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Abstract

Background: Chronic obstructive pulmonary disease (COPD) remains a leading global health burden. In primary care, the
inconsistent availability of spirometry and symptom scores limits the detection of patients with poor disease control. There is a
pressing need for scalable, data-driven tools that leverage routinely collected clinical information to support timely, equitable,
and guideline-concordant interventions.

Objective: This study aims to validate the performance of Seleida—a fully automated, deterministic, and bijective model for
COPD control assessment and phenotyping —using real-world primary care data and to evaluate its feasibility for integration
into electronic health record (EHR)-based informatics systems.

Methods: Seleida estimates the probability of poor control (Pr) using two objective EHR variables: (1) annual dispensations
of short-acting bronchodilators —specifically short-acting [32-agonists (SABA), short-acting muscarinic antagonists (SAMA),
or both, and (2) number of dispensed antibiotic courses for bronchitis or COPD exacerbations. Its bijective structure supports
both forward risk estimation and reverse phenotype inference. In a retrospective cohort of 106 patients, agreement was
assessed between 2 phenotyping systems (a 126-combination model and a streamlined 21-combination version) and with
clinician-assigned classifications. Due to sample size limitations, a provisional risk threshold of Pr>.50 was adopted for
internal stratification.

Results: Seleida showed perfect agreement between phenotyping systems (Cohen ®=1.00; P<.001) and substantial concord-
ance with clinician-assigned profiles (Cohen ®=0.70; P<.001). The model operates transparently, without machine learning,
and can be embedded into EHR platforms or applied manually using a visual framework. It enables individualized risk
estimation, phenotype-driven treatment planning, and population-level case identification —particularly in settings with limited
access to traditional diagnostic tools.

Conclusions: Seleida provides a reproducible and interpretable framework for COPD control monitoring using high-fre-
quency prescribing data. Its transparent logic, low data burden, and interoperability enable integration across diverse digital
infrastructures, including resource-limited settings. By supporting both individualized care and population-level risk stratifi-
cation, Seleida bridges predictive analytics with real-world clinical decision-making. Ongoing multicenter validation will
determine its generalizability, clinical impact, and cost-effectiveness at scale.
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Introduction

Chronic obstructive pulmonary disease (COPD) remains a
major global health challenge, with more than 3.2 million
deaths annually and more than 390 million people affected
worldwide [1,2]. In Europe, direct health care costs exceed
$56.5 billion per year (the cost that was originally reported
in euros [€] was converted to US dollars using the exchange
rate of €1=%$1.18 as of September 15, 2025, based on the
European Central Bank reference rates) [3], with the burden
concentrated in primary care, where early interventions are
most feasible [4].

Yet in real-world settings, early identification of patients
at risk of exacerbation or poor control remains limited.
Nearly 50% of individuals with COPD experience at least 1
moderate to severe exacerbation annually, often without prior
clinical detection [5-8]. These events are not only indicators
of disease instability but also independent risk factors for
cardiovascular morbidity and mortality. Large-scale studies
have shown sharply increased risks of death and cardiovas-
cular events—such as myocardial infarction, heart failure,
stroke, and arrhythmias—within 30 days of an exacerbation,
with elevated risk persisting for up to a year [9-12].

The underlying pathophysiology—driven by systemic
inflammation, hypoxia, and prothrombotic states—may
explain this sustained vulnerability [10,11]. The effect is
cumulative: each subsequent exacerbation further increases
cardiopulmonary risk [9]. These episodes also drive dispro-
portionate health care use and cost, particularly via emer-
gency and hospital care [11,13].

In this context, it is essential to develop tools that not only
predict a patient’s level of COPD control but also accurately
phenotype them, since therapeutic optimization depends
heavily on phenotype-specific characteristics. Personalized
inhaled treatment, guided by phenotype, has the potential to
reduce exacerbations and mitigate their associated systemic
and economic consequences.

While current frameworks—such as Global Initiative
for Chronic Obstructive Lung Disease (GOLD) 2025 and
GesEPOC 2021 —guide treatment decisions, they rely on
clinical data often unavailable in primary care, including
spirometry and symptom scales [14-17]. Moreover, they
underutilize objective, high-frequency prescribing data—such
as rescue bronchodilator or antibiotic use—despite their
predictive value for clinical instability [12].

