlled environment for testing data integration, it does
not fully capture the heterogeneity and complexity of live health
care data environments. Relying on a single dataset also limits
the generalizability of our findings, as results may differ across
other institutions, coding practices, and patient populations.
Although MIMIC-III was chosen for its structured format and
public availability, access to additional well-curated benchmark
datasets remains restricted due to privacy, licensing, and
interoperability constraints. Future research should evaluate the
framework on diverse, nondeidentified hospital datasets that
better reflect real-world conditions. Second, this study simulated
real-world data quality issues by introducing structured artificial
noise, allowing for a systematic evaluation of the framework
under different levels of data inconsistencies. However, artificial
noise does not fully replicate the unpredictability of errors found
in operational health data. Health datasets often contain
context-dependent inconsistencies, undocumented missingness
patterns, and human-introduced biases that cannot be easily
simulated. Future research should explore how the framework
performs when applied in a real-world scenario. Third, the
AIDAVA framework evaluated consistency and completeness
as the core data quality dimensions. However, other important
dimensions, such as timeliness and uniqueness, were not
explicitly assessed in this study. Future work should extend the
framework to incorporate a broader range of quality dimensions,
ensuring a more complete evaluation of integrated health data.
Last, this study demonstrated the effectiveness of the AIDAVA
framework in a controlled dataset; its scalability for large-scale,
high-velocity health data integration was not examined in depth.
Future research should investigate the framework’s performance
in large-scale deployments. Finally, while AIDAVA was tested
using structured simulations, adapting the framework for use
with unstructured or semistructured real-world data (eg,
electronic health records or clinical registries) remains a future
challenge. These sources often include free text, heterogeneous
coding, and loosely structured formats that require preprocessing
steps (eg, terminology mapping). Investigating these adaptations

JMIR Med Inform 2025 | vol. 13 | e75275 | p. 11https://medinform.jmir.org/2025/1/e75275
(page number not for citation purposes)

Declerck et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


is part of the ongoing research agenda within the AIDAVA
project.

Conclusions
This study evaluated the AIDAVA data quality framework for
its effectiveness in detecting and managing data quality
issues—specifically completeness and consistency—during the
integration of heterogeneous health data. Using the MIMIC-III
dataset, we simulated real-world challenges by introducing
structured noise and systematically assessed how the framework
performed across different integration sequences and noise
levels. The staged SHACL-based validation enabled fine-grained
analysis of data quality at multiple points along the integration
pipeline. Our findings show that the AIDAVA framework
successfully identifies both missing and inconsistent data
elements and provides interpretable feedback at each stage of
transformation. Together, these findings support the AIDAVA
framework’s suitability for dynamic, life cycle–based data
quality assessment. By enabling validation at each
transformation step, the framework allows early detection,
interpretable tracking, and strategic mitigation of data quality
issues. Importantly, it encourages a holistic view of data

quality—one that considers not only dimension-specific
weaknesses but also how dimensions influence each other across
the pipeline. As health systems increasingly rely on integrated
datasets for clinical and research applications, frameworks such
as AIDAVA provide essential infrastructure for building trust
in secondary health data use.

Future Research
Future work should focus on improving the AIDAVA data
quality framework by aligning SHACL shapes with the OMOP
common data model [41] and comparing multiple integration
orders to assess their impact on data quality. Developing an
OMOP-based RDF schema and implementing SHACL
constraints would also support interoperability with OHDSI
tools and promote the broader adoption of semantic,
constraint-driven approaches to data quality. Expanding SHACL
validation to laboratory results, prescriptions, and other hospital
records will enhance its clinical applicability. Additionally,
developing more realistic noise introduction methods will better
simulate real-world inconsistencies, strengthening the
framework’s robustness.

