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Abstract

Background: As the older population grows, so does the prevalence of cognitive impairment, emphasizing the importance
of early diagnosis. The Mini-Mental State Examination (MMSE) is vital in identifying cognitive impairment. It is known that
degraded oral health correlates with MMSE scores <26.

Objective: This study aims to explore the potential of using machine learning (ML) technologies using oral health and
demographic examination data to predict the probability of having MMSE scores of 30 or <26 in Swedish individuals older
than 60 years.

Methods: The study had a cross-sectional design. Baseline data from 2 longitudinal oral health and ongoing general health
studies involving individuals older than 60 years were entered into ML models, including random forest, support vector
machine, and CatBoost (CB) to classify MMSE scores as either 30 or <26, distinguishing between MMSE of 30 and MMSE
<26 groups. Nested cross-validation (nCV) was used to mitigate overfitting. The best performance-giving model was further
investigated for feature importance using Shapley additive explanation summary plots to easily visualize the contribution of
each feature to the prediction output. The sample consisted of 693 individuals (350 females and 343 males).

Results: All CB, random forest, and support vector machine models achieved high classification accuracies. However, CB
exhibited superior performance with an average accuracy of 80.6% on the model using 3 x 3 nCV and surpassed the
performance of other models. The Shapley additive explanation summary plot illustrates the impact of factors on the model’s
predictions, such as age, Plaque Index, probing pocket depth, a feeling of dry mouth, level of education, and use of dental
hygiene tools for approximal cleaning.

Conclusions: The oral health parameters and demographic data used as inputs for ML classifiers contain sufficient informa-
tion to differentiate between MMSE scores <26 and 30. This study suggests oral health parameters and ML techniques could
offer a potential tool for screening MMSE scores for individuals aged 60 years and older.
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Introduction

The anticipated global population of 8 billion individuals
for 2023 has been achieved. The population growth contin-
ues to persist, albeit experiencing a decelerated trajectory.
Global birth rates are declining, juxtaposed with a consistent
upward trajectory in average life expectancy, attributed to
advancements in scientific knowledge, improved nutritional
standards, advancements in public health infrastructure, and
enhanced sanitation practices [1]. An estimate for the year
2050 suggests that individuals aged 60 years and older will
constitute 38% of the total population and will continue
to increase. While many individuals enjoy several quality
years of life, a significant portion of them will also strug-
gle with neurocognitive diseases such as Alzheimer disease
(AD) and mild cognitive impairment (MCI) [2]. Until now,
diagnosing AD, which is the most common neurocognitive
disorder, has required extensive hospital-level efforts, and no
curative treatment has been available [3]. Recent research
has identified biomarkers in blood that identify proteins
associated with AD [4]. At the same time, several approved
antibody medications now stop the breakdown of nerve
cells caused by phosphorylated Tau and amyloid plaques
[5]. This is expected to significantly burden the health care
system, as early diagnosis is essential for a good treatment
result. The need for screening methods is expected to be
extensive. It is widely recognized that MCI and neurocog-
nitive diseases contribute to deteriorating oral health, with
individuals affected by these conditions exhibiting poorer
oral health [6,7]. The decline in oral health carries pro-
found implications, causing hardship for affected individu-
als and placing substantial demands on society and health
care systems in terms of both costs and human resources.
However, recent research suggests that the deterioration of
oral health in individuals with MCI can be delayed by
at least 12 months through the introduction of a powered
toothbrush [8]. Additionally, severe periodontitis poses a risk
factor for dementia [9]. Various instruments are available to
assess cognitive function, with one of the most commonly
used being the Mini-Mental State Examination (MMSE)
test, which is internationally recognized and validated in
numerous languages. The MMSE scale ranges from O to
30, with higher scores indicating a better cognitive function
[10]. Recently, machine learning (ML) has emerged as a
valuable aid in enhancing the precision and efficiency of
cognitive assessments [11,12], leading to significant progress
in the field of cognitive research [13-15]. Various datasets
and algorithms can be used to better predict MMSE scores,
differentiate between MCI and AD, and improve cognitive
test batteries. A comprehensive study used a multifaceted
approach, integrating brain cortical characteristics, biological
markers, risk factors, positron emission tomography scan
measures, and cognitive scores into a joint feature set to
predict MMSE scores at 6 and 12 months, achieving mean
absolute errors of 1.40 [16]. Researchers have improved
predictive accuracy by experimenting with ML algorithms,
including logistic regression, decision trees, support vector
machine (SVM), XGBoost, and random forests (RF). This
approach enhances diagnostic precision and offers valuable
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insights into disease progression and treatment response [17].
Similarly, previous research has explored integrating MRI
data with cognitive tests, such as logical memory, to detect
and distinguish individuals with normal cognition from those
with MCI. Through deep learning models trained on MRI
slices and fusion techniques, the combined model surpassed
individual modalities in predictive performance, underscor-
ing the potential of multimodal fusion in cognitive assess-
ment, achieving an accuracy of 90.9% [18]. Earlier research
has explored the area of oral health and its relationship
with cognitive health. One meta-analysis [19] found that
oral health in individuals with dementia was significantly
worse than that of the controls. Another systematic litera-
ture review [20] came to a similar conclusion, attributing
this to both difficulties in self-care due to the consequen-
ces of the disease and inflammatory mechanisms. Further,
a systematic literature review [21] also indicated an associa-
tion between oral health and cognitive impairment, implying
a bidirectional relationship between these and ratifying a
need for higher-level evidence in this area. Another system-
atic literature review analyzed the effects of oral interven-
tions on cognition and found that dental treatments had
a subjective influence on cognition [22]. One study [23]
explored the relationship between oral health-related quality
of life and cognitive function among individuals in resi-
dential care settings. Significant correlations were found
between poor oral health and cognitive impairment, includ-
ing MCI, revealing a relationship between cognitive status
and perceived oral health [23]. Another study investigated
the use of noninvasive digital biomarkers to quantify oral
health and applied ML algorithms to detect cognitive decline
within a community setting. Significant findings included
notable differences in oral diadochokinesis rates and oral
acidity between individuals with cognitive decline and those
with normal cognitive function. This further demonstrates
that digital oral health biomarkers have the potential to track
cognitive function and facilitate early detection of cognitive
decline [24].

