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Abstract

Background: Untreated dental caries is the most common health condition worldwide. Therefore, new strategies need to be
developed to reduce the manifestations of dental caries.

Objective: This study aimed to develop and test a machine learning (ML) algorithm for detecting present and predicting future
carious lesions in the adolescent population using a set of easy-to-collect predictive variables. In addition, this study aimed to
deal with an imbalanced and small dataset using an oversampling method.

Methods: This population-based study was conducted among secondary schoolchildren, aged between 13 and 17 years, from
the northern parts of Finland in 2022. After meeting the inclusion criteria, a total of 218 participants were included in this study.
The inclusion criteria consisted of participants having completed a web-based risk assessment questionnaire and having undergone
a clinical examination at public health care services. Dental caries (International Caries Detection and Assessment System [ICDAS]
scores of 4, 5, and 6; ie, ICDAS 4-6) and active initial caries (ICDAS 2+, 3+) were considered as outcomes. Several predictors,
such as behavioral and dietary habits, were included. An extreme gradient boosting model was developed, tested, and assessed
for its predictive performance. A 4-fold cross-validation was performed using the nested resampling technique. The random
oversampling examples method and the k-nearest neighbors classifiers were used for all 4 folds. The mean (SD) performance of
all the folds was computed.

Results: Dental caries (ICDAS 2+,3+,4-6) were prevalent in 65.6% (143/218) of the participants. The mean area under the
curve was 0.77 (SD 0.04) and the mean F1-score was 0.82 (SD 0.06) for the extreme gradient boosting model. Similarly, the
mean area under the curve and mean F1-scores after oversampling were 0.74 (SD 0.05) and 0.79 (SD 0.04), respectively. The
Shapley additive explanation values were calculated for all 4 folds to assess feature importance, revealing that previous dental
fillings were the feature most strongly associated with the need for restorative treatment.

Conclusions: On the basis of the performance metrics, the ML algorithm developed and tested in this study can be considered
good. The ML algorithm could serve as a cost-effective screening tool for dental professionals to identify the risk of future
restorative treatment needs. However, future studies with longitudinal cohorts and longitudinal data, along with external validation
for generalizability, are needed to validate our model.
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Introduction

Background
Dental caries is the most common dietary-microbial disease,
requiring regular exposure to fermentable carbohydrates.
Enrichment of acid-producing and acid-tolerating
microorganisms in dental plaque leads to a demineralized tooth
structure, which, in turn, can lead to loss of tooth structure,
ultimately resulting in cavities [1]. The risks of dental caries
include physical, biological, environmental, behavioral, and
lifestyle-related factors [2]. The balance between pathological
and protective factors, such as insufficient exposure to fluoride
or irregular brushing of teeth, influences the initiation and
progression of dental caries [3].

Individual-level risk recognition is of utmost importance, since
recent dental caries management protocol prioritizes early
prevention and minimal intervention at an individual level [4].
The availability of caries risk assessment tools (CRATs) has
assisted clinicians in risk identification, as well as in risk
minimization. However, most existing CRATs require either
dental visits or measurements of salivary parameters at dental
clinics (face-to-face methods). A systematic review [5]
considered the possibility of using a reduced Cariogram (without
saliva parameters), one of the CRATs, due to its better
performance when compared to a full Cariogram. The use of
artificial intelligence (AI) and machine learning (ML) in the
medical field is gaining attention worldwide. The possibility of
an automated dental caries risk prediction method using ML
algorithms needs to be explored. A recent study by Xiong et al
[6] highlighted the possibility of using ML algorithms and
easy-to-collect predictors in screening active dental caries and
urgent treatment needs in school-age children. However, the
questionnaire mainly consisted of predictors covering physical,
mental, and social aspects, missing important predictors, such
as dietary habits and oral health-related behaviors. As the
development and progression of carious lesions are
multifactorial, such information is important to consider.