Acknowledgments
The authors are grateful to all the members of the AIDAVA consortium who diligently support the project with their expertise.
A special thanks goes to the team at the Department of Advanced Computing Sciences, Institute of Data Science at Maastricht
University, for their invaluable contributions in setting up the experiment and developing the mechanism for noise addition, which
was essential for this study. The authors declare that financial support was received for the research, authorship, or publication
of this paper. This work was supported by the European Union’s Horizon Europe research and innovation program under grant
agreements No. 101057062 (AIDAVA). Supported by a license waiver from SNOMED (Systematized Nomenclature of Medicine)
International for a period of 2 years (2024-2025), on condition that SNOMED CT (Systematized Nomenclature of Medicine –
Clinical Tems) is not used or deployed commercially. The work of the Swiss Partner (MIDATA) received funding by the Swiss
State Secretariat for Education, Research and Innovation (SBFI), subvention contract 22.00093, REF-1131-52104.

Conflicts of Interest
None declared.

Multimedia Appendix 1
A detailed breakdown of progressive changes at specific noise levels and analysis of data quality trends across other noise levels.
[DOCX File , 439 KB-Multimedia Appendix 1]

References

1. Beresniak A, Schmidt A, Proeve J, Bolanos E, Patel N, Ammour N, et al. Cost-benefit assessment of using electronic health
records data for clinical research versus current practices: contribution of the electronic health records for clinical research
(EHR4CR) European Project. Contemp Clin Trials. 2016;46:85-91. [doi: 10.1016/j.cct.2015.11.011] [Medline: 26600286]

2. van Drumpt S, Chawla K, Barbereau T, Spagnuelo D, van de Burgwal L. Secondary use under the European Health Data
Space: setting the scene and towards a research agenda on privacy-enhancing technologies. Front Digit Health.
2025;7:1602101. [FREE Full text] [doi: 10.3389/fdgth.2025.1602101] [Medline: 40613075]

3. De Moor G, Sundgren M, Kalra D, Schmidt A, Dugas M, Claerhout B, et al. Using electronic health records for clinical
research: the case of the EHR4CR project. J Biomed Inf. 2015;53:162-173. [FREE Full text] [doi: 10.1016/j.jbi.2014.10.006]
[Medline: 25463966]

4. Saelaert M, Mathieu L, Van Hoof W, Devleesschauwer B. Expanding citizen engagement in the secondary use of health
data: an opportunity for national health data access bodies to realise the intentions of the European Health Data Space. Arch
Public Health. 2023;81(1):168. [FREE Full text] [doi: 10.1186/s13690-023-01182-4] [Medline: 37700330]

5. Krusche P, Trigg L, Boutros PC, Mason CE, De La Vega FM, Moore BL, et al. Global Alliance for GenomicsHealth
Benchmarking Team. Best practices for benchmarking germline small-variant calls in human genomes. Nat Biotechnol.
2019;37(5):555-560. [FREE Full text] [doi: 10.1038/s41587-019-0054-x] [Medline: 30858580]

JMIR Med Inform 2025 | vol. 13 | e75275 | p. 12https://medinform.jmir.org/2025/1/e75275
(page number not for citation purposes)

Declerck et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=medinform_v13i1e75275_app1.docx&filename=86a09947319ebcefa5f5e32e90b09b77.docx
https://jmir.org/api/download?alt_name=medinform_v13i1e75275_app1.docx&filename=86a09947319ebcefa5f5e32e90b09b77.docx
http://dx.doi.org/10.1016/j.cct.2015.11.011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26600286&dopt=Abstract
https://doi.org/10.3389/fdgth.2025.1602101
http://dx.doi.org/10.3389/fdgth.2025.1602101
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=40613075&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(14)00226-3
http://dx.doi.org/10.1016/j.jbi.2014.10.006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25463966&dopt=Abstract
https://archpublichealth.biomedcentral.com/articles/10.1186/s13690-023-01182-4
http://dx.doi.org/10.1186/s13690-023-01182-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37700330&dopt=Abstract
https://europepmc.org/abstract/MED/30858580
http://dx.doi.org/10.1038/s41587-019-0054-x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30858580&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