Despite promising advancements in clinical practice and
the possibility of early diagnosis, further research is nee-
ded. One significant research gap is the lack of exploration
of oral health parameters as potential indicators for estimat-
ing MMSE scores. Although oral health has a recognized
influence on overall well-being and cognitive function, there
have been no empirical studies to explore the integration
of oral health metrics into ML-based cognitive assessment
models. This opens an opportunity for future studies to
expand the scope of cognitive assessments and develop
more comprehensive diagnostic frameworks. Many individ-
uals routinely visit dental care facilities for treatment and
preventive care. Leveraging existing patient history data
alongside current examination findings requires minimal
additional effort from dental care staff, and it can be
seamlessly integrated with digital medical record systems.
Previous research presents diverse evidence on the associa-
tion between oral and cognitive health. This study builds
on this knowledge by investigating different parameters and
using a robust and balanced sample of participants in the
MMSE 30 and MMSE <26 score groups.

JMIR Med Inform 2025 | vol. 13 1e75069 | p. 2
(page number not for citation purposes)


https://medinform.jmir.org/2025/1/e75069

JMIR MEDICAL INFORMATICS

Integrating oral health parameters into ML-driven decision
support systems for MMSE score estimation could offer
insights into the interplay between oral health and cognitive
function. By leveraging advanced algorithms and comprehen-
sive datasets encompassing cognitive and oral health data,
researchers could uncover novel biomarkers and risk factors
for cognitive decline, paving the way for more personalized
approaches to cognitive assessment and intervention.

This study aims to explore the potential of using ML
technologies using oral health and demographic examination
data to predict the probability of having MMSE scores of 30
or <26 in Swedish individuals older than 60 years.

The main contributions of this study are as follows:

* The evaluation of the potential of oral health parameters
for binary classification of MMSE scores of 30 and
<26.

