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Abstract

Background: Drug—target interaction (DTI) prediction is crucial in drug repositioning, as it can significantly reduce research
and development costs and shorten the development cycle. Most existing deep learning—based approaches employ graph neural
networks for DTI prediction. However, these approaches still face limitations in capturing complex biochemical features,
integrating multilevel information, and providing interpretable model insights.

Objective: This study proposes a heterogeneous network model based on multiview path aggregation, aiming to predict
interactions between drugs and targets.

Methods: This study employed a molecular attention transformer to extract 3D conformation features from the chemical
structures of drugs and utilized Prot-T5, a protein-specific large language model, to deeply explore biophysically and function-
ally relevant features from protein sequences. By integrating drugs, proteins, diseases, and side effects from multisource
heterogeneous data, we constructed a heterogeneous graph model to systematically characterize multidimensional associations
between biological entities. On this foundation, a meta-path aggregation mechanism was proposed, which dynamically
integrates information from both feature views and biological network relationship views. This mechanism effectively learned
potential interaction patterns between biological entities and provided a more comprehensive representation of the complex
relationships in the heterogeneous graph. It enhanced the model’s ability to capture sophisticated, context-dependent relation-
ships in biological networks. Furthermore, we integrated multiscale features of drugs and proteins within the heterogeneous
network, significantly improving the prediction accuracy of DTIs and enhancing the model’s interpretability and generalization
ability.

Results: In the DTI prediction task, the proposed model achieves an AUPR (area under the precision-recall curve) of 0.901
and an AUROC (area under the receiver operating characteristic curve) of 0.966, representing improvements of 1.7% and
0.8%, respectively, over the baseline methods. Furthermore, a case study on the KCNH2 target demonstrates that the proposed
model successfully predicts 38 out of 53 candidate drugs as having interactions, which further validates its reliability and
practicality in real-world scenarios.

Conclusions: The proposed model shows marked superiority over baseline methods, highlighting the importance of integrat-
ing heterogeneous information with biological knowledge in DTI prediction.
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Introduction

Background

Drugs play a crucial role in treating diseases by inter-
acting with multiple targets and modulating their func-
tions. Accurately predicting drug—target interactions (DTI)
is essential for understanding drug mechanisms [1], discover-
ing new targets, and facilitating drug repositioning. Tradi-
tional methods rely heavily on large amounts of labeled
data and often suffer from label noise in negative sam-
ples. In recent years, positive-unlabeled learning has been
effectively applied to alleviate this issue [2]. Meanwhile,
self-supervised learning strategies integrated with heterogene-
ous biomedical networks have improved the accuracy of DTI
prediction by leveraging multimodal information [3]. With
the rapid advancement of large language models (LLM),
their applications in the biomedical domain have expanded
significantly. Due to their powerful sequence representation
and semantic understanding capabilities, LLMs are driving
DTI prediction methods toward a higher level of performance

[4].

Currently, DTI prediction methods are primarily catego-
rized into three types [5,6]: ligand similarity—based meth-
ods [7,8], network-based methods [9,10], and structure-based
methods [11]. Ligand similarity—based methods predict DTIs
by comparing the structural similarity of drugs. These
methods are computationally efficient but often overlook
complex biochemical properties and molecular characteris-
tics, which may lead to inaccurate predictions [12]. Net-
work-based methods rely on large amounts of high-quality
interaction data and are computationally intensive [13-15].
They typically lack structural information about drugs and
targets, resulting in poor performance on sparse networks.
Structure-based methods usually depend on the three-dimen-
sional structures of target proteins and drugs [16]. However,
these methods exhibit limited efficacy for proteins with
unknown structures.

To address the above issues, we propose a heterogene-
ous network (HN) model based on multiview path aggrega-
tion for DTI (MVPA-DTI) prediction. MVPA-DTI enhances
prediction capability through a multiview feature extrac-
tion and fusion mechanism. First, the molecular attention
Transformer model is used to extract the three-dimensional
spatial structure information of drugs, while the protein-
specific LLM Prot-T5 is leveraged to deeply explore the
biophysical properties of protein sequences, forming two
feature views based on structure and sequence. Subsequently,
a HN is constructed by incorporating multisource heteroge-
neous information from proteins, drugs, diseases, and side
effects. This approach effectively integrates the previously
defined feature views into the message-passing framework
of the HN, thereby forming a comprehensive biological
network relationship view. The multiview path aggregation
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mechanism allows the model to dynamically synthesize
feature information from multiple perspectives. By intro-
ducing a meta-path aggregation mechanism, the model
dynamically synthesizes feature information across different
perspectives, capturing underlying drug—target associations
at multiple hierarchical levels through both feature-oriented
views and biological network relational contexts. During the
message-passing process, MVPA-DTI optimizes the weight
distribution by incorporating both network topology and
biological prior knowledge. By extracting node-level feature
embeddings from heterogeneous data, the model is capable
of accurately predicting new DTI. Experimental results show
that MVPA-DTI outperforms existing advanced methods
across multiple evaluation metrics. Additionally, for the
voltage-gated inward-rectifying potassium channel KCNH2
target, which is related to cardiovascular diseases, MVPA-
DTI was used for candidate drug screening. Among 53
candidate drugs, 38 are predicted to interact with this target
(10 of which are already used in clinical treatment). This
finding not only validates the effectiveness of MVPA-DTI in
predicting DTT but also further demonstrates its application
potential and practical value in real drug development. The
main contributions of this paper are as follows:

