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Abstract

Background: Integrated hedlth data are foundational for secondary use, research, and policymaking. However, data quality
issues—such as missing values and inconsistencies—are common due to the heterogeneity of health data sources. Existing
frameworks often use stetic, 1-time assessments, which limit their ability to address quality issues across evolving data pipelines.

Objective:  This study evaluates the AIDAVA (artificial intelligence—powered data curation and validation) data quality
framework, which introduces dynamic, life cycle-based validation of health data using knowledge graph technol ogiesand SHACL
(Shapes Constraint Language)-based rules. The framework is assessed for its ability to detect and manage data quality
issues—specifically, completeness and consistency—during integration.

Methods: Usingthe MIMIC-I11 (Medical Information Mart for Intensive Care-111) dataset, we simulated real-world data quality
challenges by introducing structured noise, including missing values and logical inconsistencies. The data was transformed into
source knowledge graphs and integrated into a unified personal health knowledge graph. SHACL validation rules were applied
iteratively during the integration process, and data quality was assessed under varying noise levels and integration orders.

Results: The AIDAVA framework effectively detected completeness and consistency issues across all scenarios. Completeness
was shown to influence the interpretability of consistency scores, and domain-specific attributes (eg, diagnoses and procedures)
were more sensitive to integration order and data gaps.

Conclusions:  AIDAVA supports dynamic, rule-based validation throughout the data life cycle. By addressing both
dimension-specific vulnerabilities and cross-dimensional effects, it lays the groundwork for scalable, high-quality health data
integration. Future work should explore deployment in live clinical settings and expand to additional quality dimensions.

(JMIR Med Inform 2025;13:e75275) doi: 10.2196/75275
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medical research [1-4]. Accurate and well-structured data
enhance research reproducibility [5-7], which in turn drives
Background more effective clinical decision-making and improved patient

) ) ) ) ) outcomes. However, as health data is collected across diverse
Th_e integration of hlgh—quallty, complete, and interoperable o heterogeneous sources|[8,9], its quality can be compromised
patient health records is essentia to modern health care and by fragmentation [10,11], variability [12,13], and incomplete
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information [ 14-16]. These challenges compromise data usability
and hinder the development of unified, clinically meaningful
datasets suitable for both primary and secondary uses[17,18].

Existing efforts on health data quality often focus on defining
standardized quality dimensions and organizing these into
structured frameworks [19-23]. However, many current
approachesrely on static, 1-time evaluations that do not reflect
the dynamic and iterative nature of the entire data life cycle
[24,25]. This limits their effectiveness in identifying evolving
quality issues that emerge across stages of data
transformation—such as extraction [26,27], harmonization
[28,29], or final validation [21]—as they do not provide
continuous, iterative assessment.

To address this gap, the AIDAVA (artificid
intelligence—powered data curation and validation) project [30],
launched in 2022 as part of aHorizon Europeinitiative, proposes
a dynamic data quality framework that enables continuous
assessment throughout the data life cycle. At its core is the
personal health knowledge graph (PHKG), a patient-centered,
interoperable data model built using knowledge graph (KG)
technologies and validated with SHACL (Shapes Constraint
Language)—based rules. Thisapproach allowsfor the assessment
of data quality constraints across multiple integration stages.

Textbox 1. Main contributions of this paper.
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For instance, if apatient record includes adiagnosis of prostate
cancer but the patient islisted asafemale, or if adischarge date
appears earlier than the admission date, AIDAVA's rule-based
validation will automatically detect and flag these
inconsistencies during the integration process.

This paper aso demonstrates how completeness directly
influences the interpretability of consistency scores.

This paper evaluates the AIDAVA framework’s effectiveness
in detecting and improving data quality issues, with aparticular
focus on completeness and consistency. Theframework’s ability
to validate data dynamically across stages of integration is
essential for supporting artificial intelligence—driven, automated
curation workflows, a central goal of the AIDAVA project. As
health care systemsincreasingly rely on semantic technologies
and automation to manage large-scal e, heterogeneous data, life
cycle-based quality monitoring becomes a requirement. By
situating this work within that broader vision, we aim to
demonstrate how dynamic rule-based validation can enhance
the reliability and scalability of next-generation health data
integration pipelines. It also investigates how these dimensions
evolve across the data transformation pipeline, highlighting
their interdependencies and implications for integrated health
data (Textbox 1).

« Introduces the AIDAVA (artificial intelligence—-powered data curation and validation) framework for dynamic health data quality validation
using SHACL (Shapes Constraint Language) and knowledge graphs.

«  Defines and applies completeness and consistency rules across the integration pipeline.
«  Simulatesrealistic data quality issues using controlled noise in the MIMIC-I11 (Medical Information Mart for Intensive Care-111) dataset.

«  Evaluates SHACL validation across different integration sequences and noise levels.

Related Work

Ensuring the quality of integrated health care data, particularly
for the secondary use of electronic health records, has been the
subject of extensive research [31]. Prior efforts generally focus
on defining and measuring data quality along dimensions such
as completeness, consistency, conformance, and plausibility
[20-24]. These dimensions serve as the foundation for several
frameworks and tools devel oped to detect anomalies and enforce
standards across clinical datasets [15,22,32].

Framework-based approaches have sought to structure and
formalize the assessment of health data quality. Notably, Kahn
et al [21] introduced a widely adopted framework that groups
quality concerns into 3 core dimensions—completeness,
conformance, and plausi bility—further divided into verification
and validation contexts. This framework laid the groundwork
for systematic quality checks but remains limited to static
evaluations that do not adapt to the changing nature of data
pipelines.