* The evaluation of the most deterministic oral health
parameters that influence the outcome of the best-per-
forming ML classifier.

¢ The assessment of RF, SVM, and CatBoost (CB) ML
classifiers as indicators of MMSE scores of 30 and <26.

Methods

Ethical Considerations

This study used secondary, open-access data from the
Swedish National Study on Aging and Care (SNAC-B)
and Support Monitoring and Reminder Technology for
Mild Dementia (SMART4MD) projects. No new data were
collected specifically for this study. The use of SNAC-B data
was approved by the Ethics Committee of Lund University
(LU 604-00). The data for SMART4MD was collected and
used under the approval of the Ethical Review Board in
Sweden (LU No. 650-00 and No. 744-00). Informed consent
was obtained from all participants in both studies. All data
were fully anonymized prior to access by the authors. No
compensation was provided to participants for the purpose
of this study. All data were used in accordance with applica-
ble data sharing agreements and stored securely. The study
complies with the ethical standards outlined in the Declara-
tion of Helsinki.

Data Description

The formed sample was used in experiments with ML
models, including RF, SVM, and CB, aiming to indicate
whether the participant’s MMSE scores were 30 or =<26.
Data from 2 studies, which recruited participants from the
European collaborative study SMART4MD [25] and the
SNAC-B [26], formed the sample. SNAC-B is a longitu-
dinal study involving individuals aged 60 years or older.
Participants undergo examinations every 6 years, with more
frequent assessments every 3 years, starting at the age of
78 years. The cohort ranges from 60 to 96 years of age
[26]. The study sample recruited from SMART4MD involved
individuals aged 60 years or older, examined every 6 to
12 months over 36 months [27]. Both studies are conduc-
ted at a research clinic affiliated with Blekinge Institute of
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Technology by experienced dentists and dental hygienists
and involve comprehensive clinical and demographic data
collection. Ethical approval was obtained for both studies, and
informed consent was collected from all participants. While
both studies are longitudinal in design, only the baseline visit
data, meaning the first available observation per participant,
were used in this study.

All clinical and demographic features, including oral
health variables, were extracted from each participant’s
first examination. This resulted in a cross-sectional dataset
suitable for ML analysis. The final sample included 693
baseline observations (350/693, 51% females and 343/693,
49% males) with an average age of 75 years. The sample was
divided into 2 relatively balanced groups: one with MMSE
scores of <26 and one with an MMSE score of 30. Obser-
vations with intermediate scores of 27-29 were excluded
to ensure distinct group separation. There was a total of
339/693 (49%) observations for individuals with <26 MMSE
scores (165/339, 49% females and 174/339, 51% males)
and 354/693 (51%) observations for the MMSE 30 score
(185/354, 52% females and 169/354, 48% males). The dataset
comprised 693 observations, each with 16 features (Table 1).
The oral health features selected for inclusion were limited to
those available in both datasets and supported by prior studies
linking them to general health or cognitive decline. Exam-
ples include the Plaque Index (PI), which reflects hygiene
maintenance; dry mouth, often associated with medication use
and systemic conditions; and the number of teeth, which may
serve as a proxy for long-term oral care and functional ability.

The listed features represent a combination of dem-
ographic, behavioral, and clinical oral health indicators
obtained from baseline dental examinations. Probing pocket
depth (PPD) measurements were categorized based on
severity: values of 4 mm typically reflect a mild periodontal
status, 5 mm indicate moderate depth, and =6 mm signify
advanced periodontal disease. Variables such as PPD, PI, and
bleeding on probing (BOP) were calculated as the percentage
of affected surfaces out of the total examined. Self-reported
variables, including dry mouth and hygiene tool use, were
assessed through standardized questionnaires. Denture status
was recorded separately for full and partial prostheses in both
the maxillary and mandibular arches. These variables were
selected due to their availability in both datasets and their
clinical relevance to cognitive and systemic health in older
adults.