AI can be defined as the nonbiological ability of a computer to
try to imitate human intelligence to accomplish complex tasks,
such as problem-solving and decision-making [7]. ML is a
subset of AI designed to identify patterns or make predictions
based on the data used. ML algorithms can model nonlinear
and high-dimensional characteristics, such as health data [8].
In addition to being the latest and often the most popular
technology, ML algorithms have the ability to learn themselves
and improve over time when exposed to more data [9]. The use
of ML models can improve patient care by providing
individualized outcome predictions and by reducing standardized
processes, allowing clinicians to spend more time with patients
[10]. In dentistry, the literature showed that various ML
algorithms, such as logistic regression, decision trees, random
forest, and extreme gradient boosting (XGBoost), are used in
predicting dental caries. However, these studies are in their early

stages, and more research needs to be conducted to validate
these methods [11]. Furthermore, the ground truth in the
above-mentioned studies is based only on clinical examinations
(visual-tactile), even though it is recommended to perform both
clinical and radiographic examinations to minimize the risk of
misdiagnosis in caries evaluation [12]. In this regard, the severity
and activity of carious lesions are crucial when deciding on the
treatment path [13,14]. It is important to include real-life clinical
environment observations when training and testing ML
algorithms.

However, there are some challenges, such as high costs, data
security, and legal restrictions in dentistry, making the
acquisition of individual-level comprehensive data more difficult
[15,16]. Studies have used electronic health records and national
registries for training ML algorithms [17]. However, in dentistry,
the availability of extensive electronic health record data or
national registries is scarce [18]. Therefore, to overcome the
challenges associated with small datasets, oversampling
techniques can be explored. Oversampling is a data
augmentation technique that aims to rebalance the training data
distribution by amplifying the volume of instances that belong
to the underrepresented class, helping to correct the imbalance
between minority and majority examples [19,20]. Another
challenge in dentistry is also related to class imbalance. When
the number of patients with a target disease differs from the
healthy population, the situation is referred to as the imbalanced
data problem. The accuracy of ML models can be affected by
these imbalances.

Objectives
Therefore, this study aimed to (1) develop and test an ML
algorithm in detecting present and predicting future carious
lesions among adolescents using a set of easy-to-collect
predictive variables; and (2) deal with challenges due to the
imbalanced and small dataset in cariology with the use of the
oversampling method.

Methods

Study Population and Data Sources
This cross-sectional study used data collected for the Digileap
project, conducted among secondary school children aged 13
to 17 years from the northern parts of Finland in 2022. Before
the study, the sample size (N=246) was calculated based on the
prevalence of dental caries from a previous study by
Suominen-Taipale et al [21] with 95% CIs and a precision set
at 0.05, assuming that the total population of children aged 13
to 15 years is 100,000 [22]. Participants completed a web-based
risk assessment questionnaire within their school premises, and
their oral health records were registered at public health care
services from 2022 to 2023, from where they were later
requested through Findata services [23]. Findata is the Finnish
Social and Health Data Permit authority, which grants permits
for the secondary use of social and health care data, improving
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data protection for individuals. The inclusion criteria for this
study included the following: (1) aged 13 to 17 years with signed
informed consent, (2) completion of a web-based risk assessment
questionnaire, and (3) completion of a dental examination
performed at public dental clinics during 2022 to 2023. After
meeting the inclusion criteria, a total of 218 participants were
included in this study.

Ethical Considerations
The study was conducted in full accordance with the World
Medical Association Declaration of Helsinki. The ethical
committee of Northern Ostrobothnia Hospital District approved
the study protocol (EETTMK 62/2021), and the Finnish
Medicines Agency [24] also issued the Medical Device Permit
(2022/007715). In addition, study permissions were also
obtained from the public health care services in Kuusamo,
Ylivieska, Oulu, and Liminka. Oral health records (dental caries
registered at the public dental services) were obtained from the
Finnish Social and Health Data Permit Authority, Findata [25],
with a data permit (THL/6268/14.02.00/2021). All the schools
were contacted before the study via an official email requesting
the participation of schoolchildren and their parents. Participants
aged ≥15 years signed the informed consent, and informed
consent was obtained from the parents of participants aged <15
years. Participation was completely voluntary, privacy and
confidentiality were secured, and the participants had the right
to withdraw their participation at any given phase of the study.

