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Abstract

Background: Recent advances in artificial intelligence (AI) have contributed to improved predictive modeling in health care,
particularly in oncology. Traditional methods often rely on structured tabular data, but these approaches can struggle to capture
complex interactions among clinical variables. Image generator for health tabular data (IGHT) transform tabular electronic medical
record (EMR) data into structured 2D image matrices, enabling the use of powerful computer vision–based deep learning models.
This approach offers a novel baseline for survival prediction in colorectal cancer by leveraging spatial encoding of clinical features,
potentially enhancing prognostic accuracy and interpretability.

Objective: This study aimed to develop and evaluate a deep learning model using EMR data to predict 5-year overall survival
in patients with colorectal cancer and to examine the clinical interpretability of model predictions using explainable artificial
intelligence (XAI) techniques.

Methods: Anonymized EMR data of 3321 patients at the Gil Medical Center were analyzed. The dataset included demographic
details, tumor characteristics, laboratory values, treatment modalities, and follow-up outcomes. Clinical variables were converted
into 2D image matrices using the IGHT. Patients were stratified into colon and rectal cancer groups to account for biological and
prognostic differences. Three models were developed and compared: a conventional artificial neural network (ANN), a basic
convolutional neural network (CNN), and a transfer learning–based Visual Geometry Group (VGG)16 model. Model performance
was assessed using accuracy, sensitivity, specificity, precision, and F1-scores. To interpret model decisions, gradient-weighted
class activation mapping (Grad-CAM) was applied to visualize regions of the input images that contributed most to predictions,
enabling identification of key prognostic features.

Results: Among the tested models, VGG16 exhibited superior predictive performance, achieving an accuracy of 78.44% for
colon cancer and 74.83% for rectal cancer. It showed notably high specificity (89.55% for colon cancer and 87.9% for rectal
cancer), indicating strong reliability in correctly identifying patients likely to survive beyond 5 years. Compared to ANN and
CNN models, VGG16 achieved a better balance between sensitivity and specificity, demonstrating robustness in the presence of
moderate class imbalance within the dataset. Grad-CAM visualization highlighted clinically relevant features (eg, age, gender,
smoking history, American Society of Anesthesiologists physical status classification (ASA) grade, liver disease, pulmonary
disease, and initial carcinoembryonic antigen [CEA] levels). Conversely, the CNN model yielded lower overall accuracy and
low specificity, which limits its immediate applicability in clinical settings.
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Conclusions: The proposed IGHT-based deep learning model, particularly leveraging the VGG16 architecture, demonstrates
promising accuracy and interpretability in predicting 5-year overall survival in patients with colorectal cancer. Its capability to
effectively stratify patients into risk categories with balanced sensitivity and specificity underscores its potential utility as a clinical
decision support system (CDSS) tool. Future studies incorporating external validation with multicenter cohorts and prospective
designs are necessary to establish generalizability and clinical integration feasibility.

(JMIR Med Inform 2025;13:e75022) doi: 10.2196/75022
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Introduction

Artificial intelligence (AI) has evolved, becoming integral to
various fields, including health care, bioscience, and medical
diagnostics. In the medical field, AI applications range from
disease detection to drug prescription optimization [1]. Health
care providers use AI for patient disease prediction and data
anonymization, addressing the growing health care costs
associated with increasing chronic diseases and life expectancy
[2]. Recent studies have increasingly applied advanced machine
learning and explainable artificial intelligence (XAI) methods
to improve disease survival prediction. For instance, Yang et
al [3] and Yau et al [4] have demonstrated effective survival
modeling using time-to-event algorithms and survival tree
analyses, respectively. Huang et al [5] applied explainable
machine learning approaches to uncover important risk factors
across major cancers, including colorectal cancer. These studies
highlight the growing trend and validate the clinical relevance
of AI-driven survival prediction.

Recent advances in medical imaging technology have enabled
sophisticated tumor image analysis using AI models [6]. In the
field of medical image analysis, active research is being
conducted using convolutional neural network (CNN) models
to predict responses to treatment in patients with colorectal
cancer. Yang et al [7] built a model to evaluate the risk of
recurrence and metastasis by applying deep learning technology
to the data of patients with benign breast cancer. Full
hematoxylin and eosin (H&E)-stained images were obtained
from surgical specimens of patients with breast cancer, and a
CNN was applied to them. The model used in the study achieved
an area under the curve (AUC) of 0.76 and showed the potential
for evaluating the risk of recurrence and metastasis in patients
with human epidermal growth factor receptor 2 (HER2)-positive
breast cancer. Althammer et al [8] conducted a study on image
analysis to predict the response to durvalumab therapy targeting
the programmed cell death-1/programmed cell death ligand-1
(PD1/PD-L1) pathway in patients with non–small cell lung
cancer. The results showed that the median overall survival in
patients receiving durvalumab was 21 months for those positive
for the CD8xPD-L1 signature and 7.8 months for those negative
(P<.001).