1. We employ a molecular attention Transformer network
that extracts three-dimensional structural information
from molecular graphs through a physics-informed
attention mechanism, establishing a structural feature
perspective of the drug.

2. The sequence-level features are extracted from protein
sequences using Prot-TS5, a protein-specific LLM. The
model maps sequence features to functional relevance,
establishing a sequence feature perspective of proteins.

3. We integrate the drug structural view and protein
sequence view into a multi-entity HN to construct a
biological network relationship view. The meta-path
information aggregation mechanism captures higher-
order interaction patterns among different types of
nodes.

4. We propose a multiview path aggregation—enhanced
HN model that integrates protein and drug biological
knowledge to accurately identify critical drug—target
relationships. Benchmark tests show that the model
exhibits a significant advantage in prediction perform-
ance.

Related Work

DTI prediction plays a significant role in drug discov-
ery and drug repositioning. With the rapid advancement
of deep learning technologies, an increasing number of
deep learning—based DTI prediction methods emerge. These
methods, particularly those combining big data with deep
learning, gradually overcome the limitations of traditional
approaches. Based on different prediction strategies, DTI
prediction methods are generally categorized into three types
[5,6]: ligand similarity—based methods [7.8], network-based
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methods [9,10], and structure-based methods [11]. In recent
years, prediction methods based on LLMs also bring
remarkable breakthroughs to the DTI field, opening new
pathways for its development.

Ligand Similarity-Based Methods

In DTI prediction, ligand similarity—based methods estimate
potential interactions by comparing the structures or chemical
similarity of drug molecules. These methods typically rely on
the SMILES (simplified molecular input line entry system)
representation or molecular fingerprints of drugs to calcu-
late drug—drug similarities and infer potential target interac-
tions based on these similarities. For instance, Thafar et
al [17] proposed the DTiGEMS model, which integrates
drug—drug similarities and employs a similarity selection and
fusion algorithm to enhance the accuracy of DTI predictions.
Additionally, Shim et al [18] introduced a similarity-based
convolutional neural network method. This method calculates
the outer product of the similarity matrix between drugs and
targets and employs a two-dimensional convolutional neural
network to capture potential relationships between them.
These methods have improved DTI prediction accuracy to
some extent, but they often overlook the dynamic interac-
tions and complex spatial structures between molecules.
Moreover, ligand similarity—based methods operate under
the assumption that similar drug molecules share similar
targets. However, this assumption does not always hold,
especially when dealing with molecules that exhibit signifi-
cant structural differences.

Network-Based Methods

Network-based methods typically rely on large amounts of
known DTI data and utilize graph algorithms for modeling.
In these methods, drugs and targets are represented as nodes
in a graph, while the interactions between them are represen-
ted as edges. Additionally, drug—drug similarity networks,
protein—protein similarity networks, and known DTI networks
are often integrated into a HN. Examples of such approaches
include DTI networks, multisimilarity collaborative matrix
factorization, and HN models. On this basis, researchers used
graph structures to explore potential interaction patterns and
promoted the development of tasks such as drug reposition-
ing.

In recent years, with the development of graph repre-
sentation learning [19,20], network-based methods have
achieved deep fusion modeling of structural and semantic
information. For example, Zhao et al proposed a regulation-
aware graph learning method that enhances drug represen-
tation by integrating gene regulation information, thereby
improving the prediction effect of drug repositioning [21].
GNN methods mostly rely on the direct adjacency structure
of nodes, which easily ignores the rich high-order seman-
tic information and cross-modal associations in biological
networks. To this end, some studies have proposed informa-
tion fusion methods that combine low-order and high-order
graph structures. For example, Zhao et al jointly modeled
direct neighbor relationships and high-order network path
features to effectively enhance the discriminability of drug
and target representation [22]. At the same time, in order
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to more comprehensively model the heterogeneous relation-
ships between multiple entities such as drugs, proteins, and
diseases, Zhao et al constructed a heterogeneous information
network using semantic paths and attention mechanisms to
achieve the integration and discrimination of multimodal
information, thereby improving the accuracy and generali-
zation ability of DTI prediction [23]. The iGRLDTI intro-
duced edge weight regulation mechanisms and regularization
terms in GNN, further improving the model’s ability to learn
potential interactions in heterogeneous biological networks
[24].