Study Variables

Outcome Variables
Initial active carious lesions (enamel and dentin caries) and all
cavitated lesions were considered as the main outcome variable
for this study. The carious lesions were diagnosed using the
International Caries Detection and Assessment System (ICDAS)
criteria with the aim to differentiate between different stages of
dental caries. ICDAS stands for the assessment of the caries
process by stage (noncavitated or cavitated) and activity (active
or arrested or inactive). The “+” symbol indicates a caries lesion
that is active and progressing. The “–” symbol indicates an
inactive lesion with no active progression, and the tooth surface
is considered sound [26].

To describe the transition of caries lesions in this study, the
ICDAS score of 0 or ICDAS scores of 2− and 3− were
considered as sound in contrast to the ICDAS scores of 2+, 3+,
4, 5, and 6 being considered as diseased. The ICDAS 2+ and
3+ codes were merged into 1 category (ICDAS 2+, 3+) to
represent noncavitated lesions or microcavitated active lesions,
and the ICDAS 4, 5, and 6 codes were used as 1 category
(ICDAS 4-6) to represent cavitated lesions. A study by Abdalla
et al [27] concluded that the active caries lesions were more
likely to progress to more severe conditions than inactive
lesions; active noncavitated (ICDAS 2+) and active
microcavitated or shadow lesions (ICDAS 3+) had a 2-fold
progression rate compared to noncavitated inactive lesions. In
a nutshell, any initial active carious lesion (enamel and dentin
caries) and all cavitated lesions were considered as the main
outcome variable for this study (ICDAS 2+,3+,4-6) [13]. ICDAS
1 was not found in our study population due to challenges in

diagnostics; these lesions were characterized by the first visual
changes in enamel, often appearing as white spots or lines that
were only visible when the tooth was carefully air-dried for 5
seconds.

Caries assessment with surface-by-surface evaluation was
conducted by a licensed dentist following the Finnish Current
Care Guidelines [28]. All teeth of the participants were
examined with halogen light with a surface reflecting mirror
and explorer and a fiberoptic transilluminator, followed by
radiographic examination, if needed. A radiographic
examination was suggested if (1) one localized enamel
breakdown lesion was found, (2) the patient had several initial
caries lesions, (3) the patient had dental caries risk factors or
suspicion that the patient might have hidden dental caries
lesions, or (4) radiographs had not been taken in the past few
years [29]. Previously, data collected from the Finnish public
health care records were shown not to be inferior to the
calibrated examiners [30].

Predictors
For this study, age, sex, and oral health-related behaviors (such
as frequency of toothbrushing, toothbrush type, toothpaste type,
frequency of fluoride toothpaste use, interdental cleaning
frequency, frequency of xylitol use, additive sugar consumption,
and smoking habits) were considered as independent variables.
The questionnaire consisted of information about the food and
drink consumption of the participants. Participants were asked
to report the amounts and frequencies. The average daily
consumption was calculated for each product and multiplied by
the quantity consumed. The additive sugar consumption was
calculated using the Fineli database, a Finnish national food
consumption database maintained by the Finnish Institute for
Health and Welfare [31]. Using the Fineli database, total sugar
content was matched to the food items, and the amount of sugar
(g) in each item was calculated. Finally, the total daily sugar
intake was calculated for each food item consumed per day
(daily added sugar intake). Similarly, local factors, such as
recent restorations, extracted teeth, bleeding when brushing,
and the dry mouth index, were considered as predictors. To
complement the self-reported survey, clinical data on missing
teeth and dental fillings were also included as predictors. The
dry mouth index included questions, such as “Does your mouth
feel dry when you eat?” “Do you have difficulties swallowing
some food?” and “Do you have to drink in order to make it
easier to swallow dry food?” Participants responded yes or no,
and answers were combined as one continuous variable,
achieving values from 0 to 3.