Dimension-specific studies have also provided deeper insights.
Issa et a [33] conducted a comprehensive review of
completenessin KGs, identifying 7 distinct subtypes, including
3 previously unclassified forms. Their findings emphasized the
interplay between completeness and other quality dimensions

https://medinform.jmir.org/2025/1/€75275

such as consistency and correctness—further highlighting the
need for more context-aware, dynamic quality assessments.

Tool-based solutions, such as AchillesHeel [34], offer practical
mechanisms for identifying data quality issues. As part of the
Observational Health Data Sciences and Informatics (OHDSI)
ecosystem, AchillesHeel applies 70 predefined validation rules
to detect anomalies in large-scale clinical datasets. While
effective in identifying static inconsistencies, these tools
typicaly evaluate data quality at a single point in time and
cannot accommodate the iterative transformations that occur
during integration workflows.

In contrast to these prior approaches, the AIDAVA framework
introduces a life cycle-based, dynamic model of data quality
validation. By embedding SHACL-based validation rules
directly into a KG pipeline, AIDAVA allows for continuous
monitoring and enforcement of constraints during dataingestion,
transformation, and integration. It extends existing
methodol ogies by addressing data quality not as a 1-time task,
but as an ongoing process—ensuring that completeness and
consistency are maintained across evolving data structures.

AIDAVA Data Quality Framework

The AIDAVA data quality framework is designed to ensure
semantic and structural standardization across the entire health
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data life cycle, addressing the complexities of integrating
heterogeneous health data sources. The framework operates
across 4 levels, each targeting specific pointsin the health data

Declerck et al

integration process. These 4 levels of the framework are
illustrated in Figure 1.

Figure1l. The4levelsof the AIDAVA dataquality framework. AIDAVA: artificial intelligence—powered data curation and validation; PHKG: personal

health knowledge graph; SKG: source knowledge graph.
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Level 1: Raw Data Collection

At the initial level, the framework relies on data providers to
provide datathat meets baseline standards. Given the variability
of data sources, direct transformations or validations at this
stage are limited. Instead, the framework ensures compliance
with transfer specifications, verifying that incoming dataadheres
to structural and format requirements before progressing to the
next level.

Level 2: Transformation Into Source Knowledge
Graphs

In this stage, raw data are transformed into source knowledge
graphs (SKG) by executing adata curation tool from thelibrary
of tools available in AIDAVA and delivering data sourcesin a
KG format aligned with the AIDAVA Reference Ontology. The
AIDAVA Reference Ontology plays a dual role in enabling
semantic interoperability and systematic quality evaluation. It
provides a forma semantic layer that aligns PHKGs with
standards such as Health Level Seven International Fast
Healthcare Interoperability Resources (FHIR), SNOMED CT
(Systematized Nomenclature of Medicine—Clinical Terms), and
Clinical Data Interchange Standards Consortium. This process
ensures semantic and structural standardization of each data
source, which is critical for interoperability. Standardizing the
data at this level minimizesinconsistencies and enables proper
integration with multiple sources.

Level 3: Integration Intothe PHK G

In this phase, multiple SKGs areintegrated into aunified PHKG,
creating a longitudinal representation of an individual’s health
history. This step consolidates fragmented patient data sources
while maintaining consistency and logical coherence in the
integrated patient record. The integration process ensures that
patient dataiswell-structured, compl ete, and free of inconsistent
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and redundant information to support clinical decision-making
and research applications. For example, during PHKG
integration, a birth year recorded as 1875, implying an
implausible age of over 140 years, would be flagged by
age-consistency rules. This type of anomaly is automatically
detected through SHACL -based validation during theintegration
process.

Level 4: Transformation for Secondary Use

Inthefina stage, the PHK G istransformed into formatstail ored
for secondary use. This step adaptsintegrated datato align with
specific output formats, enabling accurate analysis (eg, Breast
Cancer registry in Observational Medical Outcomes Partnership
[OMOP] compliant format), improved patient care (eg, patient
International Patient Summary in FHIR format), and effective
reuse across clinical and research settings.

This study focuses on levels 2 and 3, as they are the earliest
feasible and scalable stages for enforcing semantic
standardization and integrating fragmented, heterogeneous data
sources. Performing thisat level 1isnot practical dueto diverse
formats and limited control over data provider systems. Level
4 isonly partially addressed, as downstream transformation is
performed, but full data quality assessment from the perspective
of aspecific use case lies outside the scope of this paper.

Data Quality Dimensions and Categories

To evaluate data quality, the AIDAVA framework adopts a
structured approach based on dimensions and categories.
Dimensions provide a high-level perspective on data quality,
grouping related categories to help identify systemic issues.
Recent research underscores the increasing need to evaluate
diverse data quality dimensions, especially when repurposing
health data for secondary use [19]. While multiple dimensions
contribute to ensuring high-quality health data, the AIDAVA
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framework currently focuses on 2 data quality dimensions:
completeness and consistency. Completeness ensures that all
necessary data elements are present, preventing critical
information gaps. Consistency verifies that data adheres to
defined constraints and logical relationships, such as ensuring
that diagnoses and procedures align with a patient’s
demographic details. Within these dimensions, categories
provide amore granular level of assessment, asoutlined in Table
1

The decision to focus on completeness and consistency isdriven
by their widespread use in data quality research [35-37] and

Declerck et al

their suitability for automated assessment [23]. Unlike other
dimensions, which often require subjective interpretation or
manual validation, completeness and consistency can be
systematically measured using predefined rules and automated
validation techniques. By prioritizing completeness and
consistency, the AIDAVA framework establishes a scalable
approach to data quality assessment. These dimensionsnot only
support automated validation but also provide afoundation for
expanding the framework to address more complex dataquality
dimensions.