To address this gap, we developed Seleida: a fully
automated classification system that is deterministic, meaning
it produces the same output for any given input without
randomness, and bijective, meaning each patient profile
corresponds to a unique, reversible clinical category. The
model is based solely on 2 universally available variables
in structured electronic health records (EHRs): the annual
number of short-acting $2-agonists (SABA) and short-acting
muscarinic antagonists (SAMA) dispensations, or both, and
the annual number of antibiotic dispensations for respira-
tory events, specifically bronchitis and COPD exacerbations

https://medinform jmir.org/2025/1/e74932

Maya Viejo & Navarro Ros

[18-20]. These variables serve as robust proxies for symp-
tom burden and exacerbation frequency, facilitating seamless
integration into routine clinical workflows [21-23].

By intentionally excluding low-access metrics (eg, forced
expiratory volume in the first second of expiration,
patient-reported outcomes), Seleida prioritizes scalability
and feasibility without sacrificing predictive accuracy. Prior
work suggests minimal added value from incorporating such
variables into risk models [18,20].

This study aimed to validate the Seleida model using
real-world data from 2 Spanish primary care centers. We
hypothesized that a deterministic, fully automated system
based solely on prescribing data— specifically, annual SABA
or SAMA and antibiotic dispensations—could reliably stratify
patients with COPD by control status and phenotype, without
relying on spirometry or symptom scales. To this end, the
study pursued 3 interrelated goals: validating the model’s
bijective structure, comparing model-derived phenotypes
against the 2025 GOLD ABE classification and between
the 126- and 21-combination configurations, and evaluating
Seleida’s clinical use for early risk identification and digital
deployment in routine care.

Methods
Study Design, Setting, and Population

This retrospective, multicenter pilot cohort validation study
was nested within the Seleida project—an initiative to
develop scalable models, based on EHRs, for identifying poor
control in chronic respiratory diseases. The Seleida model
had been previously developed and internally validated using
two consistently recorded variables in structured EHRs: (1)
annual dispensations of rescue inhalers (SABA, SAMA, or
both) and (2) respiratory antibiotics [24,25]. These variables
were chosen for their clinical relevance, high traceability,
and interoperability with primary care informatics systems
[21-23].

For this validation study, anonymized patient-level EHR
data were extracted from 2 urban primary care centers
in Seville and Valencia, both integrated within the Span-
ish National Health System [21,26]. These centers serve
demographically diverse populations and represent real-world
contexts for Seleida deployment.

From a reference population of 82,631 adults, a stratified
random sample of 110 individuals aged 40-80 years was
drawn. Selection was based on the presence of a COPD
diagnosis (International Classification of Diseases, Tenth
Revision [ICD-10]), on compatible pharmacological treatment
for at least 3 months per year over the previous 2 years,
or on both criteria [6,8]. Predefined exclusion criteria were
active malignancy, palliative care, systemic corticosteroids
or biologics for nonrespiratory indications, pregnancy, severe
disability, enrollment in clinical trials, asthma-COPD overlap
syndrome, and absence of recorded pharmacological activity
during the 12-month observation period.
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All dispensing records were cross-validated with linked
pharmacy databases to minimize misclassification bias from
unfilled or partially filled prescriptions [27,28]. Variables
with more than 50% missing data were excluded, follow-
ing standard epidemiological guidance [28,29]. Operational
definitions, measurement units, and coding conventions are
described in section S2 in Multimedia Appendix 1.

Four patients (4/6, 3.6%) met exclusion criteria, leaving a
final analytical cohort of 106 patients (60/106, 56.6%) from
Seville and from Valencia (46/106, 43.4%), with a mean age
of 68.8 (SD 8.2) years; most were male (77/106, 72.6%).

To ensure data integrity, automated quality checks were
performed to detect missing fields and inconsistencies.
Data processing and storage followed international health
informatics standards [27,30]. The methodological infrastruc-
ture was designed to support interoperability with HL7
FHIR (Health Level Seven Fast Healthcare Interoperabil-
ity Resources; see section S7 in Multimedia Appendix 1),
enabling future integration into clinical decision support tools
[21,22,31-33].