Model Development and Training
In this study, the XGBoost algorithm was applied to predict the
outcome variable. The model was trained using the R software
(version 4.3.1; R Foundation for Statistical Computing) [32].

Model Fitting (Training and Testing)
The training and testing of the ML models were performed
using the nested resampling technique with 4-fold
cross-validation. In a typical k-fold cross-validation, the dataset
is randomly and evenly split into k parts. The model is built
using k−1 parts of the dataset, called the training set, and
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evaluated based on the remaining part, known as the test set.
This process is repeated k times so that each part is used as a
test set once [33]. Four folds were created, each containing 75%

of the data as a training set and 25% of the unseen data as a test
set. These 4 folds are seen in Figure 1.

Figure 1. The model training protocol: The training and testing of machine learning algorithms were performed using 4-fold cross-validation, the nested
resampling technique, and hyperparameter tuning. The tuned model was evaluated by a separate validation set, which was distinct from the nested
sampling testing set. The oversampling technique was applied to all 4 folds. The oversampling fold included both the original training set and the nested
sampling training set. Finally, the performance of the optimized model was assessed on each fold’s test set. This entire training protocol was repeated
for all 4 folds. KNN: k-nearest neighbor.

Model Training Protocol
For each 4 folds, the ML models were built by using the mlr
package [34]. During the training, hyperparameter tuning was
conducted separately for all 4 folds. The grid search method
was used for hyperparameter tuning, allowing the model to
identify the optimal combination from a predefined set of
hyperparameters. Detailed information on these predefined
hyperparameters is provided in the Multimedia Appendix 1.
The tuned model was evaluated based on a validation set, which
was independent of the nested sampling testing set. Finally, the
optimized model’s performances were evaluated on each fold’s
completely unseen test set. For all 4 folds, the model training
protocol was then repeated using the new oversampled training
dataset. The model training protocol is shown in Figure 1.

Oversampling
As the total sample was 218, the oversampling technique was
used as suggested by previous studies [35,36]. The oversampling
technique was applied exclusively to each training dataset, while
the respective test sets remained untouched to ensure the absence
of data leakage. The random oversampling examples (ROSE)
method and the k-nearest neighbors classifier were used for all
folds [37]. Oversampling simulated 2000 new synthetic
participants to the training dataset (P=.05). In the context of
oversampling techniques, “P” refers to the proportion or
percentage of the minority class instances that are to be
oversampled. In the complete dataset, the number of participants
with carious lesions was 143. The training sets consisted of 75%
of the data, and the average number of participants with carious
lesions in the training set was 0.75×143=107. Using the
oversampling method, 2000×0.95=1900 new participants with

carious lesions were created. As a result, the total number of
participants with carious lesions increased on average to
107+1900=2007. Likewise, in the complete dataset, the number
of participants with sound teeth was 75. The training set included
75% of the complete data, and the average number of
participants with sound teeth in the training set was 0.75×75=56.
Using the oversampling method, a total of 100 (2000×0.05=100)
new synthetic participants with sound teeth were created. This
resulted in an average total of 156 participants with sound teeth.

Model Evaluation
To assess the predictive performance of the ML models, the
area under the curve (AUC), accuracy, sensitivity, specificity,
positive predictive value, negative predictive value, no
information rate, precision, recall, and F1-score for each
predictive model were calculated. The mean (SD) performance
of all folds was computed.

