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Abstract

Background: The development of sepsis in the intensive care unit (ICU) is rapid, the golden rescue time is short, and the
effective way to reduce mortality is rapid diagnosis and early warning. Therefore, real-time prediction models play a key role in
the clinical diagnosis and management of sepsis. However, the existing sepsis prediction models based on artificial intelligence
still have limitations, such as poor real-time performance and insufficient interpretation.

Objective: Our objective is to develop a real-time sepsis prediction model that integrates high timeliness and clinical
interpretability. The model is designed to dynamically predict the risk of sepsis in ICU patients and establish a practical, tailored
sepsis prediction platform.

Methods: Within a retrospective analysis framework, the model comprises a real-time prediction module and an interpretability
module. The real-time prediction module leverages 3-hour dynamic temporal features derived from 8 noninvasive, real-time
physiological indicators: heart rate, respiratory rate, blood oxygen saturation, mean arterial pressure, systolic blood pressure,
diastolic blood pressure, body temperature, and blood glucose. Three linear parameters (mean, SD, and endpoint value) were
calculated to construct the prediction model using multiple ML algorithms. The interpretability module uses the TreeSHAP
(Tree-Based Shapley Additive Explanations) method to enhance model transparency through both individual prediction and
global explanations. Further, it added a link between the output interpretation of the explainable artificial intelligence method
and its potential physiological or pathophysiological significance, including the relationship among the output interpretation and
the patient’s hemodynamics, thermoregulatory response, and the balance between oxygen delivery and oxygen consumption.
Finally, a web-based platform was developed to integrate prediction and interpretability functions.

Results: The sepsis prediction model demonstrated robust performance in the test cohort (224 patients), achieving an accuracy
of 0.7 (95% CI 0.68-0.71), precision of 0.69 (95% CI 0.68-0.71), F1-score of 0.69 (95% CI 0.67-0.70), and area under the receiver
operating characteristic curve of 0.76 (95% CI 0.74-0.77). The TreeSHAP method effectively visualized feature contributions,
enabling clinicians to interpret the model’s prediction logic and identify anomalies. The link between the output interpretation
of the model and its potential physiological or pathophysiological significance improved the interpretability and credibility of
the explainable artificial intelligence method. The web-based platform significantly enhanced clinical utility by providing real-time
risk assessment, statistical summaries, trend analysis, and actionable insights.

Conclusions: This platform provides real-time dynamic warnings for sepsis risk in critically ill ICU patients, supporting timely
clinical decision-making.

(JMIR Med Inform 2025;13:e74940) doi: 10.2196/74940
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Introduction

Sepsis, a life-threatening clinical syndrome triggered by
infection, continues to impose a significant global burden due
to its persistently high incidence and mortality rates. In the
United States, approximately 750,000 individuals are diagnosed
with sepsis annually, with a mortality rate exceeding 30%;
Europe reports 150,000 sepsis-related deaths yearly [1,2]. The
economic impact is staggering, with annual US health care costs
exceeding US $20.3 billion [3]. Patients with sepsis experience
hospital stays twice as long as those with other conditions, and
the incidence of severe sepsis continues to rise by 13% annually
[4]. Early detection is critical to reducing mortality; yet, current
diagnostic methods lack accuracy and real-time capability [5].
The multifactorial characteristics of sepsis increase the difficulty
of early diagnosis, and the specificity of its diagnostic indicators
is relatively low, which is prone to cause misdiagnosis [6].
Timely initiation of protocolized treatment bundles significantly
improves survival [7], with evidence suggesting that a 1-hour
resuscitation bundle may become the cornerstone of septic shock
management [8]. However, sepsis pathophysiology is complex,
microbiological confirmation is time-consuming, and existing
scoring systems (eg, Mortality in Emergency Department Sepsis
or Sequential Organ Failure Assessment) have limitations [9].
Thus, establishing a real-time sepsis prediction system is
imperative to reduce clinical mortality.

Current research has leveraged artificial intelligence (AI) to
develop sepsis prediction models using dynamic physiological
and laboratory data. Machine learning has gained traction in
critical care for disease diagnosis [10], outcome prediction
[11-13], and clinical decision support [14]. Recent AI models
for sepsis prediction outperform traditional methods [15-18],
but reliance on non–real-time laboratory data and the
“black-box” nature of AI models hinder clinical adoption
[19,20]. These models often fall short in real-time performance
and interpretability, limiting their clinical utility. Intensive care
unit (ICU) clinicians require transparent, medically logical AI
tools to preserve decision-making autonomy, aligning with

evidence-based principles. Current sepsis prediction models
also lack integration into practical platforms, further limiting
clinical utility.