Table 1. Overview of data quality dimensions and categories in the AIDAVA? framework.

Dimension and category Description

Example

Completeness
Essential variable completeness
missing

Conditional variable completeness

Identifies when critical data elements are

Detects cases where missing variables pre-

Missing patient date of birth

Diagnosis present, but no recorded gender

vent consistency checks

Consistency

Datatype for property

Time sequence consistency

Diagnosis for gender consistency

Diagnosis for age consistency

Procedure for gender consistency

Procedure for age consistency

Ensures values conform to expected data
types

Identifiesimplausible event sequences

Detects diagnoses incompatible with a pa-
tient’s gender

Flags diagnoses that are incompatible with
apatient’'s age

Detects gender-incompatible procedures

Flags procedures that are inappropriate for

Text found in a numeric agefield

Discharge date before admission date

Prostate cancer assigned to afemal e patient

Lung cancer diagnosed in an infant

Hysterectomy assigned to a male patient
Radiotherapy procedure in atoddler

the patient’s age

8AIDAVA: artificial intelligence—powered data curation and validation.

Data Quality Instruments

The AIDAVA framework relies on a robust instrument for
scalable and automated data quality assessment: the SHACL .
As a World Wide Web Consortium standard, SHACL defines
and enforces semantic and structural constraints on Resource
Description Framework (RDF) KGs, enabling rule-based
validation to detect inconsistencies, missing elements, and
structural misalignments.

Within the AIDAVA framework, SHACL validation rules are
categorized into 2 types, as outlined in Table 2: ontol ogy-based
and domain-specific rules. Each category includes several
validation rules, technically known as SHACL shapes—an
SHACL term referring to rule templates that define how data
should conform to expected structures or values. The number
of rules differs between categories due to the nature of the
information being encoded. For instance, completeness checks
such as“essential variable” rely on the fully connected structure
of the admission node to validate the presence of key attributes
(eg, admission date and discharge status) across sources. In

https://medinform.jmir.org/2025/1/€75275

contrast, rules such as“ diagnosis for gender” require adistinct
SHACL shape for each valid gender related pairing (eg,
“prostate cancer — male” and “ovarian cancer — female”),
increasing the number of shapes. Table 2 shows the number of
SHACL shapes associated with each rule category, reflecting
the complexity and granularity of the validations.

To enable meaningful evaluation of data quality acrossdifferent
rule categories, we use normalized data quality scores rather
than raw violation counts. Thisis necessary because the number
of rules (SHACL shapes) and corresponding checked nodes
varies significantly by category (Table 2). Violation counts
alone would disproportionately reflect rule volume rather than
actual quality trends. We calculate a category-specific quality
score using the formula:

Quality score=1-e
Where e represents the error rate, calculated as the violation
count divided by the total number of checked nodes. This
provides a relative measure of how well the data conforms to
the specified rules within each category.
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Table 2. Categories and counts of SHACL ? validation rulesin the Al DAVAP framework.

Type and category

SHACL shape count

Ontology-based checks

Essential variable completeness (eg, admission date must be present) 14
Conditional variable completeness (eg, discharge status cannot be validated without discharge time) 1
Datatype for property (eg, age must be a number, not text) 6
Medical and common-sense checks
Time sequence consistency (eg, admission after discharge flagged asinvalid) 6
Diagnosis for gender consistency (eg, female patient assigned prostate cancer code) 5208
Diagnosis for age consistency (eg, infant patient assigned prostate cancer code) 130
Procedure for gender consistency (eg, male patient assigned hysterectomy code) 640
Procedure for age consistency (eg, infant patient assigned colonoscopy procedure) 79

8SHACL : Shapes Constraint Language.

Ontology-based rules in the AIDAVA framework are derived
from the AIDAVA reference ontology [38], which builds on
established standards such as Health Level Seven International
FHIR, SNOMED (Systematized Nomenclature of Medicine),
and LOINC (L ogical Observation |dentifiers Namesand Codes)
to ensureinteroperability and support automated curation. These
rules ensure conformance with predefined semantic standards,
such as verifying data types, relationships, and the presence of
mandatory variables. Domain-specific rules are informed by
health care—specific knowledge. These rulesaddress real-world
dataquality challenges, including validating gender-appropriate
procedures and ensuring consistency in clinical attributes. The

definition and validation of domain-specific rules require expert
consensus. However, data quality research has established a
variety of validated domain-specific rules over time [39]. The
AIDAVA framework leverages  these existing,
literature-validated rules, alowing it to build upon proven
methodol ogies while avoiding redundancy, ensuring alignment
with best practicesin health data quality management.

These SHACL shapes are applied within SKGs (intrasource
consistency and completeness) and PHK Gs (across data source
consistency and completeness), ensuring semantic and structural
standardization at each stage. Figure 2 illustratesthisvalidation
process, applied at both the SHKG and PHK G levels.

Figure2. SHACL-based data quality check pipeline. RDF: Resource Description Framework; SHACL : Shapes Constraint Language.