MMSE scores are known to vary within individuals over
time. Research indicates that changes of up to 3 points may
occur without representing a clinically meaningful cognitive
change, especially in older populations [28]. To reduce
misclassification due to such variability, only individuals
with MMSE scores of <26 or exactly 30 were included in
the dataset. Based on this analogy, the MMSE <26 and
the MMSE 30 score groups were designated and labeled as
“1” and “0,” respectively. No normalization, mean-centering,
or outlier filtering was performed prior to model training.
Tree-based models like RF and CB are scale-invariant, and
for consistency, unscaled features were also used with SVM.

JMIR Med Inform 2025 | vol. 13 1e75069 | p. 3
(page number not for citation purposes)


https://medinform.jmir.org/2025/1/e75069

JMIR MEDICAL INFORMATICS

Table 1. List of features used for the study.
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Parameter Description Index/Categories

Age Participant age o Number

Education Level of education  Elementary School
¢ Secondary School
* Higher education

PI? Number of tooth surfaces in % with dental plaque of the total  Percentage

number of surfaces
PPDY 4mm The number of PPD 4 mm in % of the total number of surfaces * Percentage
Use of dental hygiene tools for approximal How often do you use approximal dental hygiene tools? « Rarely/never

cleaning

Gender
A feeling of dry mouth

Number of teeth
PPD 5mm

Mirror test

BOP®

PPD=6mm
Mandibular denture
Maxillary denture

Mandibular partial denture

Gender

Do you experience a sensation of dry mouth?

Number of teeth
The number of PPD 5 mm in % of the total number of surfaces

Mirror test

The number of surfaces with BOP in % of the total number of
surfaces.

The number of PPD = 6 mm in % of the total number of surfaces
Mandibular denture
Maxillary denture

Mandibular partial denture

Once a week
Daily

Several times daily
Male, female
Yes, often

Yes sometimes
No never
Number
Percentage
Glides easily
Sliding
Getting stuck

Percentage

Percentage
Yes, No
Yes, No
Yes, No

Maxillary partial denture Maxillary partial denture

* Yes,No

4PI: Plaque Index.
PPPD: probing pocket depth.
“BOP: bleeding on probing.

Classification Experiment

Several well-known classifiers, RF, CB, and SVM, were
used for the classification experiment. The dataset was
split into 2 subgroups: a training set comprising 80% of
the data (554/693 samples) and a test set containing 20%
(139/693 samples). To ensure an unbiased estimation of
model performance and to reduce the risk of overfitting
during hyperparameter tuning, nested cross-validation (nCV)
was applied within the training data.

The parameter grid for hyperparameter tuning was defined
as follows:

¢ For Random Forest:{'n_estimators’: [50, 100, 200],
‘max_depth’: [None, 10, 20], ‘min_samples_split’:
[2,5,10]}

e For SVM: {'C’: [0.1, 1, 10],kernel’: ['linear’, ‘rbf,’
‘poly’], ‘degree’: [2, 3, 4]}

e For CatBoost:{‘iterations’: [100, 200, 300], ‘learn-
ing_rate’: [0.01,0.1,0.2], ‘depth’: [4, 6, 8],
‘12_leaf_reg’: [1, 3, 5]}

nCV is particularly appropriate in ML pipelines that involve
hyperparameter optimization or model selection. It separates
the parameter tuning step from the performance evaluation
step, which prevents information leakage between training
and test data and avoids optimistically biased performance
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estimates. This methodological rigor is especially important
in moderate-sized datasets where variance due to overfitting
can significantly affect the results [29-31].

Model performance was assessed using a 10 x 10 nCV
framework. The outer 10-fold loop was used to evalu-
ate generalization performance, while the inner loop was
used solely for hyperparameter optimization. This design
avoids information leakage and produces unbiased perform-
ance estimates, allowing for a robust assessment of model
performance under varying fold configurations and providing
a stable basis for comparison across classifiers.