This study addresses these gaps by developing ML models based
on dynamic features from real-time, noninvasive physiological
indicators. We use local and global interpretability methods to
enhance clinical trust and establish a web-based sepsis prediction
platform.

Methods

Data Source
Data were extracted from the MIMIC-IV (Medical Information
Mart for Intensive Care IV) database, developed by the MIT
(Massachusetts Institute of Technology) Laboratory for
Computational Physiology. This deidentified database includes
clinical and waveform data from ICU and emergency department
patients at Beth Israel Deaconess Medical Center (2008-2019)
[21,22]. The physiological indicators were obtained from patient
monitors. Blood oxygen saturation (SpO2), heart rate (HR), and
respiratory rate (RES) were collected 1-10 times per hour. Blood
glucose (GLU) and body temperature (TEM) were measured
once every 1 to 5 hours, depending on the patient’s condition.
Other indicators were collected hourly.

Study Cohort and Variable Selection
Patients with sepsis were identified per the 2018 Chinese
Guidelines for Sepsis or Septic Shock Management (positive
blood culture + antibiotic use + Sequential Organ Failure
Assessment score ≥2). A control cohort included ICU patients
without sepsis. Among 1118 patients (550 with sepsis and 568
controls), 8 real-time physiological indicators were selected:
HR, systolic blood pressure (SP), diastolic blood pressure (DP),
mean arterial pressure (MP), RES, TEM, SpO2, and GLU.
Stratified sampling divided the cohort into training (n=894) and
test (n=224) groups. Baseline characteristics showed no
significant differences (Table 1).

Table 1. t test analysis of characteristics between training and test groupsa.

P valueTest (n=224), median (IQR)Training (n=894), median (IQR)Parameter

.8186.5 (43-137.5)86.1 (30.5-157)Heart rate (bpm)

.08115.5 (36.8-187)119.6 (48-191)Systolic BPb (mm Hg)

.6761.9 (19-121)61.5 (10-116)Diastolic BP (mm Hg)

.0875.7 (8-127)77.8 (24.3-149)Mean arterial pressure (mm Hg)

.6019.6 (6-52)19.8 (5-44)Respiratory rate (bpm)

.7436.8 (33.1-39.9)36.8 (31.7-40.4)Temperature (°C)

.4295.6 (23-100)96 (28.4-100)SpO2
c (%)

.75139.3 (63-326)140.6 (42-309)Blood glucose (mg/dL)

aP<.05 indicates statistical significance.
bBP: blood pressure.
cSpO2: blood oxygen saturation.
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Data Preprocessing
First, the data underwent outlier removal. Since part of the
MIMIC-IV data was manually entered by health care providers,
potential input errors or anomalies were addressed. Clinical
knowledge was applied to define valid physiological ranges and
filter absolute outliers (for instance, TEM: 20 °C-50 °C; SpO2:
21%-100%; HR: 0-300 bpm). Data points outside these ranges
were deemed invalid and removed. Next, missing data
imputation was performed to address gaps in the cleaned dataset.
A hybrid approach combining multiple interpolation methods
was applied:

1. Mean imputation: Replacing missing values with the overall
mean of the feature.

2. Class-specific mean imputation: Using mean values from
subgroups (eg, sepsis vs nonsepsis cohorts).

3. Linear interpolation: Filling gaps using linear trends between
adjacent valid data points.

4. Forward-fill imputation: Propagating the last valid observation
forward.

The entire preprocessing workflow is illustrated in Figure 1.

Figure 1. The entire preprocessing workflow.

To minimize reliance on long-term temporal dependencies, the
prediction model was designed to operate on a 3-hour sliding
window of real-time physiological data. This allows the model
to initiate sepsis risk prediction immediately after 3 hours of
monitoring. A 3-hour window allows sufficient time for sign
monitoring and subsequent sepsis prediction, providing doctors
with ample time for intervention. From the 3-hour time series
of each physiological indicator, 3 linear parameters were
computed: mean value over the 3-hour window, fluctuation

coefficient (SD within the window), and endpoint value (the
last recorded value in the window).

This generated a 24-dimensional feature vector for each patient,
structured as follows:

• Endpoint values: HR, SP, DP, MP, RES, TEM, SpO2, and
GLU.