Structure-Based Methods

Traditional structure-based methods typically use molecu-
lar docking techniques, combined with molecular dynam-
ics simulations, to accurately predict the binding patterns
between drugs and targets. With the development of
deep learning methods, an increasing number of studies
have integrated structural information with neural net-
works. For example, DeepDTA [25] and DeepDrug3D [26]
have enhanced the modeling capability of the drug—target
binding process by incorporating three-dimensional struc-
tural information of proteins and drugs, further improving
prediction accuracy. Although deep learning models can
handle structural information, they generally require large
amounts of labeled data for effective training, and obtaining
high-quality drug—target binding data remains a challenge.

The application of language models is particularly crucial
in the absence of molecular structural information. Draw-
ing on techniques from the field of Natural Language
Processing, pretrained language models (such as BERT [27]
and MoIBERT [28]) are used to deeply characterize drug
and protein sequence data. By automatically learning latent
features and semantic information within sequences, these
models enhance the accuracy of DTI predictions. A key
advantage of LLMs is their ability to process large-scale,
unlabeled data and improve model generalization through
transfer learning. For instance, MolBERT [28] and Chem-
BERTa [29] achieve high-quality molecular representations
by pretraining on massive drug molecular datasets. Trans-
former-based protein language models, such as ProtBERT
[30], TAPE [31], and ProtT5 [32], are pretrained on large
protein sequence databases. This enables them to cap-
ture hierarchical and context-rich sequence representations,
enhancing the understanding of protein characteristics. These
models can efficiently and accurately characterize proteins
using only sequence data, without relying on three-dimen-
sional structural information.

Methods

Framework

MVPA-DTI combined multiple types of heterogeneous data.
It extracted structural and sequential features from drug
molecules and protein sequences. It also optimized the weight
distribution for information propagation in a heterogeneous
graph neural network. As illustrated in Figure 1, the process
consisted of four steps: (a) First, an HN is constructed,
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incorporating drugs, proteins, diseases, and drug side effects.
(b) Next, a molecular attention Transformer [33] network
is used to extract 3D structural features from the SMILES
[34] representations of drugs, which are then assigned to
drug nodes. (c¢) Then, the Prot-TS model is employed to
analyze key biophysical features of protein data, which are
subsequently assigned to target nodes in the graph. (d) In

Zhao et al

the final step, a Heterogeneous Graph Attention Network
(HAN) [35] is utilized to analyze network topology, unify
node embeddings, determine node importance using meta-
paths, and integrate node features through semantic attention.
Ultimately, MVPA-DTI predicted potential DTI by optimiz-
ing the drug—protein reconstruction loss and the cross-entropy
loss.

Figure 1. Architecture of the MVPA-DTI model: (A) Construction of the HN; (B) extraction of structural features from the SMILES sequences of
drugs to reconstruct drug representations in the HN; (C) extraction of key biophysical properties from protein sequences using Prot-T5 to reconstruct
protein representations in the HN; (D) extraction of topological features through the HAN and message-passing mechanism, followed by DTI
prediction. DTI: drug—target interaction; HAN: Heterogeneous Graph Attention Network; HN: heterogeneous network; MVPA-DTI: multi-view path
aggregation for drug—target interaction; Prot-T5: ProtTrans T5-XL-U50; SMILES: Simplified Molecular Input Line Entry System.
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Feature View

Feature Extraction of Compound Structures

The MVPA-DTI model utilized SMILES sequences as input
for drug molecules to learn effective representations of
their structural features. Since SMILES sequences shared
structural similarities with natural language, contextual
information can be effectively leveraged to analyze molec-
ular features. However, traditional methods often struggled
to capture long-range atomic relationships when processing
molecules. To overcome this limitation, this study employed
an improved Transformer architecture.

First, we employed the RDKit toolkit [36] to convert
SMILES sequences into molecular graph structures. Since
the lengths of SMILES sequences vary across different
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molecules, a maximum length of 100 is selected to construct
reasonable molecular representations. This setting covered at
least 90% of the compounds in the dataset. For sequences
exceeding this length, truncation is applied, while shorter
sequences are padded with zeros to maintain consistent input
formatting.