In particular, the image-guided tabular data (IGTD) method
proposed by Zhu et al [9] showed that arranging numerical
variables into a 2D matrix format can improve model
performance by enabling CNNs to capture local feature
interactions. Inspired by this approach, we developed an image

generator for health tabular data (IGHT) encoding method
tailored to our clinical dataset, converting 25 normalized features
into a 5×5 image matrix. This fixed spatial layout allows the
model to process tabular information through CNN-based
architectures, facilitating the use of transfer learning and
potentially enhancing predictive performance. There has been
growing interest in transforming structured tabular data into
image representations to leverage the power of CNNs in domains
traditionally dominated by machine learning. For example,
Lara-Abelenda et al [10] introduced low mixed image-guided
tabular data IGTD (LM-IGTD), an enhanced pipeline based on
the IGTD approach. Their method applies noise-based
augmentation and preserves explicit feature-to-pixel mappings,
allowing for the integration of post hoc explanation techniques,
such as gradient-weighted class activation mapping (Grad-CAM)
and saliency maps for better interpretability. These
developments reflect a broader trend toward interpretable and
robust AI in clinical settings.

In this study, we built upon this direction by applying a novel
tabular-to-image transformation method, IGHT, which converts
structured electronic medical record (EMR) features(tabular
data) into images, enabling deep CNN architectures to extract
spatial patterns for survival prediction in patients with colorectal
cancer.

Building upon these developments, Sharma et al [11] introduced
DeepInsight, one of the pioneering frameworks that enables
CNNs to process tabular data by converting them into image
representations. This method uses dimensionality reduction
techniques, such as t-distributed stochastic neighbor embedding
(t-SNE) or principal component analysis (PCA), to spatially
arrange high-dimensional features in a 2D grid, while preserving
interfeature relationships. Such transformations allow CNNs to
extract local and global patterns from structured data—patterns
that may be overlooked by traditional machine learning
approaches. This early work demonstrated the potential of
tabular-to-image conversion to enhance classification
performance across domains, and it has laid the foundation for
subsequent advances, including this study.

AI has shown strong performance in learning from existing
patient information using big data and in predicting or
recommending outcomes desired by clinicians, who are key
decision makers. In particular, the clinical decision support
system (CDSS), an AI system that helps clinicians make
decisions, has attracted considerable attention. The CDSS trains
an AI model with existing medical knowledge and patient data
to predict outcomes and make recommendations for clinicians
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based on new patient data [12]. Watson for Oncology (WFO),
a representative CDSS, was developed by IBM Corp and is a
system that analyzes more than 15 million pages of medical
documents, 300 medical journals, and 200 guidelines [13]. The
WFO was designed to recommend treatment options to
oncologists and was first introduced and used in 2016 at the Gil
Medical Center in Korea [14]. Although the WFO at the Gil
Medical Center helped inform treatment decisions, it could not
reflect regional characteristics due to differences in insurance
coverage and medical costs [15].

Lee et al [16] compared the treatment recommendations
generated by the WFO with the actual treatment received by
656 patients with stage 2, 3, and 4 colon cancer between 2009
and 2016 to determine the concordance rate. The results showed
that the agreement rate between the WFO and the Gil Medical
Center’s treatment recommendations was low, at only 48.9%.
Since the WFO was trained using data from Americans patients,
the prescription recommendations did not match well with those
for Korean patients. In addition, it was noted that the treatment
recommendations under the Korean insurance system and those
under the American insurance system differed, resulting in a
low concordance rate with actual treatment practices. Therefore,
it is important to establish a CDSS using Korean patient data.

To build a CDSS, many studies have been conducted to enhance
the performance of medical data–based AI models. Park et al
[17] used an oversampling technique to address data imbalance
and predicted colorectal cancer chemotherapy based on data
from the Gil Medical Center in Korea using a deep learning
model. Kwon et al [18] used machine learning models, such as
the gradient boosted model, the distributed random forest, the
generalized linear model, and the deep neural network, for a
stacking ensemble. They diagnosed breast cancer using the
best-performing model in the stacking ensemble. Oh et al [19]
classified colorectal cancer chemotherapy regimens using
machine learning models: k-nearest neighbor (kNN), support
vector machine (SVM), decision tree, and light gradient boosting

machine (LightGBM), and compared the results across multiple
models.

Colorectal cancer is the second-most common malignancy in
South Korea [20] and the second leading cause of cancer-related
mortality worldwide [21]. Surgery is the primary treatment for
colon and rectal cancer [22], but due to its high postsurgical
mortality rate, ongoing prognosis management is essential.
Therefore, research aimed at extending patient survival is being
conducted from various perspectives, including the prediction
of overall survival, disease-free survival, and recurrence. Overall
survival and disease-free survival periods are key indicators for
assessing a patient’s prognosis, and to extend life expectancy,
further research is needed to evaluate prognosis based on
patient-specific factors.