Shapley additive explanations (SHAP) values were computed
for all folds and also after oversampling. The SHAP values were
computed to determine the importance of each variable in
predicting the dental caries outcomes of this study. The SHAP
values are an additive feature importance measure that represents
the responsibility of each feature in pushing the model output
away from its base value [38]. This study was reported in
accordance with the TRIPOD+AI (Transparent Reporting of a
multivariable prediction model for Individual Prognosis Or
Diagnosis–Artificial Intelligence) statement for developing or
evaluating the performance of prediction models [39].
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Results

The demographic characteristics and descriptive analysis of the
categorical independent variables are shown in Table 1. In this
study group, 143 out of 218 (65.6%) participants had carious
lesions (enamel and dental caries, ICDAS 2+, 3+, 4-6). More
than half of the study participants were female (118/218, 54.1%),
and more than half (124/218, 56.9%) had a habit of
toothbrushing twice daily. Most of the participants (158/218,
72.5%) reported using fluoride toothpaste, while less than half
of the participants (106/218, 48.6%) reported using an electronic
toothbrush. Most of the participants (198/218, 90.8%) did not
smoke, and the mean daily added sugar intake was 50.6 (SD
81.3) g. In addition, more than half of the participants (122/218,
56%) had dental restorations as seen in Table 1.

The performance metrics of all folds of the XGBoost model
before and after oversampling are shown in Table 2. In addition,
the mean performance across all folds is presented. The mean

AUC value, which evaluates the model’s ability to discriminate
between carious and sound teeth, was good after oversampling
(before oversampling: 0.77, SD 0.04; after oversampling: 0.74,
SD 0.05). The mean accuracy, which evaluates the performance
of the models, was also high (before oversampling: 0.75, SD
0.06; after oversampling: 0.73, SD 0.03). The AUC and accuracy
values were complemented by the F1-scores. The F1-score is
the harmonic mean of precision and recall, and it provides a
comprehensive evaluation of a model with an imbalanced
dataset. The mean F1-score was 0.82 (SD 0.06) before
oversampling and 0.79 (SD 0.04) after oversampling. The ability
of the model to predict carious lesions (true positive cases),
expressed as a mean sensitivity, was 0.85 (SD 0.12) before
oversampling and 0.78 (SD 0.09) after oversampling. These
values were considered high. The ability to predict sound teeth
(true negative cases), expressed as mean specificity, was 0.56
(SD 0.13) before oversampling, and it slightly increased to 0.61
(SD 0.15) after oversampling. These values, in turn, were
considered low, as seen in Table 2.
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Table 1. Demographic characteristics and descriptive analysis of the categorical independent variables (N=218).

ValuesCharacteristics

Fillings, n (%)

96 (44)No

122 (56)Yes

0 (0)Missing

Missing tooth, n (%)

168 (77.1)No

50 (22.9)Yes

0 (0)Missing

Smoking frequency, n (%)

198 (90.8)Not smoking

20 (9.2)Smoking

0 (0)Missing

Interdental cleaning frequency, n (%)

7 (3.2)At least twice a day

18 (8.3)Once a day

47 (21.6)2-6 times per week

78 (35.8)Once a week

68 (31.2)Never

0 (0)Missing

Tooth extracted, n (%)

174 (79.8)No

44 (20.2)Yes

0 (0)Missing

Recent restoration, n (%)

115 (52.8)No

103 (47.2)Yes

0 (0)Missing

Bleeding while brushing, n (%)

169 (77.5)No bleeding

26 (11.9)I do not know

23 (10.6)Yes

0 (0)Missing

Toothbrush type, n (%)

106 (48.6)Electric toothbrush

48 (22)Variability both

64 (29.4)Manual toothbrush

0 (0)Missing

Toothbrushing frequency, n (%)

124 (56.9)At least twice a day

67 (30.7)Once a day

22 (10.1)2-6 times a week

5 (2.3)Less often
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ValuesCharacteristics

0 (0)Missing

Xylitol use frequency, n (%)

15 (6.9)Never

9 (4.1)Once a month

15 (6.9)1-3 times a month

24 (11)Once a week

42 (19.3)2-4 times a week

23 (10.6)5-6 times a week

17 (7.8)Once a day

48 (22)2-3 times a day

25 (11.5)>3 times a day

0 (0)Missing

Toothpaste type, n (%)