For feature extraction, we employed the Molecule
Attention Transformer (MAT) [33] for encoding. Its core
idea is to replace the self-attention layer of the tradi-
tional Transformer [37] with an enhanced molecular self-
attention mechanism. By integrating adjacency information
from molecular graphs and interatomic distance informa-
tion, MAT comprehensively captured the feature represen-
tation Sdmg of drug structures. The attention mechanism
integrated interatomic distance and molecular topology.
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This enhancement allowed the attention distribution to
more precisely capture internal molecular relationships. The
calculation formula for molecular multihead self-attention is
as follows:

QK/

Ja

N, N, .
where A € {0,1} atoms X N atoms represented the adjacency

AD = uyo +ugD) + AV Q)

atoms X Natoms

matrix of the molecular graph and D € RN
denoted the distances between atoms. The query, key,

and value vector matrices are defined as Q; = XW{,

Ki=X Wlk , and V;= XW/, respectively, where W
represented learnable parameters. In the attention calculation,
Mer Mp, and u. corresponded to the weights of different
attention components, with specific meanings as follows:
U, measured the importance of interatomic distances in the
attention mechanism; y, adjusted the influence of self-atten-
tion on the overall attention mechanism; and u, controlled the
role of the adjacency matrix in the attention computation.

Feature Extraction of Protein Structures

The MVPA-DTI model employed Prot-T5 to extract features
from protein sequences. By treating sequences as natural
language, it used Transformer-based self-supervised learning
to capture biological insights. During the data preprocessing
stage, protein sequences are treated as text data composed of
20 standard amino acids (along with a few unknown amino
acids, such as X). To adapt to the input format of Natural
Language Processing tasks, each protein sequence is treated
as a token sequence of individual amino acids, with spaces
inserted between each amino acid to ensure the Transformer
can correctly parse the sequence information. Additionally, to
enhance the model’s generalization capability, all uncommon
or unresolved amino acid symbols (eg, B, O, U, Z) are
mapped to the universal token X, ensuring data consistency.

Prot-T5 is based on the Text-to-Text Transfer Trans-
former (T5) [38] architecture, which employs an encoder—
decoder structure. However, for the task of protein fea-
ture extraction, only the encoder part of TS5 is utilized
to map protein sequences into a high-dimensional feature
space. Prot-T5 adopted the Span Masking language model-
ing strategy, where during training, continuous segments of
amino acids in the sequence are randomly masked, and the
model is tasked with reconstructing the masked portions
based on the context. This enabled the model to learn
long-range dependencies and semantic information within
protein sequences. As shown in Equation 2, given a protein
sequence S = (S, S5, . . ., S,), it is first embedded into a

high-dimensional space E (S) and then fed into the Trans-
former to compute the hidden representations:

H = Transformer(E(S)) @)
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Finally, the global representation of the entire sequence
is obtained through average pooling, as calculated by the
following formula:

®3)

Sprotein =

where H; represented the hidden states output by the
Transformer and Spoin Served as the global feature of the
protein.

Relational View of Biological Networks

Heterogeneous Networks

The HN is described as an undirected graph G = (V, E),
where V = {01,0,, . . .,V,} represented the set of nodes and
E={EQ),E(Q2), . ..,E(k)} denoted the set of ktypes of
edges, with each EY = {eq,en, . .
specific type of edge.

.,eim} representing a

As shown in Figure 1A, this paper constructed a
comprehensive heterogeneous information network, which
included drug—drug interactions, drug—protein interactions,
drug—disease associations, drug-side effect associations,
protein—protein interactions, and protein—disease associations.
In the network, entities such as drugs, targets, diseases, and
side effects are represented as nodes, while the relationships
and interactions between nodes are represented as edges. In
the proposed framework, each node belonged to only one type
of entity, and all edges are undirected and have nonnegative
weights. Node messages are first sent to their first-order
neighbors and then propagated to higher-order neighbors
through the network edges, a process known as message
passing.

The message-passing process in the HN is divided into
multiple stages. First, nodes transmitted their information to
first-order neighbors. This information is then propagated
to higher-order neighbors through network edges, forming
more complex information dissemination. Message passing
is not limited to directly connected nodes but also includes
information transmitted through multihop paths. This enabled
the model to integrate features across a broader neighbor-
hood, thereby better capturing long-range dependencies and
multilevel network structures.

Metapath-Based Entity Information
Aggregation

In heterogeneous graph representation learning, our goal is
to learn effective feature representations for each node in
the HN. However, the challenge of this task lies in not
only integrating information from different types of nodes
and edges in the heterogeneous graph but also considering
the heterogeneous features and content of each node. To
address this issue, we employed HAN [35] as the topological
feature extraction method for the heterogeneous information
network. HAN modeled the structural relationships in the
HN through a hierarchical attention mechanism. Specifically,
node-level attention learned meta-path-based neighborhood
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weights and aggregates them to generate semantically specific
node embeddings, while semantic-level attention assigned
weights across different meta-paths to obtain the optimal
task-specific representation, as illustrated in Figure 1D.
In terms of meta-path selection, we selected two biolog-
ically meaningful paths: D-P-D (Drug—Protein—-Drug) and
P-D-P-D (Protein—Disease—Protein—Drug). D-P-D is used to
capture the semantic relationship between drugs connected
by common targets, which helped the model identify drug
pairs with similar functions or related potential mechanisms
of action, while P-D-P-D further explored the multi-hop
indirect connections between proteins formed by disease
associations, thereby reflecting a more complex biological
network structure. We selected these two meta-paths based on
their good semantic interpretability and biological relevance,
which helps the model more effectively model the potential
interactions between drugs and targets.