Studies on predicting the survival period have mainly been
conducted in the clinical field using statistical techniques, such
as the Kaplan-Meier method [23] and Cox’s proportional
hazards model [24]. Yeom et al [25] identified prognostic factors
that increase the risk of death in patients with terminal cancer
and predicted the survival period according to the number of
these prognostic factors. Using the Kaplan-Meier method and
the log-rank test, they investigated whether there were
differences in the survival period according to clinical variables.
Using Cox’s proportional hazards model, they identified
variables that increase the risk of death among clinical variables
and used them as prognostic factors, which were then
incorporated into the Weibull proportional hazards function
model to predict survival periods.

Figure 1 presents an overview of the pipeline of this study. In
this study, we aimed to develop and evaluate deep
learning–based models for predicting survival using data from
patients with colorectal cancer. This study used image data by
converting tabular electronic medical record (EMR) data
received from the health care system into image data to enhance
their utility. These deep learning models are expected to improve
the performance of predicting the prognosis of patients with
colorectal cancer by effectively using EMR data.

Figure 1. Overview pipeline of this study process. ANN: artificial neural network; ASA: American Society of Anesthesiologists physical status
classification; CEA: carcinoembryonic antigen; CNN: convolutional neural network; DM: diabetes mellitus; LN: lymph nodes; LVI: lymphovascular
invasion; pM: pathological distant metastasis; pN: pathological regional lymph node; PNI: perineural invasion; pT: pathological primary tumor; pTNM:
pathological tumor, node, metastasis.
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Methods

Dataset
In this study, EMR data were retrospectively collected from the
Gil Medical Center, a tertiary referral hospital in Incheon, South
Korea. A total of 3321 patients who underwent elective surgery
with curative intent for colorectal cancer between 2004 and
2018 were included. The dataset was constructed through
iterative chart review conducted by colorectal cancer clinicians.

Demographics are patient characteristics that can typically be
known without the need for surgery. These included basic
information, such as age, sex, BMI, and the patient status, as
classified by the American Society of Anesthesiologists physical
status classification (ASA): “DM_history” refers to a history
of diabetes mellitus; “Pulmonary_disease,” a history of lung
disease; “Liver_disease,” a history of liver disease; and
“Kidney_disease,” a history of kidney disease.

Perioperative clinical features included information about each
patient gathered before and after surgery: “Initial CEA” and
“Initial Hb” represent the first blood tests performed at the time
of cancer diagnosis (serum carcinoembryonic antigen [CEA]
and serum hemoglobin [Hb] levels, respectively),
“Transfusion_op” indicates whether a blood transfusion was
performed during surgery; “Early_complication” is defined as
a case of complications occurring within 30 days after surgery,
and “Postop_Chemotherapy” indicates whether chemotherapy
was used after surgery.

Histopathologic features can be known after a biopsy of the
patient’s tumor following surgery. Here, “pTNM” is a variable
that integrates the pathological tumor, node, metastasis (TNM)
stage and is classified into stages 1, 2, 3, and 4. The TNM stage
classification was based on the AJCC Cancer Staging Manual,
Eighth Edition. “pT” (pathological primary tumor) includes Tis,
T1, T2, T3, or T4 (T4a, T4b) as the T stage; “pN” (pathological
regional lymph node) includes N0, N1 (N1a, N1b, N1c), or N2
(N2a, N2b) as the N stage; and “pM” (pathological distant
metastasis) includes M1 as the M stage.

In the “Intraoperative_tumor_location” variable, colon cancer
is classified into cecum, ascending colon, hepatic flexure,
transverse colon, splenic flexure, descending colon, sigmoid
colon, and rectosigmoid junction cancer according to the
location of the primary tumor. In the case of rectal cancer, 0-5
cm of the anal verge (AV) is classified as the lower rectum,
6-10 cm of the AV is the midrectum, and 11-15 cm of the AV
is the upper rectum. The final colon cancer dataset consisted of
2091 patients, and the rectal cancer dataset consisted of 1190
patients.

Ethical Considerations
This study was reviewed and approved by the Institutional
Review Board of the Gil Medical Center (GFIRB 2023-034).
EMR data from the Gil Medical Center were used. Overall, data
of 3321 patients were retrospectively collected through an
iterative chart review conducted by colorectal cancer specialists.
Due to its retrospective nature, the study was exempt from
requiring informed consent from the participants.

Data Preprocessing
The variables were selected in consultation with a clinician. To
select and use clinical variables to enhance the explanatory
power of the results, pretreatment was performed after
discussion with the clinician. Patient exclusion, variable
categorization, missing value removal, and variable selection
were performed in that order. All continuous variables were
normalized to a (0,1) scale using min-max normalization to
standardize the color intensity across features. Categorical
variables were first one-hot-encoded and then similarly mapped
to the image matrix, ensuring consistent scaling across data
types during the image generation process. Images were
constructed by arranging features sequentially based on the
column order in the original dataset. No domain-driven grouping
or clustering of related variables was applied to preserve
reproducibility and avoid introducing subjective bias. Although
the spatial arrangement of semantically related features may
potentially affect CNN performance, this aspect was not
explored in the study and is left for future investigation.

Prior to variable selection, patient cases excluded from the
analysis were removed. In the case of “Kidney_disease,” missing
values were deleted. Patients who underwent surgery for
recurrent colorectal cancer were also excluded.