Objective and Methodology

The primary aim of this study was to validate the predic-
tive performance and mathematical structure of the Seleida
model —a deterministic and bijective algorithm designed
for real-time COPD control assessment—using structured,
real-world EHR data from primary care. The secondary aim
was to evaluate its feasibility for integration into digital health
infrastructures and its ability to support automated phenotyp-
ing in routine clinical workflows.

To address the primary aim, the study pursued 3 interrela-
ted objectives:

1. To validate Seleida’s bijective structure, which ensures
a one-to-one correspondence between clinical inputs and
predicted risk estimates. It guarantees that each unique
combination of rescue inhaler use and exacerbation frequency
produces a distinct, reproducible phenotypic classification
[20,34].

2. To compare Seleida’s model-derived phenotypes with
established clinical classifications based on the 2025 GOLD
guidelines. This included:

e Comparing the 126-combination high-resolution
phenotyping system to the guideline-defined 2025
GOLD ABE classification [27,35],

e Comparing the 21-combination streamlined system to
the 2025 GOLD ABE classification [4], and

* Assessing the agreement between the 126- and
21-combination structures.

Both systems support two phenotyping methods: (1) basic
phenotyping (closely aligned with the ABE classification in
GOLD 2025) and (2) expanded phenotyping (combines the
ABE classification with stratification based on SABA use
levels—low or high: L or H), offering a nuanced characteriza-
tion aligned with Seleida’s risk profiles.
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3. To assess the model’s clinical use for early risk
detection and phenotype-driven decision support. The goal
is to enable proactive, data-driven interventions for poorly
controlled patients in EHR-integrated environments [20,36].

By combining mathematical determinism with real-world
clinical traceability, Seleida offers a scalable and interpret-
able alternative to conventional risk classification systems.
Its design supports automated control monitoring, granu-
lar patient segmentation, and guideline-concordant decision-
making in both high- and low-resource care settings [34,37,
38].

Outcome Definition and Model
Application

The operational definition of poor control in COPD was
adapted to align with Seleida’s data-driven thresholds: =1
moderate exacerbation (requiring antibiotics or systemic
corticosteroids without hospitalization), =1 severe exacerba-
tions (requiring hospitalization or emergency room visit), or
annual use of at least 3 SABA or SAMA canisters or both
[14,17,25]. This definition enables continuous risk stratifica-
tion and phenotype inference without the need for spirometry
or symptom scales, improving scalability in digital health
environments. By these criteria, 55.7% (59/106) of the cohort
was classified as poorly controlled. Control status was evenly
distributed across sites (y21=1.055; P=.304), and baseline
demographic and clinical characteristics were compared for
balance [39-41].

Model Development, Validation, and
Performance Evaluation

The analytical cohort comprised 106 patients, selected
pragmatically based on feasibility and validated against
formal criteria for clinical prediction modeling. With a binary
outcome (poor vs good control) and a 55.7% (59/106)
prevalence of poor control, the training subset (85/106,
80% of the cohort) included approximately 47 events. This
yielded an events-per-variable ratio of 23.5 for the 2 selected
predictors—annual rescue inhaler canisters and respiratory
antibiotic courses dispensed—well above the recommended
=10 events-per-variable threshold for stable logistic regres-
sion estimates [29,41 42].

Additional clinical and demographic variables—age,
sex, geographic origin, exacerbation history, daily inhala-
tion frequency, and emergency visits—were collected for
descriptive purposes and evaluated for potential inclusion.
An exploratory multivariable logistic regression including
age group, sex, SABA or SAMA use, or both, and anti-
biotic prescriptions confirmed the independent predictive
strength of the 2 primary variables (P=.001 and P<.001,
respectively). In contrast, age and sex were not statistically
significant (P=.65 and P=.65), and their inclusion caused
numerical instability due to sparse subgroup representation
(eg, patients aged 80 years without exacerbations or females
with high SABA or SAMA use or both). This led to quasi-
complete separation and convergence failures, manifested as
inflated standard errors, infinite odds ratios [Exp(f) >108],
and singularities in the Hessian matrix —classic indicators of
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model overspecification in small samples. Full diagnostics
and regression results are detailed in section S5 in Multimedia
Appendix 1. Following best practices for parsimonious and
deployable models [4,6], age and sex were excluded from the
final Seleida model to reduce overfitting, preserve statistical
stability, and maintain generalizability in small or imbalanced
datasets.