After obtaining the node embeddings, we further procee-
ded with the message-passing process. Assuming the initial
node embeddings are defined as fOZ V- Rd, where fo(v)
represented the mapping of node v in the d-dimensional

space, the information aggregation process for node v can
be expressed as:

K
fo=al=> > awW fw @
k=1u€eN,

o exp(AconC(a’[W fo(w) | W f(v)]))

B ZkeNuexp(AconC(ocT[WfO(u) [ Wfo(k)])) ©

where o represents a nonlinear activation function, K denotes
the number of attention layers, N, represents the set of
neighboring nodes of node v, W is the shared weight
parameter, a,, is the edge weight computed by the attention
mechanism, and AconC(*) [39] is an adaptive activation
function.

Based on obtaining the graph structure representation, we
further integrated the structural information of each node to
construct the final drug and protein representation. For drug
nodes, its representation integrates the meta-path structure
features, the original embedding representation, and the
molecular structure features, which is specifically expressed
as:

farug = L2 Norm(ReLU([mateppp, Egrug + L2 Norm(Sgug) [Wo + by))  (6)

Similarly, the protein node representation combined its
meta-path structure features, original embeddings, and
sequence representations and is expressed as:

fprotein = L2 Norm(ReLU([matepppp, Eprotein + L2 Norm(Sproein) [Wo + b)) (7)

Among them, W), and b, are learnable linear transformation

parameters, which are used to uniformly map the concaten-
ated multiple features to a common low-dimensional semantic
space, and implicitly model the importance weights of each
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feature subspace during the training process to improve the
discriminative ability of the final representation.

After completing the representations of drugs and proteins,
we used the inner product to calculate the interaction
probability between them, as shown in Figure 1D. For a drug
node u and a protein node v, their interaction probability is
calculated as follows:

p* = o((f)' o) ®)

where ¢ is the sigmoid function and p"’ represents the
interaction score between node u and node v.

To optimize the model, we employed multiple loss terms
for joint training. Among them, the cross-entropy loss is
used to supervise the interaction prediction task, defined as
follows:

£cpr = D, —y,log(p,) — (1 - y)log(1 - p,) )

reRrR

where R is the set of relationships, y, is the ground truth

label of sample r (1 for positive samples and O for negative
samples), and p, is the predicted probability.

In addition, to enhance the model’s structural perception of
node features, we introduced reconstruction losses for drugs
and proteins, which are defined as follows:

e = | Aanig = Aara|;
£rec - Adrug Adrug F (10)
rotein n 2
£}l')ec = ”Aprotein - Aprotein F (11)

Among them, Agyg and Aporin are the adjacency matrices of

~

drug and protein nodes in the original HN, respectively. A
represents the adjacency matrix reconstructed by the model
through node embedding and ||+| » represents the Frobenius
norm. The final optimization target is the weighted sum of
three losses:

£ = £opp + A £08 + A £RI

(12)
where £§Z§‘ € and ££’§C° tein represent the reconstruction losses
for drugs and proteins, respectively, while A; and A, are
weighting coefficients used to balance the contributions of
different loss terms. Through joint optimization, we can
improve the accuracy of DTI prediction while ensuring that

the generated feature representations possess robust structural
information and discriminative capabilities.

Results

Dataset

This study conducted DTI prediction experiments on the
Luo dataset [9], which was assembled by Luo et al. To
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better capture biological characteristics, we incorporated the
SMILES sequences of drug molecules and the structural
sequence data of proteins into the dataset. Tables 1 and 2
present the relevant statistical information of nodes and edges

Table 1. Statistics of node information in the dataset.

Zhao et al

in the dataset. The dataset comprises six independent drug—
protein interaction networks, with all edge weights being
binary values.

Node type Count
Drug 708
Protein 1512
Disease 5603
Side effect 4192

Table 2. Statistics of association information between nodes in the dataset.

Edge type Count Source

Drug—protein interaction 1923 DrugBank version 3.0 [40]

Drug—drug interaction 10,036 DrugBank version 3.0 [40]

Protein—protein interaction 7363 HPRD Release 9 [41]

Drug—disease association 199,214 Comparative Toxicogenomics Database
[42]

Protein—disease association 1,596,745 Comparative Toxicogenomics Database
[42]

Drug-side-effect association 80,164 SIDER Release 2 [43]

Experimental Settings

Building upon the study by Luo et al [9], 90% of the
positive and negative samples from the dataset were used to
construct the HN and train MVPA-DTI, while the remain-
ing 10% were reserved for testing. In this study, we adop-
ted a data preprocessing process consistent with NeoDTI,
including negative sample sampling strategy, drug—target
similarity calculation method, and similarity threshold setting

Table 3. Parameter settings in the experiment.

to eliminate redundancy. Subsequently, the model’s perform-
ance was evaluated through 10-fold cross-validation, with the
effectiveness of the method being measured using AUROC
and AUPR metrics.