After excluding patients, variable categorization was performed.
Age was categorized by the number 65, which is a standard
used to divide age. The BMI was categorized as 18 or less and
18 or more and as 25 or less and 25 or more. In addition,
“DM_history,” “Pulmonary_disease,” “Liver_disease,” and
“Heart_disease,” which are variables corresponding to the
patient’s medical history, were categorized by the presence or
absence of a medical history.

Among the perioperative clinical features, “Initial_CEA,” which
indicates the first CEA level after diagnosis, was categorized
according to 5 criteria, and 166 missing values were replaced
with the average value. Missing values were removed for
“Early_Complication,” which indicates complications within
30 days after surgery. In particular, “Overall_Survival” was
calculated from the date of surgery until the date of death for
uncensored cases or until the date of last follow-up for censored
cases. In addition, patients were categorized based on 5 years
(60 months), which is the criterion for cure.

Among histopathologic features, missing values were removed
and categorized in “Havested_LN,” which represents the number
of lymph nodes removed from the patient during surgery. If
more than 12 pieces were removed, the operation was considered
successful, and if less than 12 pieces were removed, the
operation was classified as insufficient. Missing values were
also removed from “Positive_LN,” which indicates the number
of metastatic lymph nodes that could be recognized during
surgery. The final selected variables are listed in Table S1 in
Multimedia Appendix 1.

Image Generation Health Care Tabular Data Method
In this study, we aimed to convert the data from structured data
into 2D unstructured image data to use as input to the deep
learning model. The variables of the tabular data were visualized
in matrix form and developed according to the data. Each
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variable in Table S1 in Multimedia Appendix 1 was mapped to
one column of the heat map and implemented in the form of an
image. Figure 2 shows an example of an imaging matrix. The

image is in the form of N×N, where N is 5, and the number of
variables used for image conversion is 25.

Figure 2. Method of generating IGHT. ASA: American Society of Anesthesiologists physical status classification; CEA: carcinoembryonic antigen;
DM: diabetes mellitus; IGHT: image generator health care tabular data; LN: lymph nodes; LVI: lymphovascular invasion; pM: pathological distant
metastasis; pN: pathological regional lymph node; PNI: perineural invasion; pT: pathological primary tumor; pTNM: pathological tumor, node, metastasis.

In this study, we selected 25 clinically relevant variables and
reshaped them into a 5×5 matrix to generate 2D images for input
into the CNN models. Variables were categorized into three
clinically meaningful groups: demographic, perioperative, and
histopathologic features. These variables were mapped from
left to right and top to bottom in the 5×5 matrix, following the
order of these categories. This spatial configuration was
carefully designed to enable the deep learning model to
effectively capture interactions among clinically related
variables. By organizing the input into a square-shaped matrix,
the convolutional filters in the CNN architecture could exploit
spatial proximities from the input layer, thereby enhancing the
model’s ability to learn joint patterns and improving both
performance and interpretability.

We also considered scenarios where the number of input features
may not perfectly form a square matrix. In such cases, possible

strategies include (1) zero-padding to fill the remaining space
without introducing clinical meaning and (2) modifying the
CNN input layer to accept nonsquare (rectangular) input
dimensions. Although these were not necessary in this study,
they remain relevant for future extensions of this framework.

Deep Learning Model Prediction
Figure 3 shows a pictorial representation of the VGG16 model,
proposed by the Visual Geometry Group (VGG), used in this
study. The weights of VGG16 learned using a large dataset
called ImageNet were imported and used to classify the imaging
matrix. All modeling and analysis were conducted using Google
Colaboratory with the following software environment: Python
3.7.13, TensorFlow 2.8.0, Keras 2.8.0, pandas 1.3.5, scikit-learn
1.0.2, NumPy 1.21.5, matplotlib 3.4.3, and seaborn 0.11.2.
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Figure 3. Pipeline of VGG16 using the IGHT technique. ASA: American Society of Anesthesiologists physical status classification; CEA:
carcinoembryonic antigen; DM: diabetes mellitus; IGHT: image generator for health tabular data; LN: lymph nodes; LVI: lymphovascular invasion;
pM: pathological distant metastasis; pN: pathological regional lymph node; PNI: perineural invasion; pT: pathological primary tumor; pTNM: pathological
tumor, node, metastasis; VGG: Visual Geometry Group.

For model interpretation, Grad-CAM was implemented using
custom code adapted from tf-keras-vis and compatible
TensorFlow visualization utilities. We divided the dataset of
3321 patients with colorectal cancer into two cohorts—colon
cancer (n=2089, 62.9%) and rectal cancer (n=1232,
37.1%)—and trained separate models for each group. For both
cohorts, the data were randomly split into training and testing
sets in a 7:3 ratio.