Performance Evaluation

To evaluate the performance of each ML classifier, multiple
metrics were used, including accuracy, precision, recall, and
F1-score. To enhance clinical interpretability, the following
definitions were used: true positives (TP) represent cor-
rectly identified positive cases; false positives (FPs) refer
to negative cases incorrectly classified as positive; true
negatives (TN) are correctly identified negative cases; and
false negatives (FN) denote positive cases that were incor-
rectly classified as negative. Box plots, which illustrate the
distribution of accuracy scores for the respective models
and additional statistical information, were used for the data
visualization. Subsequently, the classifier with the highest
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scores was further analyzed for its feature importance. The
examination of the most essential features relied on Shap-
ley Additive Explanation (SHAP) summary plots, providing
visualizations of the influence of parameter groups on the
output, organized by their importance. This importance is
based on SHAP values, offering insights into features’ effects
on the ML model’s decision-making process [32].

Experimental Setup

The experiment was conducted on a Dell Precision 7920
MT desktop, and all models were implemented using Python
(version 3.9; Python Software Foundation) with Scikit-learn
(version 1.2.2) and CB (version 1.2). Visualization was
supported via Seaborn (version 0.12.2).

Results

Experimental Results

The dataset, comprising 693 observations, each containing
16 features in its feature vector, underwent experimentation
using 3 different ML models to discriminate between MMSE
<26 and MMSE 30 score groups. Figure 1 displays the
accuracy of each model for all nCV combinations. The box
plot analysis reveals that the CB model outperforms the RF
and SVM models in accuracy. Specifically, the CB model
achieves the highest median accuracy of 0.760, the highest
mean accuracy of 0.752, and the highest maximum accuracy
of 0.810. Additionally, the CB model shows the smallest
variability in accuracy scores, as evidenced by the lowest
IQR of 0.020. The RF model demonstrates a solid perform-
ance with a median and mean accuracy of 0.740, but it does
not reach the same maximum accuracy as the CB model,
peaking at 0.780. The RF model also has a moderate IQR of
0.030, indicating some variability in its performance. While
still competitive, the SVM model shows the lowest median
accuracy of 0.730 and the lowest mean accuracy of 0.721
among the 3 models. It also has a maximum accuracy of
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0.760, which is lower than both RF and CB. The IQR of
0.030 is comparable to that of RF, indicating a similar level of
performance variability.

The performance of the 3 ML models (CB, RF, and
SVM) was evaluated using accuracy, precision, recall, and
Fi-score on both the training and test datasets. Table 2
summarizes these results. On the training set, RF achieved
the highest scores across all metrics, followed closely by CB.
However, on the test set, CB demonstrated the most balanced
and generalizable performance, with an accuracy of 80.6%,
precision of 77.4%, recall of 78.7%, and an Fp-score of
78.0%. In contrast, RF showed signs of overfitting, indicated
by a decline in test precision and accuracy despite maintain-
ing high recall. SVM yielded moderate but consistent results
across both datasets. These results suggest that CB is better
suited for generalization in this context, likely due to its
regularization features. RF, while highly effective on the
training set, may have captured dataset-specific patterns that
did not generalize well. SVM demonstrated stable but lower
overall performance.

Table 3 shows the confusion matrix results associated
with all models. The performance of 3 ML models, CB, RF,
and SVM, was evaluated on both training and test datasets
in terms of TP, FP, TN, and FN. Rather than focusing on
raw counts, the interpretation emphasizes overall performance
patterns. CB maintained a strong balance between correctly
identifying both positive and negative cases. RF achieved
high recall but also produced more FPs on the test set, which
may limit its clinical precision. SVM showed more balanced
errors, though with generally lower performance.

The hyperparameters and nCV combinations associated
with each and the best-performing model are as follows:
* CB: 3X3nCV, (‘depth’: 4, ‘iterations’: 200,
‘12_leaf_reg’: 5, ‘learning rate’: 0.1).
¢ RF: 4X7nCV, (‘max depth: 20, ‘min samples split’: 5,
‘n estimators’: 50).
e SVM: 8X5nCV, (‘C’: 10, ‘degree’: 3, ‘kernel’: 'poly’).
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Figure 1. Box plot-based accuracy comparison of each machine learning model. CB: CatBoost; RF: random forests; SVM: support vector machine.
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Table 2. The average performance metric scores for each machine learning model are displayed for the training and test sets.
Model Precision (%) Recall (%) Accuracy (%) F-score (%)
Training set
CB? 90.2 874 88.6 88.8
RE" 90.4¢ 92.6° 91.2¢ 91.5¢
svmd 75.8 69.1 727 723
Test set
CB 77 4¢ 78.7 80.6¢ 78.0¢
RF 68.5 82.0¢ 75.6 74.6
SVM 75.3 68.4 722 71.7
4CB: CatBoost.
YRF: random forests.
“Top-performing values.
dSVM: support vector machine.
Table 3. The confusion matrix outcomes for every machine learning classifier on both the validation and test sets.
CB? RE® Predictedd) SVM®
+ - + - + -
Training set
Actual
Positive (+) 249 36 264 21 195 90
Negative (-) 27 242 28 241 64 205
Test set
Actual
Positive (+) 48 13 50 11 46 15
Negative (-) 14 64 23 55 17 61
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CB?