MVPA-DTI consists of three modules: Prot-T5, MAT, and
HAN, with the parameter settings detailed in Table 3. During
the training process, we employed the Adam optimizer to
update the network weights.

Parameter Value
Number step 3000
Batch size 128
Learning rate 0.001
Dropout rate 0.1
HAN®? input size 1024
MAT® multi-head attention number 16
MAT stack number 8

4HAN: Heterogeneous Graph Attention Network.
PMAT: Heterogeneous Graph Attention Network.

Comparison With Prior Work

In this study, to better simulate real-world scenarios, we
randomly sampled negative samples while retaining all
positive samples, setting the ratio of positive to negative
samples at 10:1. This ratio aims to reflect the imbalance
between positive and negative samples in the real world.
Subsequently, we compared the performance of MVPA-DTI
with several benchmark models to evaluate its effectiveness
in DTI prediction tasks; they are briefly described as follows:

https://medinform jmir.org/2025/1/e74974

* MSCMF [44]: MSCMF effectively predicts DTI by
utilizing multiple similarity matrices of drugs and
targets through collaborative matrix factorization.

e HNM [45]: HNM integrates disease, drug, and target
information via a HN, aiming to enhance the efficiency
and accuracy of drug repositioning.

e DTINet [9]: DTINet predicts interactions between new
drugs and targets by integrating heterogeneous data and
learning low-dimensional feature representations.
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* NeoDTI [46]: NeoDTI automatically generates feature
representations by integrating diverse information from
HN.

e EEG-DTI [47] : EEG-DTTI is an end-to-end learning
framework based on heterogeneous graph convolutional
networks, capable of effectively learning features from
multiple biological entities.

* SHGCL-DTI [48]: SHGCL-DTI combines semi-super-
vised learning with graph contrastive learning,
enhancing the model’s adaptability.

The performance of MVPA-DTI was compared with various
models, and the experimental results are shown inTable 4.
MVPA-DTI achieves the best performance, demonstrating
significant improvement over other DTI models. It achieves
an AUPR of 0901, which is 1.7% higher than the sec-
ond-best method, and an AUROC of 0.967, representing
a 0.9% improvement over SHGCL-DTI. MSCMF employs
matrix transformation to optimize prediction results through
network inference and the topological structure of data.
However, compared to the recent outstanding performance

Table 4. The AUPR and AUROC evaluation results for each model.

Zhao et al

of deep learning methods, MSCMEF does not fully exploit the
latent information in data matrix embeddings or the features
of adjacent nodes, thereby limiting its predictive perform-
ance. HNM does not adopt mainstream heterogeneous data
embedding methods for feature representation and infor-
mation integration, resulting in insufficient generalization
ability and lower prediction accuracy. In contrast, DTI-
Net, NeoDTI, and EEG-DTI further extract hidden features
by combining matrix transformation with neural networks,
enabling more accurate modeling of node relationships and
improving prediction performance. SHGCL-DTI employs a
graph contrastive learning strategy to capture the structural
information of heterogeneous graphs. This is achieved by
enhancing the similarity of positive sample pairs and reducing
the similarity of negative sample pairs. However, SHGCL-
DTI fails to fully utilize the rich semantic information
and complex interaction patterns in heterogeneous graphs,
presenting certain limitations when processing biological
data.

Model AUPR? AUROCP
HNM® 0.579 0.834
MSCMF4 0.603 0.856
DTINet® 0.818 0916
NeoDTI 0.855 0.943
EEG-DTI¢ 0.847 0.952
SHGCL-DTI! 0.884 0.958
MVPA-DTI (ours)! 0.901 0.966

4 AUPR: area under the precision—recall curve.

PAUROC: area under the receiver operating characteristic curve.
CHNM: heterogeneous network model.

dMSCMF: multiple similarities collaborative matrix factorization.
°DTINet: drug-target interaction prediction network.

fNeoDTI: neural integration of neighbor information for DTI prediction.
8EEG-DTTI: end-to-end graph for drug—target interaction prediction

"SHGCL-DTI: semi-supervised heterogeneous graph contrastive learning for drug—target interaction prediction.

IMVPA-DTI: multi-view path aggregation for drug—target interaction.