Data quality check services

SHACL shapes

RDF graph data
or knowledge graph

&

The SHACL engine processes health data represented as an
RDF graph—a structured format used to build KGs—by
applying predefined constraints (SHACL shapes). These rules
define the expected structure and content of the data, including
semantic relationships and required elements. As the engine
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executes these rules, it produces an SHACL validation report
that highlights data quality violations, such as missing values,
incorrect datatypes, or inconsistent relationships. Thisvalidation
step is critical for identifying and addressing quality issues
before integration into the PHKG.
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Methods

Study Design

To evaluate the robustness and effectiveness of the AIDAVA
framework in detecting and managing data quality issues, we
conducted a controlled experiment using the MIMIC-III
(Medical Information Mart for Intensive Care-111) dataset, a
publicly available and well-structured critical care database.
While MIMIC-III offers a rich and diverse set of clinica
variables, it does not contain the types of data quality issues
typically encountered in real-world health information systems.
As such, this study introduced artificial noise to simulate
common completeness and consistency problems found in
heterogeneous clinical data. This approach alows us to
systematically assess how well the AIDAVA framework,
particularly its SHACL-based validation rules, can identify
quality issues under different conditions and at multiple stages
of data integration. The following subsections describe the
dataset, noise injection methodology, and the process of KG
construction and validation.

Data Source and Data Preparation

We used the MIMIC-I11 dataset dueto its structured format and
breadth of clinical variables, offering an optimal foundation for
simulating real-world integration scenarios. The dataset includes
deidentified health records from over 58,000 admissions. For
this study, hospital admissions lacking relevant diagnosis or
procedure codes (as required for SHACL validation) were
excluded, resulting in a final cohort of 13,607 admissions. A
total of 4 tables were used: PATIENTS, ADMISSIONS,
DIAGNOSES ICD, and CPTEVENTS.

Data cleaning was performed using OpenRefine[40], with date
fields standardized to I1SO 8601 format
(YYYY-MM-DDThh:mm:ss+zz:zz) and gender val ues mapped
to SNOMED CT codesto support interoperability and nonbinary
classifications. These steps ensured alignment with the AIDAVA
reference ontology and interoperability across sources.

Adding Noiseto the Dataset

To simulatereal-world data quality challenges[41-43], artificial
noise was introduced into the dataset based on 2 parameters:
noiselevel and completenessratio. Noiselevel (0 [!0,1]) defines
the proportion of KG statements impacted by errors. The
completeness ratio specifies the share of this noise that results
in missing values (as opposed to logically inconsi stent entries).
For example, anoise level of 0.50 and a completeness ratio of
0.25 imply that 50% of selected statements are atered, with
25% of them made incomplete and the remainder made
inconsistent. Noise was introduced across 2 categories:
consistency noise, reflecting logical contradictions, and
completeness noise simulating missing information. All
injections were performed in a reproducible manner using a
fixed randomization seed.

https://medinform.jmir.org/2025/1/€75275
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Consistency Noise

We targeted error types that frequently occur in clinical data
entry or integration processes [41-43]. These methodsincluded:

1. Gender swapping: male and female values in the
PATIENTS table were randomly exchanged. This
modification introduced inconsi stencies in gender-specific
diagnoses and procedures, affecting validation rules such
as diagnosis for gender consistency and procedure for
gender consistency. Gender values are sampled from a
binomial distribution with 2 trials and success probability,
P=.5, ensuring a balanced distribution of changes.

2. Age dteration: instead of randomly changing a patient’s
age, we introduced interval-based errors by defining
plausible age groups. These age groups were determined
based on clustering patterns observed in diagnosis for age
consistency and procedurefor age consistency rules (Figure
3). Inthisimplementation, age groupsweredefined as[!0,1]
for infants, [!1,12] for children, [!12,56] for teens and
adults, and [!56,124] for seniors. Birth years in the
PATIENTS table were altered so that a new age was
randomly selected from another age group, triggering
violations in age-dependent diagnosis and procedure rules.
To ensure realistic distribution, the selection of anew age
group was sampled using a multinomial distribution with
4 trials, where the event probabilities were weighted based
on the frequency of each age group in the dataset.

3. Swapping admission and discharge dates. in the
ADMISSIONS table, admission, and discharge dates were
swapped. This modification introduced inconsistencies
relevant to time-sequence validation rules and triggered
errors in age calculations that depended on the admission
date.

4. Day-month swapping in dates. day and month values in
date fields across PATIENTS, ADMISSIONS, and
CPTEVENTS were randomly swapped, leading to invalid
date formats where month val ues exceeded 12, or sequences
where the chronological order of events became disrupted.
These errors mirrored common data entry mistakes in
hospital settings, where clinicians or administrative staff
may mistakenly invert date components.

5. Inconsistencies in medical coding: we randomly changed
diagnosis and procedure codes in the DIAGNOSES ICD
and CPTEVENTS tables. ICD-9 (International
Classification of Diseases, Ninth Revision) diagnosis codes
and Current Procedural Terminology procedure codeswere
replaced with alternative codes randomly drawn from their
respective rulesets. This change indirectly caused invalid
gender and age violationsin both diagnoses and procedures
because certain codes are only applicable to specific
demographic groups. To implement this, each affected
record had its original code excluded and replaced with
another randomly sampled value from the remaining
choices, ensuring a uniform distribution of errors across
the dataset.
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Figure 3. Age distribution histogram.
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Completeness Noise

Missing data, based on real-world completeness issues, was
introduced to replicate the effects of incomplete records on
validation outcomes [41-43]. The affected tables and fields
were:

1 Patient demographic records: missing values were
introduced by randomly removing gender (GENDER) or
date of birth fields in the PATIENTS table with equal
probabilities of being chosen. This noise is intended to
represent missing or deidentified patient information.