• Mean values: mean-HR, mean-SP, mean-DP, mean-MP,
mean-RES, mean-TEM, mean-SpO2, and mean-GLU.
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• Fluctuation coefficients (SDs): var-HR (variation in heart
rate), var-SP (variation in systolic blood pressure), var-DP,
var-MP (variation in mean arterial pressure), var-RES
(variation in respiratory rate), var-TEM (variation in body
temperature), var-SpO2 (variation in blood oxygen
saturation), and var-GLU (variation in blood glucose).

All features were standardized (z score normalization) to ensure
consistent scaling before model training. This preprocessing
pipeline ensures robust, clinically meaningful inputs for the
subsequent machine learning workflow.

Sepsis Prediction Model
We developed and evaluated the sepsis prediction model for
actual ICU sign monitoring to achieve a model with greater
generality in a broader clinical setting. Critically ill patients in
the ICU have different needs for GLU monitoring frequency.
The incidence of glucose metabolism disorders in critically ill
patients is high, and the incidence increases in turn in sepsis,
severe sepsis and septic shock [23], which not only reflects the
abnormal secretion of hormones and the severity of the disease,
but is also closely related to the increase of mortality and
complications [24]. High or low GLU is one of the causes of
organ dysfunction. Therefore, it is necessary to increase the
frequency of GLU monitoring in the face of the clinical
background of insufficient energy intake, high catabolism,
impaired GLU regulation mechanism, or the implementation
of insulin treatment. At the same time, it is also necessary to
increase the frequency of GLU monitoring in critically ill
patients with diabetes or hypoglycemia. Whereas in most other
ICU patients, GLU is usually measured only once or twice a
day.

Therefore, to improve the generalization of sepsis prediction
models, we developed and evaluated 2 sepsis prediction models,
one based on high-frequency glucose monitoring and the other
based on routine vital signs monitoring without glucose. By
combining the 2 models, a model with greater generality in a
wider range of clinical settings was achieved.

This study used 6 machine learning algorithms—support vector
machine, random forest, ExtraTrees, XGBoost (Extreme
Gradient Boosting), AdaBoost, and Logistic—to construct
real-time sepsis prediction models. Model performance was
evaluated and compared using metrics including accuracy,
precision, recall, F1-score, and area under the receiver operating
characteristic curve (AUROC).

Model Interpretation
The TreeSHAP (Tree-Based Shapley Additive
Explanations) method was used to provide both local (individual
prediction) and global explanations for the sepsis prediction
model. TreeSHAP, grounded in cooperative game theory,
constructs an additive explanation model that treats all features
as “contributors” to the prediction outcome. For each sample,
TreeSHAP generates a Shapley value for each feature,

quantifying its marginal contribution to the model’s decision.
For the sepsis prediction model with 24 features, let the original
model be f, trained using AdaBoost. The explanation model g in
SHAP (Shapley Additive Explanations) is defined as:

x=(x1,x2…x24) represents the feature vector of a single patient.
f(x) is the prediction from the original model. g(x) is the
prediction from the explanation model. øi is the Shapley value
for the ith feature.

S is a subset of {1,2,3…24}, with 224-1 possible combinations.
|S| is the number of features in subset S. fx (S ∪ i) and fx(S) are
model predictions with and without feature i, respectively.
Global interpretation aggregates local explanations by averaging
the absolute Shapley values across all samples.

Ethical Considerations
Our study was conducted in accordance with the guidelines of
the Helsinki Declaration. The Review Committee of the
Massachusetts Institute of Technology and Beth Israel
Deaconess Medical Center approved access to the MIMIC-IV
database. Authors fulfilled the database access request. All these
data were deidentified; therefore, the study was exempt from
ethical approval and informed consent requirements.

Results

Model Prediction Performance
The performances of the sepsis prediction models based on
high-frequency glucose monitoring are summarized in Figure
2 and Table 2. Among all models, AdaBoost achieved the
highest accuracy of 0.70 (95% CI 0.68-0.71), precision of 0.69
(95% CI 0.68-0.71), F1-score of 0.69 (95% CI 0.67-0.70), and
AUROC of 0.76 (95% CI 0.74-0.77), demonstrating superior
real-time prediction capability. The performances of the sepsis
prediction models based on routine vital signs monitoring
without glucose are summarized in Figure 3 and Table 3. Among
all models, AdaBoost achieved the highest accuracy of 0.67
(95% CI 0.66-0.69), precision of 0.67 (95% CI 0.65-0.68), and
AUROC of 0.75 (95% CI 0.74-0.77). The experimental results
show that the sepsis prediction model based on high-frequency
monitoring of GLU has better prediction performance, and the
sepsis prediction model based on routine vital signs monitoring
has a wider application scenario.
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Figure 2. Receiver operating characteristic curves of machine learning models based on high-frequency glucose monitoring. AUC: area under the
curve; ROC: receiver operating characteristic; SVM: support vector machine; XGBoost: Extreme Gradient Boosting.