Existing methods fail to fully exploit critical biochemi-
cal information in drug molecular structures and protein
sequences, potentially leading to information loss during the
node embedding process. In contrast, MVPA-DTI integrates a
graph attention network that incorporates all types of adjacent
nodes, enhancing the extraction of composite structural
information. Furthermore, it employs HAN to model the
potential relationships between different types of nodes.
Additionally, the method dynamically fuses features extracted
from sequences and graph to update the embedding repre-
sentations of drug and protein nodes. Through this process,
it progressively strengthens the weight of node information

and optimizes the feature representation of different types of
nodes, thereby improving the predictive accuracy.

Robustness Experiment

To further validate the stability of MVPA-DTI, consider-
ing the potential presence of redundant information in the
dataset, additional experiments were conducted to evaluate
the model’s predictive performance. First, we removed some
samples from the dataset, including DTIs with similar drugs
or targets and DTIs involving drugs with similar drug
interactions. The details of the removed data are provided in
Table 5.

Table 5. Number of drugs, targets, and DTIs included in the redundant data.

Redundant data Drug number

Target number DTI number

DTI of similar drugs or targets 146

78 955
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Redundant data Drug number Target number DTI number
DTI of drugs with similar side effects 17 0 51

4DTTI: drug-target interactions.

After removing similar drugs and targets, as shown in
Table 6, MVPA-DTI achieves a 15.9% improvement over
the second-best method, NeoDTI. Meanwhile, Table 6 also

Table 6. AUPR performance of each model after adjustment of the dataset.

demonstrates that after removing drugs with similar side
effects, MVPA-DTI outperforms the second-best method by
3.1%.

Model AUPR?
DTIs® with similar drugs and ~ DTIs with drugs with similar ~ Trained on non-unique dataset and tested on
targets were removed side effects were removed unique dataset

HNM¢® 0.547 0.581 0.233

MSCMF4 0.265 0.593 0.206

DTINet® 0.611 0.803 0.389

NeoDTIf 0.694 0.848 0.432

EEG-DTI2 0.686 0.846 0431

SHGCL-DTI! 0.617 0.729 0.443

MVPA-DTT' 0.849 0.873 0.46

2AUPR: area under the precision-recall curve.

PDTI: drug—target interaction.

CHNM: heterogeneous network model.

dMSCMF: multiple similarities collaborative matrix factorization.
°DTINet: drug—target interaction prediction network.

fNeoDTI: neural integration of neighbor information for DTI prediction.
8EEG-DTTI: end-to-end graph for drug—target interaction prediction.

NSHGCL-DTI: semi-supervised heterogeneous graph contrastive learning for drug—target interaction prediction.

IMVPA-DTI: multi-view path aggregation for drug—target interaction.

The experimental results indicate that although the model’s
performance declined after removing a significant portion
of specific DTI data, MVPA-DTT still maintains the best
AUPR, demonstrating its strong robustness. Additionally,
this study treats drug—protein interactions as a specific case
for experimentation. To objectively evaluate the predictive
capability of MVPA-DTI, both special drug—target rela-
tionships and conventional drug—target relationships were
separately processed. Specifically, the model was first
trained on a dataset in which the relationships between
drugs and proteins were nonunique and then tested on
a dataset with unique interactions. As shown in Table

Table 7. Evaluation of the impact of MVPA-DTI modules on performance.

6, MVPA-DTI significantly outperforms the second-best
method, with a 1.7% improvement in AUPR. This result
suggests that MVPA-DTI exhibits stronger generalization
ability in predicting DTI.

Ablation Experiment

To verify the contribution of each module in MVPA-DTI,
we conducted ablation experiments. The experimental results
are presented in Table 7, where ProSF represents the protein
sequence feature extraction module and DruSF denotes the
drug compound structure feature extraction module.

Method AUROC? AUPRP F1-score MCC*
wiod ProSF® 0.963 0.886 0.839 0.828
w/o DruSFf 0.964 0.891 0.840 0.827
w/o ProSF and DruSF 0.957 0.875 0.813 0.804
protBert-MVPA-DTI® 0.964 0.89 0.831 0.822
MVPA-DTI! 0.966 0.901 0.848 0.839

2AUROC: Area Under the Receiver Operating Characteristic curve.
PAUPR: Area Under the Precision-Recall Curve.

MCC: Matthews Correlation Coefficient.

dw/o denotes corresponding module was removed.

®ProSF: protein sequence feature extraction module.

'DruSF: drug compound structure feature extraction module.

gprotBert-MVPA-DTI replaces the ProSF module with ProtBert processing.

"MVPA-DTI: multi-view path aggregation for drug-target interaction.
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The Effectiveness of ProSF

As shown in Table 7, the ProSF module improves the model
performance by 0.3% in AUROC and 1.5% in AUPR. ProSF
effectively extracts deep semantic information from proteins,
capturing features related to key physicochemical properties
such as secondary structure and solubility, thereby enhancing
the model’s predictive capability.