SVM¢

+ - + -

RF® Predictedd)

4CB: CatBoost.
YRF: random forests.
€SVM: support vector machine.

Feature Importance

The SHAP summary plot in Figure 2 illustrates the impact of
various features on the model’s output. Each dot represents
a Shapley value for a feature for an individual instance, and
the color denotes the feature value, ranging from low (blue)
to high (red). The SHAP summary plot reveals that age, PI,
dental hygiene devices, education, a feeling of dry mouth, and
PPD are critical in influencing the model’s predictions. The
balance of these features, along with others like BOP and the
number of teeth, determines the overall outcome predicted by
the model. These findings indicate that age, PI, and PPD are

significant predictors, with older age and higher PI correlat-
ing with an increased likelihood of having an MMSE score
<26. Education appears to inversely affect the prediction,
suggesting that higher education levels may be associated
with better oral health practices. The number of teeth shows
an inverse relationship, where having more teeth is linked to a
lower risk of MMSE <26. Additionally, the presence of dental
prosthetics and feelings of dry mouth positively influence
the prediction, indicating a higher likelihood of MMSE <26.
Gender shows a minimal impact, with the female gender
slightly reducing the predicted MMSE <26 risk.

Figure 2. SHAP summary plot for model features. The plot illustrates the impact of each feature on the model’s output. BOP: bleeding on probing;
PI: Plaque Index; PPD: probing pocket depth; SHAP: Shapley Additive Explanation.
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Discussion

Principal Findings

This study explored the potential of using ML technolo-
gies using oral health and demographic examination data
to predict the probability of having MMSE scores of 30
or <26 in Swedish individuals older than 60 years. The
main findings of the study were that all CB, RF, and SVM
classifiers achieved high classification accuracies, but the CB
classifier outperformed both RF and SVM classifiers with an
average accuracy of 80.6%. Acceptable accuracy levels vary
across studies [33-35], but it can be argued that all CB, RF,
and SVM classifiers demonstrate strong performance, each
exceeding 72% accuracy. This indicates that with specific
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nCV combinations and hyperparameter tuning, all classifiers
can indicate whether the individual belongs to <26 MMSE
scores or higher MMSE score (score=30) groups with varying
grades of accuracy [36]. These findings hold the potential
to identify individuals in need of support and treatment,
benefiting not only them but also health care professionals
and systems by optimizing treatment with fewer resources.