2. Hospital admission records: missing valueswereintroduced
by deleting admission or discharge timestamps
(ADMITTIME, DISCHTIME) as well as admission or
discharge locations (ADMISSION_LOCATION,
DISCHARGE_LOCATION) fromthe ADMISSIONStable.
As with demographic records, the field to be deleted is
chosen with equal percentages of 25%. The selection of
omitted records was performed randomly yet consistently
across the experiment, preserving the dataset’s structural
integrity while reflecting real-world gaps in clinical
administrative case documentation.

3. Procedure records: missing values were introduced by
removing procedure chart dates (CHARTDATE) or
procedura codes (CPT_CD) in the CPTEVENTS table.
Same with the others, equal probabilities of 0.5 decided
which cell type should be deleted. The omission process
was randomized across the experiment, replicating common
record-keeping errors that lead to incomplete procedural
documentation.

4. Diagnosis records. missing values were introduced by
deleting 1CD-9 diagnosis codes (ICD9_CODE) from the
DIAGNOSES ICD table. Asthereisonly 1 column type
able to be deleted, it is chosen with the probability of 1,
dissimilar to other categories of introducing completeness
noise. This modification simulates errors observed by not

https://medinform.jmir.org/2025/1/€75275
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typing ICD (International Classification of Diseases) codes
for billing purposes.

While these noise injection scenarios may overlap in their
effects, the incompleteness was introduced independently at
this stage. The combined effects of the above, as they relate to
triage and patient data acquisition progressions, are further
elaborated and investigated in the following section. To account
for the randomnessin choosing the cell typesto be deleted, this
process was carried out in areproducible manner using a fixed
randomization seed.

Data Integration and Data Quality Assessment

After noiseinjection, the dataset was mapped into SK Gs using
RDFCraft [44], aligning data elementsto the AIDAVA reference
ontology. These SKGs were then integrated into a unified
PHKG, following atypical dataingestion workflow. We began
with demographic information from the PATIENTStable, which
provided key patient attributes. Next, temporal data from the
ADMISSIONS table was incorporated, establishing admission
and discharge events. This was followed by procedural details
from the CPTEVENTStable, and finally, diagnostic information
from the DIAGNOSES _ICD table. This stepwise integration
reflects atypical hospital workflow, where patient registration
occurs first, followed by admissions, treatments, and recorded
diagnoses. At each step, SHACL validation rules were applied
to assessdataquality in terms of completeness and consistency.
As each patient is modeled as an independent SKG, SHACL
validation can be parall€lized across patients, supporting scalable
execution on large datasets. This staged validation aligns with
levels 2 and 3 of the AIDAVA framework and reflects both
intrasource and cross-source quality checks.

To evaluate the effect of the order of data addition on data
quality, alternative sequences were al so tested by changing the
ingestion order (eg, loading procedures or diagnoses before
demographics). This allows us to observe how quality issues
propagate or get masked depending on integration order.
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Results

Overview

The integration process followed a sequential order, beginning
with the PATIENTS table, followed by ADMISSIONS,
CPTEVENTS, and DIAGNOSES ICD tables. The framework
assessed completeness and consistency at each stage, tracking
how data quality changed throughout the process. To evaluate
the robustness of the framework, we aso conducted an
aternative integration sequence, starting with CPFTEVENTS,
followed by DIAGNOSES |ICD, ADMISSIONS, and finally
PATIENTS.

Inthefollowing section, wefirst present the baseline data quality
assessment  without noise, establishing a reference for
comparison. We then provide the final data quality scores after

Table 3. Baseline data quality analysis results.

Declerck et al

full integration across varying noise levels for both integration
orders, highlighting key trends. A detailed breakdown of
progressive changes at specific noise levels is available in
Multimedia Appendix 1.

Data Quality Assessment Without Noise

The baseline analysis, presented in Table 3, was conducted
without artificial noise to establish areference for data quality.
The results showed that most dimensions and categories
achieved nearly perfect quality scores, indicating that the
integration process preserved dataintegrity and did not amplify
errors. “Essential variable’ completeness remained at 100%
(13,607 of 13,607 admissions), confirming that al mandatory
data elements were present in the KG. The domain consistency
checks for diagnosis and gender, as well as diagnosis and age,
yielded perfect quality scores. Similarly, data type adherence
at all integration stagesis achieved with no errors.

Dimension and category PATIENTS ADMISSIONS CPTEVENTS DIAGNOSES ICD
Completeness
Essential variable (%) 100 100 100 100
Conditional variable (%) N/A2 N/A N/A 100
Consistency
Time sequence (%) 100 99.9 99.9 99.9
Diagnosis for gender (%) 100 100 100 100
Procedure for gender (%) 100 100 100 100
Diagnosis for age (%) 100 100 100 100
Procedure for age (%) 100 100 99.89 99.89
Data type for property (%) 100 100 100 100

8N/A: not applicable.