6. Alonzo TA. Clinical prediction models: a practical approach to development, validation, and updating: by Ewout W.
Steyerberg. Am J Epidemiol. May 28, 2009;170(4):528. [doi: 10.1093/aje/kwp129] [Medline: 15583369]

7. Rajkomar A, Oren E, Chen K, Dai AM, Hajaj N, Hardt M, et al. Scalable and accurate deep learning with electronic health
records. npj Digit Med. 2018;1:18. [FREE Full text] [doi: 10.1038/s41746-018-0029-1] [Medline: 31304302]

8. Bernardi FA, Alves D, Crepaldi N, Yamada DB, Lima VC, Rijo R. Data quality in health research: integrative literature
review. J Med Internet Res. 2023;25:e41446. [FREE Full text] [doi: 10.2196/41446] [Medline: 37906223]

9. Shara N, Anderson KM, Falah N, Ahmad MF, Tavazoei D, Hughes JM, et al. Early identification of maternal cardiovascular
risk through sourcing and preparing electronic health record data: machine learning study. JMIR Med Inf. 2022;10(2):e34932.
[FREE Full text] [doi: 10.2196/34932] [Medline: 35142637]

10. Wei W, Leibson CL, Ransom JE, Kho AN, Caraballo PJ, Chai HS, et al. Impact of data fragmentation across healthcare
centers on the accuracy of a high-throughput clinical phenotyping algorithm for specifying subjects with type 2 diabetes
mellitus. J Am Med Inf Assoc. 2012;19(2):219-224. [FREE Full text] [doi: 10.1136/amiajnl-2011-000597] [Medline:
22249968]

11. Turbow SD, Ali MK, Culler SD, Rask KJ, Perkins MM, Clevenger CK, et al. Association of fragmented readmissions and
electronic information sharing with discharge destination among older adults. JAMA Netw Open. 2023;6(5):e2313592.
[FREE Full text] [doi: 10.1001/jamanetworkopen.2023.13592] [Medline: 37191959]

12. Razzaghi H, Greenberg J, Bailey LC. Developing a systematic approach to assessing data quality in secondary use of clinical
data based on intended use. Learn Health Syst. 2022;6(1):e10264. [FREE Full text] [doi: 10.1002/lrh2.10264] [Medline:
35036548]

13. Huang Y, Guo J, Chen Z, Xu J, Donahoo WT, Carasquillo O. The impact of electronic health records (EHR) data continuity
on prediction model fairness and racial-ethnic disparities. arXiv. Preprint posted online on September 5, 2023. [doi:
10.48550/arXiv.2309.01935]

14. Li Y, Sperrin M, Martin G, Ashcroft D, van Staa TP. Examining the impact of data quality and completeness of electronic
health records on predictions of patients' risks of cardiovascular disease. Int J Med Inf. 2020;133:104033. [doi:
10.1016/j.ijmedinf.2019.104033] [Medline: 31785526]

15. Declerck J, Vandenberk B, Deschepper M, Colpaert K, Cool L, Goemaere J, et al. Building a foundation for high-quality
health data: multihospital case study in Belgium. JMIR Med Inf. 2024;12:e60244. [FREE Full text] [doi: 10.2196/60244]
[Medline: 39727158]

16. Deng Y, Jiang X, Long Q. Privacy-preserving methods for vertically partitioned incomplete data. AMIA Annu Symp Proc.
2020;2020:348-357. [FREE Full text] [Medline: 33936407]

17. Verheij RA, Curcin V, Delaney BC, McGilchrist MM. Possible sources of bias in primary care electronic health record
data use and reuse. J Med Internet Res. 2018;20(5):e185. [FREE Full text] [doi: 10.2196/jmir.9134] [Medline: 29844010]

18. Lucero RJ, Kearney J, Cortes Y, Arcia A, Appelbaum P, Fernández RL, et al. Benefits and risks in secondary use of digitized
clinical data: views of community members living in a predominantly ethnic minority urban neighborhood. AJOB Empir
Bioeth. 2015;6(2):12-22. [FREE Full text] [doi: 10.1080/23294515.2014.949906] [Medline: 26101782]