The performance evaluation based on the training and test
set results is a common indicator of finding the unexpected
accuracy relation of ML models [37]. The evaluation of
the models reveals distinct differences in performance and
generalization capabilities. On the training set, RF showed
a well-balanced performance with strong metrics across
the board, reflected in its Precision, Recall, Accuracy, and
F1-score and its TP, TN, FP, and FN counts. The classifier
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CB performs better in the test set regarding the average
performance metric, and SVM lagged significantly behind in
both training and test sets. However, the general performance
evaluation might differ from a clinical point of view when
the higher recall is considered a more important parameter.
In that case, RF with the highest TP values becomes the best
classifier. FP could lead to unnecessary clinical evaluations
or interventions, while FN could result in missed diagnoses,
delaying treatment for cognitive impairment. When the goal
of ML models is early detection and ensuring no cases of
cognitive impairment are missed, minimizing FN is essen-
tial [38]. However, if the focus of these models is on
reducing unnecessary interventions and managing health care
resources efficiently, minimizing FP should be prioritized
[39]. From a generalizability perspective, SVM shows the
lowest performance drop between training and test, and CB
indicates a second strong generalizability with a low-perform-
ance drop compared with the training and test set results.
On the other hand, RF showed a decline in performance
between the training and test sets. This suggests that SVM
and CB are more suitable than RF for handling new, unseen
data. Hyperparameter tuning was conducted through nCV
using model-specific grids. For RF, parameters included the
number of estimators, tree depth, and minimum samples
per split. Despite this rigorous tuning, RF exhibited over-
fitting, reflected by its high training accuracy and reduced
performance on the test set. This behavior suggests that RF,
with its tendency to create deep and complex trees, may
have captured noise or sample-specific patterns. In contrast,
CB’s built-in regularization mechanisms, including L2-leaf
regularization, contributed to more stable generalization. To
address overfitting in future implementations, simpler models
or additional regularization techniques such as pruning,
reduced tree depth, or feature selection could be explored.

Oral health and demographic factors vary across different
regions globally, and this method’s applicability is specific
to Swedish conditions, which poses a limitation. However,
a study from Taiwan [24], using oral health biomarkers and
CB for cognitive decline classification predictions, yielded
results akin to those presented in this study. In their model
[24], crucial features included daily social interaction, oral
diadochokinesis, PI, saliva protein, and age. In contrast, this
study benefits from a more extensive and balanced data-
set, presenting absolute average values rather than weighted
results. Additionally, to mitigate overfitting risks, nCV was
used to train ML classifiers across various k-fold combina-
tions to mitigate overfitting risks in ML classifiers across
various k-fold combinations. Furthermore, these studies
collectively highlight oral health and demographic factors
that vary across different regions globally, and this method’s
applicability is specific to Swedish conditions. Additionally,
while the use of 10 x 10 nCV ensures an unbiased estimate of
generalization performance within the dataset, the impor-
tance of validating models on external data is well recog-
nized. Internal validation alone cannot capture the variability
introduced by different clinical environments, geographic
regions, or data acquisition protocols. External validation on
independent cohorts or through integration into routine dental
examinations would be required to evaluate robustness. Such
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efforts would help assess the model’s applicability under
real-world variability and determine its readiness for broader
clinical use.

The implications drawn from the SHAP summary plot
underscore critical insights into feature relevance concern-
ing cognitive health assessments via ML models. The clear
demarcation between the groups of MMSE scores <26 and
30 across influential variables like age suggests that such
demographic factors hold substantial weight in predictive
analytics. Notably, age emerges as a pivotal factor, with
higher age correlating strongly with lower cognitive health
scores. This correlation is also highlighted in other studies
that consistently demonstrated that MMSE scores tend to
be lower for older individuals and decline over time [40].
The SHAP summary plot highlights age, PI, and use of
dental hygiene tools as the most influential predictors of
MMSE classification. Older age and higher plaque levels
were associated with increased likelihood of MMSE <26,
suggesting that both biological aging and reduced oral
hygiene maintenance contribute to cognitive risk [20,41]. In
particular, individuals with lower use of interdental hygiene
tools exhibited stronger SHAP effects, indicating a poten-
tial interaction between age-related decline in motor or
cognitive function and oral hygiene behaviors. This aligns
with findings that individuals with cognitive impairment
often experience challenges in maintaining oral hygiene
due to reduced executive functioning and manual dexter-
ity [7,42]. Features such as dry mouth and education also
showed moderate predictive strength, consistent with their
known associations with polypharmacy and cognitive reserve,
respectively [41]. In contrast, features like BOP, gender,
and presence of dentures showed minimal SHAP influence,
suggesting weaker or less consistent relationships within this
sample. These findings suggest that age-related decline may
act synergistically with deteriorating oral hygiene habits,
offering further evidence for behaviorally anchored early risk
screening in clinical practice.