Although overall dataquality ishigh, minor discrepancieswere
observed in specific categories. “Conditional variable”
compl eteness category assesses whether all necessary concepts
from different sources are properly integrated and complete. As
SHACL rules evaluate conditional variables across every table,
an incomplete graph would return 0% (0 of 13,607 admissions)
quality score until the last stage of integration. To reflect this
dependency, the* conditional variable” completeness scoresfor
PATIENTS, ADMISSIONS, AND CPTEVENTS were marked
as “N/A” because these values would not be meaningful to
assess. Only at the DIAGNOSES |ICD stage could thiscategory
be properly evaluated, where all variable nodes will be
reachable.

The procedure for gender and age categories received
near-perfect scores of 99.99% (13,606 of 13,607 admissions)
and 99.89% (13,593 of 13,607 admissions), respectively. These
errorswere not due to integration issues, but rather pre-existing
errors in the MIMIC-I11 dataset. The errors in the “procedure
for age” category originated from the dataset’s deidentification
process, which assigned afew birth datesto yearsin the 1800s,
resulting in implausible patient ages exceeding 300 years—a
violation of age-related consistency rules. Similarly, errorsin

https://medinform.jmir.org/2025/1/€75275

the “procedure for gender” category were traced to adataentry
mistake in MIMIC-I11, where a laparoscopic procedure on the
oviduct or ovary (Current Procedural Terminology 58660) was
attributed to a male patient. Additionally, time sequence
consistency scored 99.9% (13,594 of 13,607 admissions), with
errors primarily linked to discharge times recorded earlier than
admission times. This discrepancy is a known artifact of the
MIMIC-I1I datacollection process, likely caused by inconsistent
timestamp recording practices [45].

Data Quality Assessment With Noise

Overall Trends Across All Noise Levels

To simulate real-world data quality challenges, we introduced
artificial noise and repeated the integration process under 2
different orders. Figure 4 presents the final data quality scores
after full integration for both orders. The results confirm that
dataquality scoresremained consistent regardless of integration
seguence, indicating that the order of data source integration
does not alter overall data quality scores. While intermediate
values may vary dightly, the progression of completeness and
consistency follows the same overall patterns.
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Figure 4. Fina data quality scores after full integration.
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“Essential variable” completenessdeclined gradually from 100%
to 71% (9661 of 13,607 admissions), with the largest drop
occurring between 100 0 (100%) and 100 25 (93.65%),
continuing to decrease at higher noise levels. “Conditional
variable” completeness dropped sharply from 100% to 11.17%
(1521 of 13,607 admissions) at 100_25, reaching near zero at
higher noise levels, reflecting its strong dependence on
cross-source relationships.

Time sequence and data type consistency improved throughout
the integration, rising from 93.57% (12,732 of 13,607
admissions) and 92.51% (12,588 of 13,607 admissions) at 100 _0
to 100% at 100_100. Procedure consistency for gender and age
increased, starting at 46.43% (6136 of 13,607 admissions) and
53.86% (7329 of 13,607 admissions), respectively, and reaching
99.01% (13,472 of 13,607 admissions) and 99.68% (13,563 of
13,607 admissions) at 100 _100. Diagnosis consistency for
gender and age followed a different pattern, increasing steadily
from 40.98% (5576 of 13,607 admissions) and 50.91% (6927
of 13,607 admissions) at 100 0 to 58.94% (8021 of 13,607
admissions) and 66.82% (9089 of 13,607 admissions) at 100_75,
but both became unmeasurable at 100_100.

Detailed Analysis at 100% Consistency and 50%
Completeness Noise (100_50)

To gain deeper insights into how data quality changes during
dataintegration under specific noiselevels, this section provides
adetailed analysis of the 100 50 noise level. Figure 5 presents

https://medinform.jmir.org/2025/1/€75275
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the data quality scores at each step of the integration process,
illustrating how completeness and consistency evolve as new
data sources are incorporated.

At this noise level, where consistency noiseis set to 100% and
compl eteness noise to 50%, all relevant KG statements (100%)
are modified, with 50% of them containing missing data. The
introduction of ADMISSIONS caused time sequence
consistency to decrease dlightly to 98.64% (13,422 of 13,607
admissions). With CPTEVENTS added, this metric dropped to
96.94% (13,191 of 13,607 admissions), whereit remained stable
after DIAGNOSES ICD. Procedure consistency for gender
declined to 59.14% (8047 of 13,607 admissions), while
procedure consistency for age dropped to 63.63% (8658 of
13,607 admissions).

As expected, missing data impacted completeness measures.
“Essential variable” completeness declined sharply, reaching
85% after DIAGNOSES ICD. “Conditiona variable”
completenessremained “N/A” for PATIENTS, ADMISSIONS,
and CPTEVENTS. Once DIAGNOSES |CD wasincorporated,
“conditiona variable” completenessincreased slightly to 1.45%
(195 of 13,607 admissions), reflecting a minimal recovery of
required data.

An analysis of data quality trends across other noise levelsis
provided in Multimedia Appendix 1, detailing variations in
compl eteness and consistency scoresunder different conditions.
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Figure 5. Data quality scores at each step of the integration process. CPT: Current Procedural Terminology; ICD: International Classification of

Diseases.
Completeness Consistency
__100 o—k\. 100
S Category
> 75 75 - Essential variable
E 50 50 @ Conditional variable
o @ Time sequence
% 25 25 @ Data type for property
@] @ Procedure for gender
0 “ o 0 0'.- Diagnosis for age
o © O o © O
& é\o'(\ ﬁ&o}%\ R 5}0’\‘ \\@&é\%\ @ Procedure for age
& F (O & .9 & @ Diagnosis for gender
Q ?‘b é? Q@Q Q N QQ (.)\,b‘ib
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Principal Findings

Our findings demonstrate consistent patterns in data quality
dynamicsacrossall noiselevels, characterized by aprogressive
degradation in consistency scores and a steady decline in
completeness as noise levelsincrease. The category of “ essential
variable” completeness deteriorates gradually as noise
accumul ates, while* conditional variable” completenessdeclines
more sharply dueto its dependence on rel ationships across data
sources. Meanwhile, “time sequence” and “data type
consistency” remain relatively stable, whereas procedure and
diagnosis consistency degrade significantly based on integration
order, underscoring the importance of cross-source attribute
alignment.