Table 2. Models’ performance comparison of machine learning models based on high-frequency glucose monitoring.

AUROCa, median
(IQR)

F1-score, median
(IQR)

Recall, median
(IQR)

Precision, median
(IQR)

Accuracy, median
(IQR)

Models

0.7 (0.69-0.72)0.62 (0.6-0.65)0.6 (0.59-0.61)0.64 (0.62-0.67)0.64 (0.61-0.66)SVMb

0.75 (0.74-0.77)0.67 (0.65-0.69)0.7 (0.68-0.73)0.65 (0.62-0.67)0.68 (0.65-0.7)Random forest

0.75 (0.72-0.78)0.67 (0.65-0.7)0.66 (0.65-0.68)0.69 (0.67-0.71)0.69 (0.67-0.71)ExtraTrees

0.74 (0.73-0.75)0.69 (0.68-0.69)0.71 (0.7-0.72)0.68 (0.68-0.69)0.7 (0.68-0.72)XGBoostc

0.76 (0.74-0.77)0.69 (0.67-0.7)0.67 (0.66-0.69)0.69 (0.68-0.71)0.7 (0.68-0.71)AdaBoost

0.69 (0.67-0.7)0.62 (0.62-0.63)0.62 (0.61-0.63)0.62 (0.61-0.62)0.63 (0.62-0.63)Logistic

aAUROC: area under the receiver operating characteristic curve.
bSVM: support vector machine.
cXGBoost: Extreme Gradient Boosting.

Figure 3. Receiver operating characteristic curves of machine learning models based on routine vital signs monitoring without glucose. AUC: area
under the curve; ROC: receiver operating characteristic; SVM: support vector machine; XGBoost: Extreme Gradient Boosting.
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Table 3. Models’ performance comparison of machine learning models based on routine vital signs monitoring without glucose.

AUROCa, median
(IQR)

F1-score, median
(IQR)

Recall, median
(IQR)

Precision, median
(IQR)

Accuracy, median
(IQR)

Models

0.69 (0.67-0.71)0.59 (0.57-0.61)0.57 (0.55-0.6)0.61 (0.59-0.63)0.61 (0.59-0.64)SVMb

0.73 (0.72-0.74)0.66 (0.64-0.69)0.68 (0.66-0.71)0.65 (0.62-0.67)0.66 (0.65-0.68)Random forest

0.74 (0.72-0.76)0.66 (0.65-0.67)0.66 (0.65-0.68)0.65 (0.63-0.67)0.67 (0.65-0.7)ExtraTrees

0.72 (0.7-0.73)0.68 (0.66-0.7)0.73 (0.71-0.74)0.65 (0.63-0.67)0.67 (0.66-0.69)XGBoostc

0.75 (0.74-0.77)0.66 (0.65-0.67)0.66 (0.64-0.68)0.67 (0.65-0.68)0.67 (0.66-0.69)AdaBoost

0.69 (0.67-0.7)0.63 (0.62-0.63)0.63 (0.61-0.64)0.63 (0.62-0.64)0.64 (0.63-0.65)Logistic

aAUROC: area under the receiver operating characteristic curve.
bSVM: support vector machine.
cXGBoost: Extreme Gradient Boosting.

Interpretability Analysis Using TreeSHAP

Individual Prediction Explanation
The TreeSHAP method was used to generate local explanations
for individual cases to elucidate the contribution of dynamic
features to model predictions. Figure 4 illustrates the
interpretability analysis for a patient predicted as having sepsis,
where features are color-coded to reflect their impact: red
denotes a positive contribution (increasing sepsis risk) and blue
indicates a negative contribution (reducing sepsis risk). The
baseline value E[f(x)], representing the model’s average
prediction across the dataset, serves as the reference point. Key

findings include: SP fluctuation coefficient (var-SP=12.257)
exerted the strongest positive influence (+1.18), followed by
SpO2 fluctuation (var-SpO2=2.867), mean RES
(mean-RES=3.667), mean DP (mean-DP=68.667), TEM
(TEM=35.833), and MP fluctuation (var-MP=6.164). Negative
contributors included SP (SP=15), RES (RES=11), and DP
(DP=75). These results basically align with clinical intuition,
where elevated variability in hemodynamic parameters (eg,
var-SP or var-MP), hypothermia, and reduced RES correlate
with sepsis pathophysiology. The interpretability framework
enables clinicians to validate model logic against established
diagnostic criteria and identify anomalous predictions.