The Effectiveness of DruSF

As shown in Table 7, the DruSF module enhances the
model’s performance, with improvements of 0.2% and 1.0%
in AUROC and AUPR metrics, respectively. This enhance-
ment is attributed to DruSF’s ability to thoroughly explore the
structural features of drugs, thereby assigning higher weights
to drugs during the message-passing process and further
optimizing the prediction outcomes.

The experimental results demonstrate that the MVPA-DTI
model exhibits high effectiveness in extracting the biological
structural features of drugs and proteins. By deeply exploring
the chemical structures, physical properties, and biologi-
cal functions of drugs and proteins, the model can accu-
rately capture the complex interaction relationships between
them, thereby enhancing DTI prediction performance. Further
analysis reveals that protein structural information plays a
more critical role than drug structural information in the
prediction process. This phenomenon may be attributed to
the protein-specific LLM Prot-TS, which more effectively
captures evolutionary conservation and functional relevance
in protein sequences, thereby providing more discriminative
feature representations for DTI prediction.

Discussion

Case Study

In evaluating the practical application of MVPA-DTI, we
predicted 53 candidate drugs targeting the voltage-gated
inwardly rectifying potassium channel KCNH2 (hERG).
The KCNH2 channel, a critical protein in cardiac electro-
physiology, plays a central role in regulating ventricular
repolarization. Dysfunction or dysregulation of this channel
delays ventricular repolarization, manifesting as QT interval

https://medinform jmir.org/2025/1/e74974
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prolongation on electrocardiograms. This phenomenon has
been extensively documented to correlate with the patho-
genesis of various cardiovascular diseases [49]. The results
demonstrate that 38 out of the 53 candidate drugs exhibi-
ted potential interactions with KCNH2. Among these, 10
drugs have been experimentally validated in published
studies to interact with the KCNH2 channel. Although
the remaining candidates have not yet been experimentally
confirmed, their established associations with cardiovascu-
lar pathologies suggest potential therapeutic relevance in
cardiovascular disease management. Studies have demonstra-
ted that procainamide interacts with the KCNH2 channel,
primarily by inhibiting its function. This inhibition pro-
longs the duration of potassium ion efflux, leading to QT
interval prolongation [50]. Nicotine, as a blocker of the
KCNH2 channel, significantly affects the electrophysiological
properties of the heart. This interaction may have important
clinical implications for assessing the impact of nicotine on
cardiac health [51]. Ranolazine is considered to have potential
therapeutic effects, as it improves cardiac electrophysiologi-
cal abnormalities caused by genetic variations by modulating
the function of the KCNH2 channel [52].

In this study, AutoDock was used to perform molecu-
lar docking simulations on the interaction between procaina-
mide and KCNH2 channel protein. As shown in Figures 2
and 3, procainamide can stably bind to the central cavity
region of the KCNH2 channel protein and is embedded in
a hydrophobic pocket surrounded by the S6 helix and the
lamellar structure. The binding site involves multiple key
amino acid residues, including THR 768, TYR 827, etc.
These residues have been widely reported in the literature
as core sites for regulating drug binding and gating behav-
ior of KCNH2 channels. These binding residues are visually
annotated in Figure 2. Binding mode analysis showed that
hydrophobic interactions and potential hydrogen bonds were
formed between procainamide and the above residues, which
may interfere with the open state of the channel and affect
its function. As shown in Figure 3, binding energy analysis
showed that procainamide interacted strongly with KCNH2,
and the binding energy of some conformations was as low as
—9 kcal/mol, indicating that it has high binding stability and
potential biological activity.
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Figure 2. Visualization of the interaction between procainamide and the KCNH2 channel. KCNH2: Potassium Voltage-Gated Channel Subfamily H

Member 2.

Figure 3. Binding energy distribution of procainamide docking with KCNH2. KCNH2: Potassium Voltage-Gated Channel Subfamily H Member 2.

Docking Results: Pose vs Binding Energy
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Conclusions

This study proposes a novel DTI prediction method MVPA-
DTI, which extracts key biological features from protein
and drug sequences and reconstructs them into a hetero-
geneous graph, enabling the model to capture the most
critical biological information during each iteration, thereby
optimizing the weight assignment for drugs and targets.
Experimental results demonstrate that MVPA-DTI outper-
forms existing methods across multiple benchmark tests.
Although MVPA-DTI effectively captures DTI, the biological
mechanisms underlying these interactions are complex,
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involving multiple factors, which are not yet fully consid-
ered by MVPA-DTI. Future improvements should focus on
in-depth exploration of the biological details of DTI to
enhance prediction accuracy and applicability. To enhance
the ability to model the complex relationship between drugs
and targets, in the future, it is possible to consider introduc-
ing new graph neural network structures such as FCGCN
[53] into the drug—target graph modeling process to more
effectively integrate molecular structure, pharmacological
properties, and network topology information.
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