These trends confirm the adaptability of the AIDAVA data
quality framework, which maintains stability in core structural
checks (eg, time and data type validation) even as data volume
and disorder increase. AIDAVA's patient-level modularity
enables SHACL validation to be performed independently per
patient, supporting paralel processing and scalability. This
design alows for incremental integration of new patient data
without reprocessing the full dataset, making the framework
suitable for real-time or batch-based deployments. However,
the results also revealed that procedure and diagnosis
consistency were more sensitive to integration order,
emphasizing the need for targeted, domain-specific validation
strategies during data merging.

To more explicitly frame these insights, the AIDAVA
framework not only detects data quality issues with high
granularity but also enables their continuous assessment
throughout the integration pipeline. By embedding
SHACL-based rules directly into the SKG and PHKG
construction process, AIDAVA captures completeness and
consistency violations both within and across data sources. This
staged, rule-based validation empowers the framework to not

https://medinform.jmir.org/2025/1/€75275
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their origin and timing—enabling early intervention and
downstream reliability.

Completeness and Conditional Dependenciesin Data
Integration

When examining the completeness dimension, the resultsreves
distinct patterns of degradation across our 2 categories:
“essential variable” and “conditional variable” completeness.
As expected, both categories are increasingly affected as the
completeness ratio level rises. However, their rates of decline
differ, highlighting important nuances in their behavior during
the integration process. “Essential variable” completeness
steadily declines, suggesting that core patient attributes are
progressively impacted by noise—particularly those embedded
in the PATIENTS table. In contrast, “conditiona variable”
completeness cannot be meaningfully assessed until the final
integration step, as it depends on the availability of
interconnected variables across all datasets. This explains why
intermediate scores are marked as “N/A” and only become
valuable after the final source (DIAGNOSES |ICD) is added.

These findings emphasize that “conditional variable”
completeness is inherently linked to the integration process
itself rather than noise alone. Unlike “essential variable”
completeness, which is primarily affected by missing values
within a single dataset, “conditional variable” completenessis
more directly influenced by the presence or absence of
cross-sourcerelationships. Asaresult, its behavior differsfrom
other completeness measures, demonstrating that missing values
alone do not dictate “conditional variable’ completeness
trends—rather, it isthe sequence and completeness of integrated
sources that determineits final value.

Consistency Challengesin Stepwise Data | ntegration

The consistency results reveal that step-by-step integration of
data sources introduces challenges related to compliance with
data type and time seguence consistency. However, these
declines arerelatively minor, suggesting that the overall format
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of the ontology remains stable and that temporal relationships
are preserved throughout the integration process. Notably, time
sequence consistency exhibits only minor fluctuations,
reinforcing its resilience to integration steps. In contrast, the
categories related to procedure consistency and diagnosis
consistency show more pronounced declines, highlighting the
critical role of integration order in determining data quality
outcomes. Theresultsindicatethat integrating the CPFTEVENTS
table first has a substantial impact on procedure consistency,
causing notable dropsin gender and age consistency. Similarly,
the integration of DIAGNOSES ICD exacerbates
diagnosis-related inconsistencies, suggesting that diagnostic
data is particularly vulnerable to integration-induced errors.
Thistrend highlights that procedure and diagnosis consistency
are more reliant on cross-source relationships and attribute
alignment than on other categories, such as data type and time
seguence consistency.

The findings suggest that a case-specific data quality strategy
isessential when integrating different types of health data. This
underscores the need for tailored validation approaches that
consider thevulnerabilitiesof variousclinical datatypesduring
integration. This need for targeted strategies is evident both
within and across data quality dimensions. For instance, within
consistency, procedure, and diagnosis categories exhibit greater
instability, highlighting that medical domain-specific content
ismore sensitive to inconsistencies than general data attributes
such astimestamps or data types.

I nter dependencies Between Data Quality Dimensions

Beyond individual dimensions, these findings offer an in-depth
perspective on the interrelationships between data quality
dimensions, reinforcing the complex and dynamic nature of
data quality in health dataintegration. While previous research
has suggested that data quality dimensions are interrelated
[42,46], our results offer a unique demonstration of how these
interdependencies manifest in real-world integration scenarios.
A key finding from the results is that consistency measures
alone cannot be fully trusted without ensuring adequate
completeness. The results reveal that missing data directly
impacts the interpretability of consistency scores, making it
difficult to determine whether the observed consistency is
genuine or merely an artifact of incomplete data. When key
information is missing, certain contradictions—such as conflicts
between diagnoses and procedures—may go undetected, creating
afalseimpression of datareliability.