Figure 4. Individual prediction explanation. DP: diastolic blood pressure; MP: mean arterial pressure; RES: respiratory rate; SP: systolic blood pressure;
SpO2: blood oxygen saturation; TEM: body temperature.

Global Interpretation
Global interpretability analysis aggregated Shapley values across
all samples to reveal the model’s overarching decision logic
and feature importance rankings (Figure 5). As illustrated in
Figure 5A, the model demonstrated associations between
decreased SP and elevated sepsis risk (row 9), increased SP

fluctuation (var-SP) and elevated sepsis risk (row 6), and
increased MP fluctuation (var-MP) with elevated sepsis risk
(row 2). These interpretations align closely with existing clinical
evidence and provide clinically meaningful insights that are of
particular interest to clinicians. For instance, increased var-SP
is more likely to elevate the probability of sepsis compared to
increased var-MP. The Surviving Sepsis Campaign 2021
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guidelines emphasize the importance of SP in the diagnostic
criteria for sepsis and recommend using SP<90 mm Hg after
adequate fluid resuscitation as one of the indicators for

evaluating septic shock [25]. Additionally, studies have shown
that blood pressure variability in sepsis patients correlates with
disease severity [26].

Figure 5. Global interpretation of the model and feature importance based on mean Shapley values. DP: diastolic blood pressure; GLU: blood glucose;
HR: heart rate; MP: mean arterial pressure; RES: respiratory rate; SHAP: Shapley Additive Explanations; SP: systolic blood pressure; SpO2: blood
oxygen saturation; TEM: body temperature.

The connection between the parasympathetic nervous system
and inflammation suggests interdependence between autonomic
nervous system function and inflammatory responses [27].
Furthermore, physiological systems exhibit nonlinear patterns
of complexity, including fractal self-similarity across time scales
[28]. Previous research has documented an association between
the complexity of autonomic nervous system control and
hemodynamic instability, indicating that such complexity may
serve as a potential window into understanding hemodynamic
confusion. However, the relevance of these measures of
complexity in sepsis remains unclear [26].

High temperature fluctuations (var-TEM) were strongly
associated with increased sepsis probability, while stable
temperatures reduced the risk (row 1). Notably, extreme TEMs,
whether hyperthermia or hypothermia, were linked to elevated
risks, whereas normal-range temperatures exhibited protective
effects (row next-to-last). This interpretation of the model aligns
with the clinical presentation of sepsis.

Both hypothermia and hyperthermia are generally associated
with elevated lactate levels, and patients with severe sepsis often
develop either hypothermia or, more commonly, a febrile
response. Hypothermia in some patients with sepsis is
well-documented and forms part of the definition of systemic
inflammatory response syndrome [29]. There is variable
thermoregulatory response in sepsis, and the definition of
systemic inflammatory response syndrome in sepsis-1 includes
both fever and hypothermia. The impact of thermoregulatory

response on sepsis prognosis remains controversial. Studies
have shown that hypothermia or fever can have either protective
or detrimental effects in animal models of severe infection or
inflammation [30]. Fever is a physiological response to infection
that inhibits bacterial growth, prevents fungal proliferation, and
enhances immune cell activity against pathogens [31]. Pathogens
detected in blood cultures and elevated procalcitonin levels,
both associated with high fever, indicate robust immune
resistance to pathogen challenges [32].

The model revealed an association between increased variability
in oxygen saturation (var-SpO2) and elevated sepsis risk (row
5). This finding underscores the necessity of maintaining SpO2

levels within a reasonable range for ICU patients during
hospitalization, which is consistent with existing clinical
evidence. Studies have demonstrated a U-shaped relationship
between SpO2 levels and in-hospital all-cause mortality in
patients with sepsis, where both hyperoxia and hypoxia are
associated with increased mortality risk. The optimal SpO2

range is determined to be 0.96-0.98 [33]. Under normal
physiological conditions, oxygen supply and consumption
remain relatively stable, with SpO2 fluctuating within a normal
range without extreme variation. During shock, however, the
imbalance between oxygen supply and consumption leads to
deviations in SpO2 values, resulting in increased var-SpO2. A
multicenter observational study involving over 600 patients
with sepsis confirmed that abnormal SpO2 levels (either
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abnormally high or low) were associated with increased
mortality [34].