The final Seleida model, including only the 2 primary
predictors, achieved strong predictive performance in the
initial validation: area under the receiver operating charac-
teristic curve of 0.978, sensitivity of 92.86%, specificity
of 87.50%, % coefficient of 0.80, and positive likelihood
ratio (LR+) of 7.43. Bootstrap resampling (1000 iterations)
confirmed metric stability, supporting both clinical use and
statistical robustness [24,25].

Internal validity was also assessed with bootstrap
resampling (1000 iterations), following Steyerberg’s
framework for early-phase models [25,29]. The a level
was set at .05, and the minimum detectable effect size
was estimated from the observed event distribution and
prior literature [24,25]. In addition, 10,000 Monte Carlo
simulations using real-world covariate distributions indica-
ted a model-level statistical power (1-f§) of 92.4% (95%
CI 91.85-92.87), supporting high reliability for detecting
clinically relevant effects in this sample and predictor
configuration. Bootstrap-derived Cls quantified uncertainty in
coefficient estimates and performance metrics.

All analyses were conducted using R (version 4.34.2; R
Core Team), following established best practices for early-
phase predictive modeling. Model development used logistic
regression with Least Absolute Shrinkage and Selection
Operator (LASSO) regularization to enhance parsimony and
reduce overfitting in a small to moderate sample context
(section S4 in Multimedia Appendix 1) [33]. Predictors were
modeled without scaling to preserve clinical interpretability.

Building on this validated model, this study evaluates
2 deterministic phenotyping frameworks derived from its
final equation: a 126-combination system and a simplified
21-combination version. Both were assessed using classifi-
cation-based performance metrics—sensitivity, specificity,
predictive values, LRs, and Cohen »—against real-world
clinical phenotypes. Internal concordance between systems
was evaluated using % statistics. Additionally, the 126-combi-
nation system was also benchmarked against the 2025 GOLD
ABE classification to assess alignment with guideline-based
stratification [22,31,43 44].

Furthermore, the simplified phenotyping system was
evaluated for computational efficiency and its potential
integration into HL7 FHIR-compliant health information
systems (section S7 in Multimedia Appendix 1) [22,31,32].
All procedures followed TRIPOD guidelines and contempo-
rary standards for internal validation of clinical prediction
models [45.46].
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Reverse Model Definition

A defining feature of the Seleida model is its deterministic
and bijective architecture, establishing a one-to-one corre-
spondence between 2 routinely collected clinical variables
and the predicted probability of poor COPD control (sections
S1 and S2 in Multimedia Appendix 1). Specifically:

* arepresents the annual number of SABA or SAMA
canisters or both dispensed per patient, serving as a
proxy for symptom burden and short-acting bronchodi-
lator dependence [18.47].

* b denotes the annual number of antibiotic dispensa-
tions for bronchitis or COPD exacerbations, reflecting
exacerbation frequency and infection-driven instability
[48.49].

Both variables were chosen for their objectivity, universal
availability in structured EHRs, and strong predictive value
in prior studies [25,50]. The predicted probability of poor
control (Pr) is calculated with a logistic regression model:

logit(Pr) =a+f;-a+ ;- b,

where a is the intercept, and [y and [, are positive coef-
ficients estimated using LASSO regularization, ensuring
parsimony and coefficient stability (section S4 in Multimedia
Appendix 1).

This structure supports two complementary functions: (1)
forward inference: estimating Pr from any (a, b) combina-
tion, and (2) reverse inference: retrieving the (a, b) pairs
matching a target risk level. The latter enables real-time,
automated phenotyping and individualized decision-making
in EHR-integrated workflows.

Although Seleida can estimate risk directly from observed
data, it is explicitly designed for bidirectional operation. This
means that it can both predict risk from clinical inputs and
perform inverse mapping to retrieve all (a, b) pairs that match
a given probability. This reverse functionality is critical for
dynamic alert systems, phenotype-driven decision pathways,
and real-time decision support tools.