These insights highlight the critical need for health data
integration strategies that not only address individual data
quality dimensions but also account for their interdependencies.
Overlooking these relationships can lead to mideading
assessments, where high consistency scores mask underlying
data gaps, or missing values distort the true extent of
consistencies. To ensure reliable data quality assessment,
integration of datamust prioritize completeness vaidation before
consistency assessment, ensuring that inconsistencies are
accurately detected rather than artificially hidden. By adopting
an approach that considers both dimension-specific
vulnerabilities and their cross-dimensional effects, we can
enhance the integrity of downstream analyses, clinical
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decision-making, and secondary research
applications—ultimately improving thereliability of integrated
health data. Overal, our findings demonstrate that
ontology-constrained SHACL validation enablesinterpretable,
dynamic assessment of health data quality, with robustness
acrossintegration orders and degradation levels. This paper also
extends prior research [47] (REF) by embedding semantic and
clinical context into the data validation process. While existing
toolssuch as OHDSI’s Data Quality Dashboard provide valuable
population-level data quality checks after extract, transform,
load into the OMOP common data model (eg, conformance,
completeness, and plausibility), AIDAVA complements these
approaches by offering patient-level validation throughout the
integration pipeline. Thisfacilitates early detection and localized
resolution of issues that might otherwise remain hidden in
aggregate-level analyses.

Limitations

Several limitations must be acknowledged to contextualize the
findings and guide future research directions. First, this study
was conducted using the MIMIC-111 dataset, a structured and
deidentified critical care database. While this dataset provides
a controlled environment for testing data integration, it does
not fully capture the heterogeneity and complexity of live health
care data environments. Relying on a single dataset also limits
the generalizability of our findings, asresults may differ across
other institutions, coding practices, and patient populations.
Although MIMIC-111 was chosen for its structured format and
public availability, accessto additional well-curated benchmark
datasets remains restricted due to privacy, licensing, and
interoperability constraints. Future research should evaluate the
framework on diverse, nondeidentified hospital datasets that
better reflect real-world conditions. Second, this study simulated
real-world dataquality issuesby introducing structured artificial
noise, alowing for a systematic evaluation of the framework
under different levels of datainconsistencies. However, artificial
noise does not fully replicate the unpredictability of errorsfound
in operational health data. Health datasets often contain
context-dependent inconsi stencies, undocumented missingness
patterns, and human-introduced biases that cannot be easily
simulated. Future research should explore how the framework
performs when applied in a real-world scenario. Third, the
AIDAVA framework evaluated consistency and completeness
as the core data quality dimensions. However, other important
dimensions, such as timeliness and uniqueness, were not
explicitly assessed in this study. Future work should extend the
framework to incorporate abroader range of quality dimensions,
ensuring a more complete evaluation of integrated health data.
Last, this study demonstrated the effectiveness of the AIDAVA
framework in acontrolled dataset; its scalability for large-scale,
high-vel ocity health dataintegration was not examined in depth.
Future research should investigate the framework’s performance
in large-scal e deployments. Finally, while AIDAVA was tested
using structured simulations, adapting the framework for use
with unstructured or semistructured real-world data (eg,
electronic health records or clinical registries) remains afuture
challenge. These sources often include free text, heterogeneous
coding, and loosdaly structured formatsthat require preprocessing
steps (eg, terminology mapping). I nvestigating these adaptations
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is part of the ongoing research agenda within the AIDAVA
project.

Conclusions

This study evaluated the AIDAVA data quality framework for
its effectiveness in detecting and managing data quality
i ssues—specifically completeness and consi stency—during the
integration of heterogeneous health data. Using the MIMIC-lI|
dataset, we simulated real-world challenges by introducing
structured noise and systematically assessed how the framework
performed across different integration sequences and noise
levels. The staged SHACL -based vaidation enabled fine-grained
analysis of dataquality at multiple points along the integration
pipeline. Our findings show that the AIDAVA framework
successfully identifies both missing and inconsistent data
elements and provides interpretable feedback at each stage of
transformation. Together, these findings support the AIDAVA
framework’s suitability for dynamic, life cycle-based data
quality assessment. By enabling validation at each
transformation step, the framework allows early detection,
interpretable tracking, and strategic mitigation of data quality
issues. Importantly, it encourages a holistic view of data
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quality—one that considers not only dimension-specific
weaknesses but al so how dimensionsinfluence each other across
the pipeline. As health systemsincreasingly rely on integrated
datasetsfor clinical and research applications, frameworks such
as AIDAVA provide essential infrastructure for building trust
in secondary health data use.

Future Research

Future work should focus on improving the AIDAVA data
quality framework by aligning SHACL shapeswith the OMOP
common data model [41] and comparing multiple integration
orders to assess their impact on data quality. Developing an
OMOP-based RDF schema and implementing SHACL
constraints would also support interoperability with OHDSI
tools and promote the broader adoption of semantic,
constraint-driven approachesto dataquality. Expanding SHACL
validation to laboratory results, prescriptions, and other hospital
records will enhance its clinical applicability. Additionaly,
devel oping more redlistic noiseintroduction methodswill better
simulate real-world inconsistencies, strengthening the
framework’s robustness.
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MIMIC-III: Medica Information Mart for Intensive Care-l11

OHDSI: Observational Health Data Sciences and Informatics

OMOP: Observational Medical Outcomes Partnership

PHKG: persona health knowledge graph

RDF: Resource Description Framework

SHACL: Shapes Constraint Language

SKG: source knowledge graph

SNOMED: Systematized Nomenclature of Medicine

SNOMED CT: Systematized Nomenclature of Medicine—Clinical Terms
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