Figure 5B ranks feature mean absolute Shapley values,
identifying the top 6 determinants of sepsis risk: temperature
fluctuation (var-TEM), MP fluctuation (var-MP), mean HR
(mean-HR), mean RES (mean-RES), SpO2 fluctuation
(var-SpO2), and SP fluctuation (var-SP). These findings
underscore the critical role of hemodynamic and
thermoregulatory instability in sepsis onset, consistent with

clinical biomarkers. The global analysis also highlights potential
outliers, guiding model refinement and clinical vigilance.

Implementation of the Practical and Efficient Sepsis
Risk Prediction Platform
We developed a practical and intelligent sepsis risk prediction
platform using a web-based tool [35] (Figure 6). By monitoring
3-hour dynamic temporal features of ICU patients—including
HR, SP, DP, MP, RES, TEM, SpO2, and GLU—the platform
automatically generates a graphical analysis report comprising:

Figure 6. Practical and efficient sepsis risk prediction platform. BP: blood pressure.

Statistical summary: quantitative analysis of dynamic temporal
features (mean, SD, and endpoint values).

Vital signs trend analysis: visualization of physiological trends
via time-series curves.

• Risk assessment: sepsis risk prediction using the trained
model, based on calculated linear parameters.

• Clinical actions: automated recommendations (for reference
only) tailored to risk stratification.

• Prediction explanation: visual display of key influencing
factors using Shapley values to interpret model decisions.

This platform, built on real-time dynamic temporal features,
enables personalized sepsis risk prediction for ICU patients,
enhances clinical utility by integrating interpretable AI insights,
and streamlines decision-making through intuitive data
visualization and actionable outputs.

Discussion

Principal Findings
Our study developed a real-time sepsis prediction model that
integrates high timeliness and clinical interpretability based on
3-hour dynamic temporal sequences of 8 rapidly accessible
physiological indicators. The real-time sepsis prediction model
demonstrated robust performance. The output interpretation of
explainable artificial intelligence (XAI) enhanced model
transparency through both individual prediction and global
explanations, and it linked the potential physiological or
pathophysiological significance, including the patient’s
hemodynamics, thermoregulatory response, and the balance
between oxygen delivery and oxygen consumption. Although
current consensus emphasizes early intervention for sepsis
management, the optimal predictors guiding intervention and
markers of early sepsis severity remain unclear. In this study,
we further elucidated the model’s output results, explored the
potential relationships between relevant sign parameters and
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sepsis, and discussed their potential physiological or
pathophysiological significance. This enhances the
interpretability and credibility of the XAI method, supporting
the model’s applicability in real-world clinical practice. Finally,
the web-based platform significantly enhanced clinical utility
by providing real-time risk assessment, statistical summaries,
trend analysis, and actionable insights.

Limitations
However, as a retrospective study, potential biases may exist
in this study. Future efforts should prioritize multicenter
validation and large-scale prospective studies to strengthen the
robustness of these results. XAI holds immense promise in
sepsis diagnosis and treatment, yet its development and clinical
application face significant challenges [36]. Data quality remains
a critical bottleneck. Heterogeneous hospital databases,
inconsistent data collection and storage standards, and poor
interoperability between health care information systems have
led to fragmented “data silos,” hindering the application of
large-scale clinical feature datasets. Additionally, the reliance
on limited public or institution-specific databases in research
settings restricts generalizability. In clinical practice, clinicians

must integrate XAI predictions with laboratory findings (eg,
lactate or procalcitonin), imaging results, and patient-specific
symptoms to ensure accurate diagnosis and treatment planning.

Conclusions
In ICU settings, real-time physiological indicators—such as
HR, RES, and SpO2—are typically used to monitor symptom
fluctuations rather than generate objective diagnostic reports.
This limitation stems from the significant variability in
individual physiological data, the complexity of multiparameter
interactions, and the diverse clinical implications of these
metrics. This study demonstrates that XAI can bridge this gap
by synthesizing real-time physiological data into actionable
insights. By analyzing dynamic trends and providing
interpretable explanations, XAI uncovers the diagnostic potential
of these data. Our model, focused on sepsis risk prediction,
leverages real-time physiological features to generate predictions
while emphasizing the interpretability of results. In the future,
XAI systems could deliver intelligent diagnostic reports
integrating disease prediction, anomaly detection, and causal
analysis of abnormal indicators, empowering clinicians to
navigate complex physiological data with precision.
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