158 (72.5)Fluoride

60 (27.5)I do not know or fluoride-free

0 (0)Missing

Fluoride paste use frequency, n (%)

140 (64.2)Daily

18 (8.3)Few times a week

60 (27.5)No or unsure of fluoride

0 (0)Missing

Dry mouth index, n (%)

104 (47.7)0

51 (23.4)1

9 (4.1)2

54 (24.8)Missing

Sex, n (%)

118 (54.1)Female

100 (45.9)Male

0 (0)Missing

15.5 (1.11)Age (y), mean (SD)

50.6 (81.3)Daily added sugar intakea, mean (SD)

Caries status, n (%)

64 (29.4)Healthy

11 (5)Inactive enamel caries

125 (57.3)Active enamel caries

18 (8.3)Dentine caries

aThe sugars from each food item that the person consumed per day (g).
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Table 2. Performance metrics of machine learning (ML) models before and after oversampling.

F1-scoreRecallPrecisionNPVdPPVcSpecificitySensitivityNIRbAccuracy, mean
(95% CI)

AUCa, mean
(95% CI)

Fold and ML model

First fold

0.740.710.760.520.760.580.710.640.67 (0.53-0.79)0.73 (0.59-
0.87)

XGBooste

0.770.770.770.580.770.580.770.650.70 (0.56-0.82)0.74 (0.56-
0.88)

XGBoost with over-
sampling

Second fold

0.860.970.770.920.770.520.970.620.80 (0.67-0.90)0.82 (0.70-
0.94)

XGBoost

0.810.790.820.680.820.710.790.620.76 (0.63-0.87)0.80 (0.68-
0.93)

XGBoost with over-
sampling

Third fold

0.830.810.860.650.860.720.810.670.78 (0.65-0.88)0.79 (0.66-
0.92)

XGBoost

0.750.680.830.520.830.720.680.670.69 (0.55-0.81)0.73 (0.59-
0.87)

XGBoost with over-
sampling

Fourth fold

0.840.920.770.700.770.410.920.690.76 (0.62-0.87)0.74 (0.58-
0.89)

XGBoost

0.830.890.770.640.770.410.890.690.74 (0.60-0.85)0.70 (0.53-
0.86)

XGBoost with over-
sampling

Performance across all foldsf

0.82
(0.06)

0.85
(0.10)

0.79
(0.04)

0.70
(0.16)

0.79
(0.05)

0.56 (0.13)0.85 (0.12)0.66
(0.03)

0.75 (0.06)0.77 (0.04)XGBoost

0.79
(0.04)

0.78
(0.08)

0.80
(0.03)

0.60
(0.07)

0.80
(0.54)

0.61 (0.15)0.78 (0.09)0.66
(0.03)

0.73 (0.03)0.74 (0.05)XGBoost with over-
sampling

aAUC: area under the curve.
bNIR: no information rate.
cPPV: positive predictive value.
dNPV: negative predictive value.
eXGBoost: extreme gradient boosting.
fThe performance across all folds is presented as mean (SD).

After evaluating the performance of each model, the SHAP
values were computed for all 4 folds and after oversampling.
The SHAP values for each of the 4 folds of the XGBoost model
before and after oversampling are shown in Figures 2 and 3.
The feature that most strongly predicted the need for present
and future restorative treatment was previous fillings in all folds,
followed by the total added sugar intake, frequency of smoking,
toothpaste type, and frequency of toothbrushing, varying

between 4 folds, as seen in Figures 2 and 3. Interestingly, the
importance of minor predictors slightly increased after the
oversampling method was applied in all folds. Fillings and total
added sugar intake were in the top 4 most important features in
every fold before oversampling. There was more variation in
the folds after oversampling, but clearly, fillings remained the
most important feature.
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Figure 2. Shapley additive explanation (SHAP) values from folds 1 and 2, before and after oversampling. The absolute SHAP value shows how much
a single feature affected the prediction of dental caries. The higher the SHAP value of a feature, the more likely it is to influence the prediction.
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Figure 3. Shapley additive explanation (SHAP) values from folds 3 and 4, before and after oversampling. The absolute SHAP value shows how much
a single feature affected the prediction of dental caries. The higher the SHAP value of a feature, the more likely it is to influence the prediction.