ANN and CNN models were trained using default
hyperparameters. For the VGG16-based model, we adopted a
transfer learning approach: the convolutional base of VGG16
pretrained on ImageNet was used (include_top=False), and all
layers were set to be trainable. A flattened output was passed
through a dense layer with 256 units (rectified linear unit
[ReLU] activation), followed by a dropout layer (rate=0.25)
and a sigmoid output layer for binary classification. The
optimizer used was Adam with a learning rate of 0.01, and the
loss function was binary cross-entropy. We also tested the
Stochastic Gradient Descent (SGD) optimizer during model

development, but it yielded inferior performance compared to
Adam. Key hyperparameters, such as optimizer type, learning
rate, and dropout rate, were selected based on empirical
validation performance, rather than being used as default values.

Model performance was evaluated using the testing set, and the
metrics reported included accuracy, sensitivity, and specificity.

ANN Model
After converting the tabular data into an imaging matrix, an
ANN was constructed to compare and verify the AI model
results. Instead of using the data converted to the imaging matrix
(tabular data), the original dataset was used. Using the original
dataset, an ANN was used to predict the survival period of
patients with colorectal cancer and validate the results. Table
S2 in Multimedia Appendix 1 lists the parameters of the baseline
model in detail.
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CNN Model
In this study, after transformation of data into an imaging matrix,
a CNN model was applied. The model was constructed to
classify the data by dividing the survival period of patients with
colorectal cancer by 5 years. The classification performance of
the patient survival period was confirmed using the CNN model,
which showed good performance in image classification. Table
S3 in Multimedia Appendix 1 lists the parameters of the CNN
model.

VGG16 Model
In this study, transfer learning based on the VGG16 model
created by Simonyan and Ziserman in 2014 was performed.
The VGG16 model is a structure developed from the existing
CNN structure, and because it is convenient to apply, studies
using VGG16 are actively being conducted to improve
classification performance. Table S4 in Multimedia Appendix
1 shows the structure of VGG16 used in this study. Figure 4
shows a pictorial representation of the transfer learning method
used in this study. In this study, the weights of VGG16 learned
using a large dataset called ImageNet were imported and used
to classify the imaging matrix.

Figure 4. Example of Grad-CAM results: (a) original data from the image generator, (b) heat map produced by Grad-CAM, and (c) visualized image
generated by Grad-CAM. Grad-CAM: gradient-weighted class activation mapping.

Gradient-Weighted Class Activation Mapping
To demonstrate the models’ potential as a CDSS, we used
Grad-CAM [26] to visualize important features for individual
patient predictions. VGG16 is a CNN-based model that cannot
explain the results of a model [27]. Therefore, Grad-CAM was
used to increase the explanatory potential of the model results.
Grad-CAM was used to generate heat maps that highlighted
variables with notable influence on the models’ prediction of
the survival period of patients with colorectal cancer. The heat
maps generated by Grad-CAM are highlighted in red and are a
method of displaying the variable area that has a large influence
on the prediction. Grad-CAM extracts features using weights
extracted from the last convolutional layer of the models used
for prediction [28].

An example of converting Grad-CAM is shown in Figure 4. In
the weight of the models trained using patient data (Figure 4a),
the influence of the variable that affected the prediction result
was converted into a heat map of the form in Figure 4b. Next,
an image was created in a form that could intuitively determine
the influence, as shown in Figure 4c, overlaid on Figure 4a.

Evaluation Metrics
The predictive performance of the models was evaluated using
three key metrics: accuracy, sensitivity, and specificity.

Accuracy measures the overall proportion of correctly classified
instances. Sensitivity (also known as recall) quantifies the
proportion of true-positive cases correctly identified by the
model, while specificity measures the proportion of true
negatives correctly identified.

These metrics were calculated on the test datasets to assess the
generalization performance of the models.

Results

Imaging Matrix Transformation
The transformation of tabular data into 5×5 imaging matrices
using 25 variables from patients with colorectal cancer
demonstrated distinctive visual patterns. The heat map
representation, where values approaching 1 appear white and
those approaching 0 appear black, provided an intuitive
visualization of patient data. For survival period prediction, we
established a binary classification. Figure 5 shows an example
of the imaging matrix created. Class 0 represented patients with
a survival period of less than 5 years, while class 1 represented
patients with a survival period of more than 5 years.
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Figure 5. Example of an imaging matrix: (a) class 0 image in colon cancer, (b) class 1 image in colon cancer, (c) class 0 image in rectal cancer, and
(d) class 1 image in rectal cancer.

Comprehensive Model Performance Evaluation
We conducted an extensive comparative analysis across three
distinct deep learning architectures, each revealing unique
strengths in colorectal cancer survival prediction.

As shown in Tables 1 and 2, the accuracy and specificity of
VGG16 were the best among the three models. However, the
sensitivity of VGG16 was the lowest among the three models,

which means that the model mistakenly thought that the actual
survival period of a patient was less than 5 years but that the
patient had a good prognosis. Compared to VGG16, the ANN
and CNN showed higher sensitivities (84%-99%) in identifying
patients with poor prognoses well. However, in terms of
specificity, VGG16 showed better performance in correctly
predicting patients with a 5-year survival period (89.55% for
colon cancer and 87.9% for rectal cancer).