19. Declerck J, Kalra D, Vander Stichele R, Coorevits P. Frameworks, dimensions, definitions of aspects, and assessment
methods for the appraisal of quality of health data for secondary use: comprehensive overview of reviews. JMIR Med Inf.
2024;12:e51560. [FREE Full text] [doi: 10.2196/51560] [Medline: 38446534]

20. Bian J, Lyu T, Loiacono A, Viramontes TM, Lipori G, Guo Y, et al. Assessing the practice of data quality evaluation in a
national clinical data research network through a systematic scoping review in the era of real-world data. J Am Med Inf
Assoc. 2020;27(12):1999-2010. [FREE Full text] [doi: 10.1093/jamia/ocaa245] [Medline: 33166397]

21. Kahn MG, Callahan TJ, Barnard J, Bauck AE, Brown J, Davidson BN, et al. A harmonized data quality assessment
terminology and framework for the secondary use of electronic health record data. EGEMS (Wash DC). 2016;4(1):1244.
[FREE Full text] [doi: 10.13063/2327-9214.1244] [Medline: 27713905]

22. Liaw S, Guo JGN, Ansari S, Jonnagaddala J, Godinho MA, Borelli AJ, et al. Quality assessment of real-world data repositories
across the data life cycle: a literature review. J Am Med Inf Assoc. 2021;28(7):1591-1599. [FREE Full text] [doi:
10.1093/jamia/ocaa340] [Medline: 33496785]

23. Ozonze O, Scott PJ, Hopgood AA. Automating electronic health record data quality assessment. J Med Syst. 2023;47(1):23.
[FREE Full text] [doi: 10.1007/s10916-022-01892-2] [Medline: 36781551]

24. Weiskopf NG, Bakken S, Hripcsak G, Weng C. A data quality assessment guideline for electronic health record data reuse.
EGEMS (Wash DC). 2017;5(1):14. [FREE Full text] [doi: 10.5334/egems.218] [Medline: 29881734]

25. Sendak M, Sirdeshmukh G, Ochoa T, Premo H, Tang L, Niederhoffer K. Development and validation of ML-DQA – a
machine learning data quality assurance framework for healthcare. Proceedings of the 7th Machine Learning for Healthcare
Conference; Proceedings of Machine Learning Research: PMLR. 2022;182:741-759.

26. Seitl F, Kovárík T, Mirshahi S, Krystufek J, Dujava R, Ondreicka M. Assessing the quality of information extraction. arXiv.
Preprint posted online on May 22, 2024. [doi: 10.48550/arXiv.2404.04068]

27. Azeroual O, Saake G, Abuosba M, Schöpfel J. Text data mining and data quality management for research information
systems in the context of open data and open science. arXiv. Preprint posted online on December 11, 2018. [doi:
10.48550/arXiv.1812.04298]

JMIR Med Inform 2025 | vol. 13 | e75275 | p. 13https://medinform.jmir.org/2025/1/e75275
(page number not for citation purposes)