Discussion

Principal Findings
The main aim of this study was to develop and test an ML
algorithm for predicting carious lesions among the adolescent
population using a set of easy-to-collect predictors and to
evaluate the importance of each predictor. Another aim was to
use a novel oversampling approach in cariology research to deal
with and improve the imbalance of a small dataset. The ML
models developed and tested in this study performed well in
predicting present and future restorative treatment needs among
adolescents. Despite the drop in performance metrics after
oversampling, the parameters were within the acceptable range,
supporting the positive performance of the ML algorithm in
this study. The XGBoost algorithm used in this study performed
well. This is comparable with previous studies by Toledo et al
[40] and Bomfim [41] from Brazil. In both studies, the XGBoost
model outperformed other ML algorithms, such as logistic
regression and decision tree. Both studies used socioeconomic
variables, such as income and parents’ employment, as
predictors for carious lesions. However, these variables were
not considered in this study, because in Finland, all individuals
aged ≤18 years are entitled to free dental care. This study aimed
to use easy-to-collect predictors. A recent study by Xiong et al
[6] also used ML algorithms and easy-to-collect information
when screening active dental caries and urgent treatment needs
in adolescents and concluded that the naïve Bayes model

outperformed other models. However, that study particularly
considered physical, mental, and social factors rather than
behavioral factors. Furthermore, both clinical and radiographic
examinations were performed in this study to minimize the risk
of over- or underdiagnosis. In a real-life clinical environment,
the use of radiographic methods is considered advantageous
when deciding the need for operative care, especially when a
patient was presented with an ICDAS score of 3 [29]. The drop
in performance after oversampling in this study is comparable
to a previous study [6] from the United States. Xiong et al [6]
considered the synthetic minority oversampling technique for
oversampling in their studies. However, the ROSE was used in
this study for oversampling. The ROSE technique created
synthetic examples by drawing from a smoothed bootstrap
distribution in the feature space around the minority class, thus
producing more balanced datasets with better generalization
properties [42]. This method is particularly suitable for datasets
containing categorical or binary variables, which were prominent
in our study. In contrast, the synthetic minority oversampling
technique was primarily designed for a continuous feature space
and might not perform optimally with categorical or binary
variables. In addition, the k-nearest neighbors classifier cleaning
method was used in this study to further enhance the data quality
after oversampling. In this study, the ability of the model to
predict carious lesions (sensitivity) was high before and after
oversampling. For dental caries screening, high sensitivity is
vital to ensure that diseased individuals are correctly identified
with the disease. However, the ability to predict sound teeth
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(specificity) was lower, which might be subject to overdiagnosis;
therefore, cautious explanation is necessary. Therefore, oral
health care professionals are encouraged to carefully examine
those with high dental caries risk.

Dental caries is a multifactorial disease influenced by individual,
biological, behavioral, and environmental factors [43]. In the
literature, past caries experience was found to be the most
powerful caries predictor [44]. High consumption of
carbohydrates increased the chance of developing dental caries
[45], and xylitol-containing products significantly prevented
caries when compared with other nonxylitol products [46].
These findings from previous literature are in line with the
results of this study, as delivered by the feature importance
SHAP values. The past caries experience, nonuse of fluoridated
toothpaste, socioeconomic level, and a higher frequency of sugar
consumption were predictors that influenced caries progression
the most in a previous longitudinal study that aimed to predict
dental caries in primary and permanent teeth among children
aged 1 to 5 years [40]. Similarly, the use of dental floss,
unhealthy food consumption, self-declared race, and exposure
to fluoridated water were the most predictive variables in another
study by Bomfim [41]. The previous fillings (explaining past
caries experience) and total added sugar intake (explaining high
consumption of carbohydrates) were the most predictive
variables in this study.