Table 1. Overall survival prediction in patients with colon and rectal cancer using ANNa, CNNb, and VGG16c models.

F1-score (%)Precision (%)Specificity (%)Sensitivity (%)Accuracy (%)Model

76.8671.5954.2384.0071.47ANN

76.1761.584.9099.4061.90CNN

54.3380.5589.5540.7978.23VGG16

aANN: artificial neural network.
bCNN: convolutional neural network.
cVGG: Visual Geometry Group.

Table 2. Overall survival prediction in patients with rectal cancer using ANNa, CNNb, and VGG16c models.

F1-score (%)Precision (%)Specificity (%)Sensitivity (%)Accuracy (%)Model

80.1874.1455.2687.4674.78ANN

75.8161.354.9397.7161.80CNN

49.0278.6887.9035.5676.54VGG16

aANN: artificial neural network.
bCNN: convolutional neural network.
cVGG: Visual Geometry Group.
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Gradient-Weighted Class Activation Mapping
Grad-CAM analysis was used to enhance the interpretability of
the VGG16 model predictions. This technique generated heat
maps highlighting variables that appeared most influential in
the three models’ survival period predictions.

Analysis of Patients With Colon Cancer
Figure 6 presents examples of heat map conversion results and
Grad-CAM application results for patients with colon cancer.

The patient has a survival period of more than 5 years and is a
successful case of deep learning model prediction. Looking at
Figure 6a, the patient was in an early pTNM stage. Considering
this, it can be confirmed that the factor that played a major role
in VGG16 predicting the survival of this patient was the pTNM
stage. The results of Grad-CAM for patients without liver
disease and a moderate ASA grade had an impact on predicting
that patients would have longer survival times (Figure 6d).

Figure 6. Visualized results generated by Grad-CAM in patients with colon cancer: (a, c) original data from the image generator and (b, d) visualized
image generated by Grad-CAM. Grad-CAM: gradient-weighted class activation mapping.

Analysis of Patients With Rectal Cancer
Figure 7 presents examples of heat map conversion results and
Grad-CAM application results for patients with rectal cancer.

Figures 7a and 7c are the learned images, and Figures 7b and
7d show the results of Grad-CAM as a heat map. As shown in
the imaging matrix in Figure 7b, the smoking history, initial
CEA level, and pTNM stage were indicated as variables that
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had a major influence on the prediction of the model: there was
no smoking history, the initial CEA level was moderate, and
the TNM stage was early. As the patient’s survival period was
well predicted to be more than 5 years, it was found that the
Grad-CAM analysis results were consistent with the results of
existing clinical studies. As shown in Figure 7d, age, sex, the
ASA grade, and pulmonary disease affected the survival time
prediction results. For a patient with a high age, a low ASA

grade, and no pulmonary disease, with a well-predicted survival
of more than 5 years, because the ASA grade was low, the
patient’s physical condition was good, and there was no
pulmonary disease, the survival period seemed to be predicted
for a long time. As described earlier, Grad-CAM can be used
to determine which variables have the most influence on the
prediction of survival time for individual patients and their risk
factors.

Figure 7. Visualized results generated by Grad-CAM in patients with rectal cancer: (a, c) original data from the image generator and (b, d) visualized
image generated by Grad-CAM. Grad-CAM: gradient-weighted class activation mapping.

Discussion

Principal Findings
In this study, we developed a model to predict the survival
period of colorectal cancer using EMR data and investigated
which variables contributed to the prediction. In particular, we
improved the performance of the model through an innovative

approach to convert tabular medical data into image data. The
results of the study showed that the VGG16 model achieves the
best performance, which suggests a new methodology for
developing a CDSS for patients with colorectal cancer in clinical
settings.

Deep learning models performed important clinical predictions
on whether the survival period of patients with colorectal cancer
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who underwent surgery is more than 5 years. If the survival
period of a patient with cancer is more than 5 years, it indicates
that the patient’s prognosis is good and the risk of cancer
recurrence is low, which can provide clinically helpful
information. Furthermore, it shows that doctors can use this as
a reference to understand the patient’s condition and support
them in making better decisions.

In this study, the prediction accuracy of VGG16 was 75%, and
that of the CNN was 61%, showing that the VGG16 model,
which used more weights through transfer learning, performs
better. The reason for the large performance difference between
the CNN and VGG16, about 14%, is probably because the
amount of data used in this study was less than that used in other
deep learning models. However, VGG16 is a transfer learning
model trained using a large ImageNET-based dataset and
provides the weights obtained as a result. In this study, we used
the weights of VGG16 for learning, and we were able to see
that the prediction performance was improved by overcoming
the limitations of quantitative data volume.

Given the class imbalance in our dataset and the differing
behavior observed across models, a clear understanding of the
trade-off between sensitivity and specificity is essential for
clinical application. Although oversampling techniques, such
as the synthetic minority oversampling technique (SMOTE),
were initially considered to mitigate the imbalance, we
ultimately decided not to apply them after consultation with
clinical experts. It was determined that artificially augmenting
the minority classes could compromise the clinical validity and
real-world representativeness of colorectal cancer data.
Therefore, we maintained the original class distribution and
focused on evaluating model performance through sensitivity
and specificity, which are more aligned with clinical priorities.
To further enhance model interpretability and support clinical
decision-making, we applied Grad-CAM to visualize the features
contributing to model predictions.