Declerck et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://dx.doi.org/10.1093/aje/kwp129
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15583369&dopt=Abstract
https://doi.org/10.1038/s41746-018-0029-1
http://dx.doi.org/10.1038/s41746-018-0029-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31304302&dopt=Abstract
https://www.jmir.org/2023//e41446/
http://dx.doi.org/10.2196/41446
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37906223&dopt=Abstract
https://medinform.jmir.org/2022/2/e34932/
http://dx.doi.org/10.2196/34932
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35142637&dopt=Abstract
https://europepmc.org/abstract/MED/22249968
http://dx.doi.org/10.1136/amiajnl-2011-000597
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22249968&dopt=Abstract
https://europepmc.org/abstract/MED/37191959
http://dx.doi.org/10.1001/jamanetworkopen.2023.13592
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37191959&dopt=Abstract
https://europepmc.org/abstract/MED/35036548
http://dx.doi.org/10.1002/lrh2.10264
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35036548&dopt=Abstract
http://dx.doi.org/10.48550/arXiv.2309.01935
http://dx.doi.org/10.1016/j.ijmedinf.2019.104033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31785526&dopt=Abstract
https://medinform.jmir.org/2024//e60244/
http://dx.doi.org/10.2196/60244
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39727158&dopt=Abstract
https://europepmc.org/abstract/MED/33936407
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33936407&dopt=Abstract
https://www.jmir.org/2018/5/e185/
http://dx.doi.org/10.2196/jmir.9134
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29844010&dopt=Abstract
https://europepmc.org/abstract/MED/26101782
http://dx.doi.org/10.1080/23294515.2014.949906
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26101782&dopt=Abstract
https://medinform.jmir.org/2024//e51560/
http://dx.doi.org/10.2196/51560
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38446534&dopt=Abstract
https://europepmc.org/abstract/MED/33166397
http://dx.doi.org/10.1093/jamia/ocaa245
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33166397&dopt=Abstract
https://europepmc.org/abstract/MED/27713905
http://dx.doi.org/10.13063/2327-9214.1244
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27713905&dopt=Abstract
https://europepmc.org/abstract/MED/33496785
http://dx.doi.org/10.1093/jamia/ocaa340
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33496785&dopt=Abstract
https://europepmc.org/abstract/MED/36781551
http://dx.doi.org/10.1007/s10916-022-01892-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36781551&dopt=Abstract
https://europepmc.org/abstract/MED/29881734
http://dx.doi.org/10.5334/egems.218
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29881734&dopt=Abstract
http://dx.doi.org/10.48550/arXiv.2404.04068
http://dx.doi.org/10.48550/arXiv.1812.04298
http://www.w3.org/Style/XSL
http://www.renderx.com/


28. Palojoki S, Lehtonen L, Vuokko R. Semantic interoperability of electronic health records: systematic review of alternative
approaches for enhancing patient information availability. JMIR Med Inf. 2024;12:e53535. [FREE Full text] [doi:
10.2196/53535] [Medline: 38686541]

29. Hendler J. Data integration for heterogenous datasets. Big Data. 2014;2(4):205-215. [FREE Full text] [doi:
10.1089/big.2014.0068] [Medline: 25553272]

30. AIDAVA. 2025. URL: https://www.aidava.eu/ [accessed 2025-10-24]
31. Juran JM, Gryna FM, Bingham RS. Quality Control Handbook. New York. McGraw-Hill; 1974.
32. Liaw S, Rahimi A, Ray P, Taggart J, Dennis S, de Lusignan S, et al. Towards an ontology for data quality in integrated

chronic disease management: a realist review of the literature. Int J Med Inf. 2013;82(1):10-24. [doi:
10.1016/j.ijmedinf.2012.10.001] [Medline: 23122633]

33. Issa S, Adekunle O, Hamdi F, Cherfi SS, Dumontier M, Zaveri A. Knowledge graph completeness: a systematic literature
review. IEEE Access. 2021;9:31322-31339. [doi: 10.1109/access.2021.3056622]

34. Huser V, DeFalco FJ, Schuemie M, Ryan PB, Shang N, Velez M, et al. Multisite evaluation of a data quality tool for
patient-level clinical data sets. EGEMS (Wash DC). 2016;4(1):1239. [FREE Full text] [doi: 10.13063/2327-9214.1239]
[Medline: 28154833]

35. Ghalavand H, Shirshahi S, Rahimi A, Zarrinabadi Z, Amani F. Common data quality elements for health information
systems: a systematic review. BMC Med Inf Decis Mak. 2024;24(1):243. [FREE Full text] [doi: 10.1186/s12911-024-02644-7]
[Medline: 39223578]

36. Schmidt L, Finnerty Mutlu AN, Elmore R, Olorisade BK, Thomas J, Higgins JPT. Data extraction methods for systematic
review (semi)automation: update of a living systematic review. F1000Res. 2021;10:401. [FREE Full text] [doi:
10.12688/f1000research.51117.3] [Medline: 34408850]