Given that MCI resides on the border between healthy
aging and neurocognitive illness, individuals with MCI may
fluctuate between MMSE scores <26 and 30 [43]. About 50%
of individuals with MCI receive a neurocognitive diagnosis
within 3 years, with a 2-step decrease in MMSE score within
12 months indicating disease onset. Recommended thresholds
for the MMSE can be expressed as 0-22, indicating demen-
tia; 23-26, MCI [44]; and 27-30, indicating normal cognitive
function [7,42]. In this study, the threshold MMSE=<26 was
used. This criterion was adopted in the study, resulting in the
exclusion of MMSE scores of 27, 28, and 29 from calcula-
tions. This limit has been chosen as 2 different studies have
found that changes of 2 to 3 points indicate reliable changes
in the MMSE test value at the 90% confidence level [28.45].
However, it is important to note that this regulatory threshold
may limit the study, potentially leading to missed indications.
The exclusion of MMSE scores of 27, 28, and 29 may also
affect generalizability. One of the strengths of this study is the
use of ML as the methodology. Recent studies in ML have
shown significant promise in predicting various disorders,
such as dementia [4647], chronic obstructive pulmonary
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disease [48], cancer [49], and Parkinson disease [50]. The
used tree-based models, CB and RF, and the distance-based
model SVM allow comparability in the case of possible
effects of outliers in the dataset, where the tree-based models
are known to be more resistant to imbalance in the dataset
than the distance-based models [51-53]. Despite this study
seeking a balanced data set, there is a heterogeneity regarding
ages represented in the dataset where some ages might be
overrepresented, which can be seen as a limitation in this
study. Another limitation is the low number of participants
and the recruitment that took place in a small county in
southern Sweden, which is an obstacle to making conclusions
from a broader perspective that represents more variety in
demographic and regional differences. However, in relation
to previous research, this study includes a larger number
of participants, thereby increasing the generalizability of the
findings. Another notable difference concerns the threshold
used to distinguish between the MMSE <26 and MMSE
30 groups; in this study, a higher threshold was applied.
Since the dataset of 693 observations is relatively small and
may not be representative of a larger population, it may
affect generalizability. In addition, even if the groups are
relatively balanced, small differences in group size (339/693,
49% vs 354/693, 51%) can affect model performance and
bias. These limitations can be overcome by expanding the
data set by including divergent and wider participants’ data
from larger geographical areas in upcoming studies. Future
research may also address the performance of capturing
changes over time for monitoring purposes, highlighting
the need for longitudinal studies. Although the findings
demonstrate strong internal performance, several practical
challenges constrain the model’s readiness for clinical use.
These include variability in oral health assessment protocols,
limited interpretability of model outputs for nontechnical
users, and the absence of integration pathways with existing
clinical information systems. SHAP plots provide valuable
transparency but may need adaptation for clinician-facing use.

Idrisoglu et al

Implementation would require standardization of input data,
compatibility with electronic health records, and interdiscipli-
nary development efforts. Further investigation is needed to
evaluate clinical usability and workflow alignment.

Other limitations of the study are that only baseline data
were used from longitudinal studies, meaning that potential
changes over time may be missed. Only 16 parameters
were selected, which means that other important param-
eters that could affect the results may have been omit-
ted. The oral health features used in the models were
selected based on their consistent availability across both
datasets and their previously reported clinical relevance
to cognitive function. These features, such as PI, number
of teeth, and dry mouth, may reflect both localized oral
conditions and systemic factors, including frailty, polyphar-
macy, and reduced self-care capacity. Such conditions have
been associated with cognitive impairment in older adults.
Other potentially relevant features, like microbial profiles or
periodontal attachment levels, were not included due to data
limitations, but future work could incorporate these variables
in extended datasets.

Conclusion

This study suggests that oral health parameters, demographic
data, and ML techniques offer a potential tool for screening
MMSE scores for individuals aged 60 years and older. The
data used as inputs for ML classifiers contains sufficient
information to differentiate between MMSE scores <26 and
30.

It is important to include both demographic and oral
health-related factors in predictive models. Despite some
limitations, the study offers valuable insights for future
research and potential clinical applications. To ensure the
robustness and generalizability of the model, further external
validation and adaptation to different clinical settings are
required.
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