Our best-performing model, VGG16, exhibited high specificity
(88%-90%) but relatively low sensitivity (35%-40%). This
indicates that when the model predicts early mortality
(nonsurvival within 5 years), it is highly reliable, minimizing
false positives in identifying high-risk patients. Such high
specificity is valuable in clinical settings where unnecessary
aggressive follow-up could impose physical, psychological, and
economic burdens. Considering the class distribution
(approximately 6:4 for positive to negative outcomes, where
“positive” refers to patients surviving for more than 5 years),
precision and F1-scores provide further insight into model
behavior. VGG16, which showed the highest specificity and
precision, tended to make more conservative predictions
regarding long-term survival, resulting in fewer false positives.
From a CDSS perspective, its relatively high F1-score and
sensitivity suggest potential usefulness in identifying patients
unlikely to survive beyond 5 years. Although the ANN and
CNN also demonstrated comparable sensitivity, VGG16
maintained this without compromising specificity, indicating a
more balanced performance that may help reduce false alarms
in clinical practice.

The VGG16 model outperformed the ANN model by achieving
an accuracy improvement of 6.76% (78.23% vs 71.47%) in
colon cancer survival prediction and 1.76% (76.54% vs 74.78%)
in rectal cancer survival prediction. Additionally, VGG16
demonstrated markedly higher specificity compared to the ANN
(89.55% vs 54.23% for colon cancer and 87.9% vs 55.26% for
rectal cancer), indicating improved ability to correctly identify
patients with better survival outcomes.

In contrast, the CNN model showed substantially lower accuracy
(61.9% for colon cancer and 61.8% for rectal cancer) and poor
specificity (<5%), suggesting limited clinical utility in its current
form. These findings highlight that although basic CNN
architectures may underperform, deeper networks, such as
VGG16, can capture complex patterns to improve prediction
reliability.

However, the lower sensitivity implies that some patients who
do die early are not identified by the model (false negatives),
potentially missing individuals who could benefit from
intensified monitoring or interventions. This limitation is crucial
to acknowledge, as underdetection may reduce the model’s
effectiveness in guiding proactive clinical decision-making.

Conversely, the CNN model showed the opposite pattern, with
high sensitivity but low specificity, which would result in many
false alarms and potentially excessive interventions.

Therefore, the choice of model and classification threshold must
be carefully tailored to the clinical context and intended use
case. For example, a model prioritizing sensitivity may be
preferred in screening scenarios to ensure at-risk patients are
not missed, whereas one prioritizing specificity may be favored
where reducing false positives is paramount.

Unlike the black-box model, the demand for a white-box model
that provides a reason for the result is increasing [29]. A
white-box model explains the results of an AI model and has
recently been attracting attention under the name of XAI [30].

Although our model achieved an accuracy of 75%-78% in
predicting 5-year survival, the existing literature indicates that
this level of performance is clinically meaningful. Kos et al [31]
used various machine learning models (eg, decision tree,
stacking ensemble, and SVM) to predict survival rates from 1
to 10 years using large-scale data of patients with colorectal
cancer in Australia. In this study, the 5-year survival prediction
models showed an AUC of approximately 0.86-0.89 and an
accuracy of over 70%, and the performance by cancer stage
also showed an excellent predictive power of over 70%.
Compared to the prediction accuracy of this study (78.4% for
colon cancer and 74.8% for rectal cancer), both studies suggest
that machine learning–based clinical data use is effective for
survival prediction, and this study is particularly different in
that it converted EMR data into images and applied them to a
CNN-based model. Similarly, Gao et al [32] compared nine ML
models against TNM staging alone (AUC=0.784) and found
that most models only modestly outperform staging, often with
overlapping CIs.

These findings suggest that our image-based deep learning
model operates within a comparable performance band, while
adding the benefit of interpretable Grad-CAM visualization.
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Furthermore, staging-only approaches often fall short when
applied to patients with stage II-III cancer, whose outcomes are
less deterministic. Our model showed improved discrimination
in this subgroup, indicating its potential to complement staging
heuristics in borderline clinical cases.

Finally, the alignment between Grad-CAM highlighting (eg,
pTNM stage, smoking history, age) and established prognostic
factors enhances the model’s trustworthiness and suitability for
integration into explainable CDSSs. To help clinical
decision-making, it is better for deep learning models to also
provide reasons for their decisions. In this study, Grad-CAM
was used to provide XAI in deep learning models. Grad-CAM
can answer the reasons for individual patient outcomes, and the
survival prediction model shows the possibility of providing
tailored medicine as part of a CDSS.