This bidirectional capability has practical implications. For
example, a patient with 3 annual SABA or SAMA inhalers
or both (a=3) and 1 antibiotic course (b=1) maps to a unique
cell (3,1) in the 126-combination system, with a predicted
poor control risk of 95.53%. In the simplified 21-combina-
tion version, the same profile is classified as a=3 (midrange
inhaler use) and b=1 (moderate exacerbation frequency),
preserving its phenotypic identity —GOLD A1/B1 with high
rescue inhaler use (H)—within a reduced but clinically
actionable framework. This structured mapping supports
therapeutic reassessment and integration into EHR-based alert
systems, where predefined thresholds (eg, Pr>.50) can trigger
guideline-aligned interventions.

In contrast to black box machine learning models, often
criticized for limited interpretability, Seleida’s transparent
structure ensures full traceability from risk estimate to
actionable clinical profile. This enhances clinical confidence
and facilitates deployment across diverse health care settings,
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including resource-constrained environments [20,34,37 38].
A detailed mathematical demonstration of these bijective
properties, with exhaustive verification of all input-output
mappings, appears in the following section and in section S3
in Multimedia Appendix 1.

Mathematical Proof of Bijectivity

Bijectivity is not merely a theoretical refinement but a
functional cornerstone of the Seleida model. As detailed
in section S1, its formal proof guarantees three essen-
tial capabilities: (1) each predicted probability is uniquely
traceable to a specific clinical phenotype, ensuring trans-
parency and auditability; (2) every clinically relevant risk
threshold corresponds to at least 1 valid input combination,
providing full operational coverage; and (3) no ambigu-
ity or discontinuity occurs in model behavior, maintaining
consistency in decision support and regulatory contexts.
Without this formal validation, the model’s dual interpretabil-
ity and reproducibility would remain unverified.

To confirm these properties, we validated that each (a, b)
input pair yields a unique predicted probability (injectivity),
and that the entire risk spectrum (0<Pr<1) is covered by the
input domain (surjectivity). These conditions are defined as
follows:

e Injectivity: Each unique (a, b) pair—representing the

annual number of dispensed SABA or SAMA canisters
or both and respiratory antibiotics—must map to a
single, distinct predicted probability of poor COPD
control (Pr).

 Surjectivity: Every probability value within the model’s

codomain must be attainable from at least 1 clinically
plausible (a, b) combination, ensuring that there are no
gaps in the risk scale.

We followed a rigorous, multistep validation process to
formally demonstrate the bijective nature of the Seleida
model:

* Bounding inputs: The variables—annual SABA or
SAMA canisters or both (a) and annual antibiotic
regimens (b)— were explicitly restricted to integers:
a=0-20 and b=0-5 (inclusive). These ensured a finite,
fully enumerable input space.

 Analytical proof of injectivity: We demonstrated that no
2 distinct input pairs (a4, b1) and (a, b,) produce the
same output probability. The logistic model’s coeffi-
cients structure confirmed unique mappings for all valid
pairs.

* Computational proof of surjectivity: Using a custom
Python algorithm, we calculated all 126 possible output
probabilities to 14 decimal places. Every value was
checked for uniqueness, confirming that the entire
codomain is covered.
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¢ Conclusion: Independent confirmation of both
injectivity and surjectivity verified that Seleida is
bijective, enabling forward risk estimation and reverse
phenotype reconstruction with mathematical certainty.

No repeated or missing outputs were found, confirming a
perfect alignment between input and output spaces. This
property ensures robust reverse inference and reproducible
phenotype classification across real-world COPD datasets.
All source code, verification tables, and derivations are
provided in section S3 in Multimedia Appendix 1 [45,51].

Ethical Considerations

The study was approved by the ethics committee of Hospi-
tal Universitario Doctor Peset of Valencia (protocol code
CEIm 132.22, approval date March 6, 2023). The project
was registered in the Portal de Etica de la Investigacion
Biomédica de Andalucia through the Sistema de Informa-
cion de los Comités de Etica de la Investigacion (protocol
code 1140-N-23, approval date September 12, 2023). The
SEMERGEN research department gave its endorsement to the
project (2023-00035, approval date June 6, 2023) [27,28]. For
the purpose of this study, only patient data recorded in EHRs
were collected. All data were fully anonymized in compliance
with the General Data Protection Regulation (2016/679). No
procedures were performed on participants and, to ensure
confidentiality, each patient was assigned a unique study
identifier. Informed consent was formally waived due to the
retrospective design and the absence of patient contact. Due
to the nature of the study, compensation to patients was not
applicable.