The application of SHAP values in this study enhanced the
interpretability of the ML model, providing a transparent
understanding of how each feature contributed to the predictions.
Interpretability was a key element of explainable AI, which
played a critical role in ensuring that the ML models were not
only accurate but also transparent and reliable for real-world
applications. In contrast to black-box models, explainable AI
makes the model’s decisions more comprehensible and
trustworthy. Understanding the rationale behind predictions
helps in validating the model’s clinical relevance.

Strengths and Limitations
One of the strengths of this study is that the outcome variable,
carious lesions, was recorded by a licensed dentist based on
both clinical and radiographic evaluations, following the Finnish
Current Care Guidelines [29]. Another strength is the absence
of missing values, which was ensured by the strict inclusion
criteria of this study. Selection bias due to voluntary
participation in this study can be considered a limitation.
Another limitation is the potential for response bias due to the
use of a self-reported questionnaire; self-reported data can be
biased due to respondents’ subjective perceptions, memory
recall issues, or intentional misreporting. However, the aim was
to keep the questionnaire short and simple to minimize response
bias. Finally, the generalizability of the ML algorithm might be
questionable, as the model did not undergo external validation.
Future studies with longitudinal cohorts are needed both to
validate our models and to perform external validation in
socioeconomically diverse or racially varied populations. In
ML, validation provides evidence that a model is reliable and
performs sufficiently with new data. External validation also

requires testing the model on independent populations to assess
its applicability [47]. Before clinical use, external validation is
necessary [48]. However, this was beyond the scope of this
study. For the external validation to be successful, dental caries
categorization needs to be synchronized using ICDAS in both
study populations.

Clinical Implications
Rising health care costs associated with restorative treatment
require justification in early prevention and control of dental
caries. New strategies need to be developed to reduce social
impacts, such as aesthetic and functional disturbances, on both
the individual and societal levels. A potential application of ML
algorithms in dental caries prognostic studies enables
evidence‐based personalized dental care that could assist in
decreasing dental caries prevalence globally. The ML model
developed and tested in this study has the potential to identify
possible risk factors of dental caries before the onset of actual
dental caries lesions. In this study, each SHAP indicated the
importance of each feature in dental caries progression, and the
information gained can be transformed into a deeper dental
caries risk assessment. Algorithm-based risk assessment tools
can be integrated into electronic health records and used in
electronic preassessment forms. Information about dental caries
risk is valuable for both patients and dental professionals,
influencing treatment and prevention plans, follow-up, and
patient education [49]. Linking ML algorithms to intraoral
images using deep learning algorithms is expected to increase
dental screening potential. Individuals encounter unique
challenges in adhering to behavioral changes. To overcome
these obstacles, behavioral change interventions need to be both
multifaceted and personalized. Health behavior factors, such as
unhealthy food consumption, can be modified by health
promotion policies and strategies. This study is unique and
innovative because it is the first study to use ML models in
dental caries prediction in adolescents using easy-to-collect
predictors. In the future, after further development and external
validation, this ML model could be used as a risk assessment
tool and even be integrated into health record systems, which
would be beneficial for the patient and the health care
professionals in saving time and resources [50]. For the CRAT
to be successful, it needs to be inexpensive, user-friendly, and
open for everyone, even in low-income countries. SHAP values
include participants’ dental caries risk profile and can be used
for personalized behavioral change interventions in which
patients themselves can alter their overall risk.

Conclusions
Despite the small and imbalanced dataset, XGBoost performed
well in predicting restorative treatment among adolescents with
and without the oversampling method in this study. The results
from this study suggest the potential feasibility of the ML
models in caries risk assessment, enabling easier, cost-effective,
less time-consuming, and more effective decision-making.
However, future studies with longitudinal data and external
validation are needed to validate our models.
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