37. Schmidt CO, Struckmann S, Enzenbach C, Reineke A, Stausberg J, Damerow S, et al. Facilitating harmonized data quality
assessments. A data quality framework for observational health research data collections with software implementations
in R. BMC Med Res Methodol. 2021;21(1):63. [FREE Full text] [doi: 10.1186/s12874-021-01252-7] [Medline: 33810787]

38. de Zegher I, Norak K, Steiger D, Müller H, Kalra D, Scheenstra B, et al. Artificial intelligence based data curation: enabling
a patient-centric European health data space. Front Med (Lausanne). 2024;11:1365501. [FREE Full text] [doi:
10.3389/fmed.2024.1365501] [Medline: 38813389]

39. Mohamed Y, Song X, McMahon TM, Sahil S, Zozus M, Wang Z, Greater Plains Collaborative, et al. Electronic health
record data quality variability across a multistate clinical research network. J Clin Transl Sci. 2023;7(1):e130. [FREE Full
text] [doi: 10.1017/cts.2023.548] [Medline: 37396818]

40. Ham K. OpenRefine (version 2.5). http://openrefine.org. Free, open-source tool for cleaning and transforming data. J Med
Libr Assoc. 2013;101(3):233-234. [FREE Full text] [doi: 10.3163/1536-5050.101.3.020]

41. Lewis AE, Weiskopf N, Abrams ZB, Foraker R, Lai AM, Payne PRO, et al. Electronic health record data quality assessment
and tools: a systematic review. J Am Med Inf Assoc. 2023;30(10):1730-1740. [FREE Full text] [doi: 10.1093/jamia/ocad120]
[Medline: 37390812]

42. Syed R, Eden R, Makasi T, Chukwudi I, Mamudu A, Kamalpour M, et al. Digital health data quality issues: systematic
review. J Med Internet Res. 2023;25:e42615. [FREE Full text] [doi: 10.2196/42615] [Medline: 37000497]

43. Fraser HSF, Mugisha M, Bacher I, Ngenzi JL, Seebregts C, Umubyeyi A, et al. Factors influencing data quality in electronic
health record systems in 50 health facilities in Rwanda and the role of clinical alerts: cross-sectional observational study.
JMIR Public Health Surveill. 2024;10:e49127. [FREE Full text] [doi: 10.2196/49127] [Medline: 38959048]

44. MaastrichtU-IDS / RDFCraft. 2025. URL: https://github.com/MaastrichtU-IDS/RDFCraft [accessed 2025-10-24]
45. Khaled A, Sabir M, Qureshi R, Camillo M, Caruso, Guarrasi V. Leveraging MIMIC datasets for better digital health: a

review on open problems, progress highlights, and future promises. arXiv. Preprint posted online on June 15, 2025. [doi:
10.48550/arXiv.2506.12808]

46. Badr N. Guidelines for health IT addressing the quality of data in EHR information systems. 2019. Presented at: Proceedings
of the 12th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2019); February
22-24, 2019:169-181; Prague, Czech Republic. [doi: 10.5220/0006941001690181]

47. Touré V, Krauss P, Gnodtke K, Buchhorn J, Unni D, Horki P, et al. FAIRification of health-related data using semantic
web technologies in the Swiss personalized health network. Sci Data. 2023;10(1):127. [FREE Full text] [doi:
10.1038/s41597-023-02028-y] [Medline: 36899064]

Abbreviations
AIDAVA: artificial intelligence–powered data curation and validation
FHIR: Fast Healthcare Interoperability Resources
ICD: International Classification of Diseases
ICD-9: International Classification of Diseases, Ninth Revision
KG: knowledge graph
LOINC: Logical Observation Identifiers Names and Codes

JMIR Med Inform 2025 | vol. 13 | e75275 | p. 14https://medinform.jmir.org/2025/1/e75275
(page number not for citation purposes)