Clinical Implications
Figures 6 and 7 show the results of analyzing the results for
some patients with colorectal cancer using Grad-CAM. Among
the patients with colon and rectal cancer, we randomly selected
2 patients and examined the heatmap from the Grad-CAM
analysis results. As a result, the pTNM stage was found to be
the variable that had the greatest influence on the model
prediction in both cancer types. However, additional variables
that affected each patient were different: age, gender, smoking
history, ASA grade, liver disease, pulmonary disease, and initial
CEA levels. The results of Grad-CAM analysis for patients in
Figure 5d,e show that the pTNM stage has an influence on the
prediction, which is consistent with existing medical knowledge
[33]. Figure 6 shows that smoking history has a major influence
on the prediction by the model. In existing clinical studies,
smoking history has been identified as a relevant factor affecting
patient survival [34]. Since various factors must be considered
in order to determine the prognosis of patients with colon cancer,
if we conduct an analysis that can identify the influential
variables at once, such as Grad-CAM, we will be able to provide
better clinical services.

Limitations and Future Work
When training a deep learning model using a small amount of
data, overfitting may occur. If overfitting occurs, predictions
may not work well with data other than trained data. Therefore,
if we can collect more multicenter studies or data in future
research, we will further increase the reliability of the study by
conducting an analysis by stage.

To leverage the spatial learning capabilities of CNNs, we
transformed 25 clinical variables into a 5×5 image for each
patient. Each feature was min-max-normalized and assigned to
a fixed position in the 5×5 matrix, ensuring consistent spatial
encoding across all samples. Although clinical tabular data do
not possess an inherent spatial structure, prior studies have
shown that imposing a structured layout allows CNNs to
effectively capture local feature interactions and complex
nonlinear relationships that may be overlooked by traditional
models. This image-based representation also enables the
application of transfer learning using pretrained CNN
architectures.

Although the variable layout was arbitrarily fixed in this study,
future work may explore data-driven arrangements based on
feature correlation or clinical relevance to further enhance the
model’s representational capacity.

The proposed model, although demonstrating strong predictive
performance, must address several practical considerations to
be implemented as a CDSS. Integration into existing EMR
systems would require standardized data pipelines,
interoperability, and real-time processing capabilities.
Additionally, interpretability remains essential for clinical
adoption. In this study, we used Grad-CAM to identify features
contributing most to each prediction, providing visual
explanations that could be embedded into future CDSS
interfaces.

From a clinical perspective, prediction models for survival
outcomes in colorectal cancer can serve as valuable tools,
particularly in the postoperative setting. Previous studies have
demonstrated the utility of machine learning for guiding
surveillance and adjuvant therapy decisions [35,36]. Our deep
learning–based model offers automated and objective risk
stratification using routinely collected clinical data, supporting
multidisciplinary teams in identifying high-risk patients. Within
clinical workflows, the system could deliver actionable
alerts—such as notifications flagging patients with poor
predicted survival—to prompt timely follow-up or intervention.
These alerts, coupled with interpretable Grad-CAM
visualizations, can enhance clinical reasoning, build trust, and
facilitate shared decision-making by clearly communicating
risk to both clinicians and patients.

Although this study adopted a binary classification approach
(predicting 5-year survival), we acknowledge that this represents
a simplification of the underlying clinical reality. In oncology,
the timing of events such as recurrence or mortality is often just
as important as whether the events occur. Therefore, future work
will explore modeling survival outcomes in a time-to-event
framework using deep learning–based survival models. Methods
such as DeepSurv, a Cox proportional hazards–based neural
network, have shown promise in capturing complex nonlinear
relationships, while preserving the structure of survival data
[37]. These approaches could yield more clinically informative
predictions, especially in patient-level prognostication and
individualized treatment planning.

In addition, future enhancements could include the use of more
advanced convolutional architectures, such as ResNet or
EfficientNet, as well as ensemble learning strategies. These
techniques may help improve both performance and
generalizability, especially in heterogeneous clinical datasets.

The dataset used in this study was built through the EMR system
of a single institution. For multi-institutional research, if a
standardized medical information system for each type of
medical institution in Korea is established and advanced, it will
be possible to produce generalized prediction results using more
patient data. Furthermore, if data construction standards for
each institution are established, it is believed that the
establishment of a data mart will help Korea’s data ecosystem
and contribute to the generalization of research results.
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The dataset used in this study was limited as it was collected
from a single institution. Therefore, the characteristics of the
patient group in this study may not reflect the clinical features
of patients in other medical institutions. In future research, we
will present a generalized model that reflects the clinical features
of patients in a multicenter study.

Conclusion
XAI research that enhances the interpretability of deep learning
model results is actively progressing. In this study, we used the
IGHT technique to convert structured data into images, which

allowed us to capture relationships between variables effectively.
Using this approach, we developed models to predict overall
survival, a key indicator for determining the prognosis of
patients with colorectal cancer after surgery.

An ANN model, a CNN model, and transfer learning with a
pretrained VGG16 model were used to evaluate predictive
performance. Our results suggest that image-based input leads
to improved prediction compared to traditional tabular data
analysis. Additionally, CNN-based models provide opportunities
for enhanced interpretability through techniques such as
Grad-CAM.
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