Declerck et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://medinform.jmir.org/2024//e53535/
http://dx.doi.org/10.2196/53535
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38686541&dopt=Abstract
https://www.liebertpub.com/doi/10.1089/big.2014.0068?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.1089/big.2014.0068
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25553272&dopt=Abstract
https://www.aidava.eu/
http://dx.doi.org/10.1016/j.ijmedinf.2012.10.001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23122633&dopt=Abstract
http://dx.doi.org/10.1109/access.2021.3056622
https://europepmc.org/abstract/MED/28154833
http://dx.doi.org/10.13063/2327-9214.1239
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28154833&dopt=Abstract
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-024-02644-7
http://dx.doi.org/10.1186/s12911-024-02644-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39223578&dopt=Abstract
https://europepmc.org/abstract/MED/34408850
http://dx.doi.org/10.12688/f1000research.51117.3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34408850&dopt=Abstract
https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/s12874-021-01252-7
http://dx.doi.org/10.1186/s12874-021-01252-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33810787&dopt=Abstract
https://europepmc.org/abstract/MED/38813389
http://dx.doi.org/10.3389/fmed.2024.1365501
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38813389&dopt=Abstract
https://europepmc.org/abstract/MED/37396818
https://europepmc.org/abstract/MED/37396818
http://dx.doi.org/10.1017/cts.2023.548
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37396818&dopt=Abstract
http://openrefine.org
http://dx.doi.org/10.3163/1536-5050.101.3.020
https://europepmc.org/abstract/MED/37390812
http://dx.doi.org/10.1093/jamia/ocad120
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37390812&dopt=Abstract
https://www.jmir.org/2023//e42615/
http://dx.doi.org/10.2196/42615
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37000497&dopt=Abstract
https://publichealth.jmir.org/2024//e49127/
http://dx.doi.org/10.2196/49127
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38959048&dopt=Abstract
https://github.com/MaastrichtU-IDS/RDFCraft
http://dx.doi.org/10.48550/arXiv.2506.12808
http://dx.doi.org/10.5220/0006941001690181
https://doi.org/10.1038/s41597-023-02028-y
http://dx.doi.org/10.1038/s41597-023-02028-y
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36899064&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


MIMIC-III: Medical Information Mart for Intensive Care-III
OHDSI: Observational Health Data Sciences and Informatics
OMOP: Observational Medical Outcomes Partnership
PHKG: personal health knowledge graph
RDF: Resource Description Framework
SHACL: Shapes Constraint Language
SKG: source knowledge graph
SNOMED: Systematized Nomenclature of Medicine
SNOMED CT: Systematized Nomenclature of Medicine–Clinical Terms

Edited by A Benis; submitted 31.Mar.2025; peer-reviewed by M Yaqub, Y Wang, H Kim; comments to author 16.Jun.2025; revised
version received 07.Aug.2025; accepted 06.Oct.2025; published 12.Nov.2025

Please cite as:
Declerck J, Kılıç ÖD, Emir Erol E, Mehryar S, Kalra D, de Zegher I, Celebi R
Assessing Data Quality in Heterogeneous Health Care Integration: Simulation Study of the AIDAVA Framework
JMIR Med Inform 2025;13:e75275
URL: https://medinform.jmir.org/2025/1/e75275
doi: 10.2196/75275
PMID:

©Jens Declerck, Ömer Durukan Kılıç, Ensar Emir Erol, Shervin Mehryar, Dipak Kalra, Isabelle de Zegher, Remzi Celebi.
Originally published in JMIR Medical Informatics (https://medinform.jmir.org), 12.Nov.2025. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR
Medical Informatics, is properly cited. The complete bibliographic information, a link to the original publication on
https://medinform.jmir.org/, as well as this copyright and license information must be included.

JMIR Med Inform 2025 | vol. 13 | e75275 | p. 15https://medinform.jmir.org/2025/1/e75275
(page number not for citation purposes)

Declerck et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://medinform.jmir.org/2025/1/e75275
http://dx.doi.org/10.2196/75275
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