Results

Expanded Phenotyping: Analysis of the
126-Combination System

The 126-combination phenotyping framework systemati-
cally integrates 2 structured prescribing variables—annual
dispensations of rescue inhalers (a) and respiratory antibiotic
regimens (b)—to generate a continuous, 3D map of predicted
COPD control probabilities (Figure 1A and B). Blue gradients
reflect increasing use of SABA or SAMA canisters or both
(a), red gradients indicate the frequency of antibiotic courses
(b), and purple regions highlight zones of sharply elevated
clinical risk [35]. Each unique (a, b) pair yields a distinct
probability estimate, delineating a mathematically robust and
clinically interpretable risk surface with actionable thresholds
[20,34].
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Figure 1. Visual mapping of the Seleida model’s 126-combination system. The 4 images in panel (A) show 3D perspectives of how annual rescue
inhaler use (@) and antibiotic prescriptions () combine to yield the probability of poor chronic obstructive pulmonary disease control (Pr). Panel
(B) provides a color matrix of exact Pr values across all combinations. Darker red indicates higher predicted risk. Clinically, higher values of b
(=2 antibiotics per year) are stronger drivers of poor control than a, highlighting infection burden as a key modifiable factor. SABA: short-acting

[2-agonists; SAMA: short-acting muscarinic antagonists.
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To guarantee bijectivity, the input domain was discretized
to include integer values from O to 20 for a and from O
to 5 for b (both inclusive). Any observed values exceeding
these bounds are computationally capped at a=20 and b=5,
preserving full injectivity and surjectivity across the model’s
codomain. This bounded structure ensures reversibility and
enables exhaustive phenotype enumeration while maintaining
operational realism.

Model outputs demonstrate that antibiotic burden (b)
exerts a greater marginal influence on the predicted proba-
bility of poor control than rescue bronchodilator use (a),
particularly within intermediate strata. For example, the
phenotype (a=3, b=1) is associated with substantially elevated
risk, whereas combinations with a=15 and =4 approach
probability ceilings exceeding 99% [36,52]. These gradients
reflect the compounding effects of symptom burden and
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exacerbation frequency, underscoring the need for integrated
monitoring of both variables in routine care.

By translating complex statistical interactions into visually
intuitive gradients, the 126-combination system provides
clinicians with a practical, high-resolution tool for indi-
vidualized COPD phenotyping—enabling phenotype-driven
interventions, anticipatory care strategies, and optimized
treatment planning (section S6 in Multimedia Appendix 1)
[4,34,38].

Expanded Phenotyping: Analysis of the
21-Combination System

To enhance feasibility in real-world clinical settings, the
original 126-combination system was streamlined into a
21-combination framework by constraining the antibiotic
regimen variable (b) to a range of 0-2 and the SABA or
SAMA canisters or both variable (a) to 0-6. These thresholds
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were empirically defined to preserve the model’s bijective
architecture while concentrating on clinically meaningful
stratification intervals [4,20,24].

Despite its reduced dimensionality, the simplified system
maintains robust predictive performance (Figure 2) and offers
improved technical and operational feasibility for integration

Maya Viejo & Navarro Ros

into health information systems and routine care work-
flows [20-22,43,50,53]. Its lower computational complex-
ity supports real-time patient stratification and personalized
COPD management in both primary care and resource-con-
strained environments (section S6 in Multimedia Appendix 1)
[34,38,44].

Figure 2. Chronic obstructive pulmonary disease phenotyping using the simplified 21-combination Seleida system. Each cell reflects the predicted
risk level based on rescue inhaler use (a) and antibiotic courses (b), capped at clinically relevant thresholds (a<6; b<2). Color intensity indicates
increasing probability of poor control. This tool enables rapid identification of high-risk patients using prescribing data alone, without spirometry
or symptom scores, supporting scalable risk stratification in primary care. This visual framework enables clinicians to stratify patients using only
prescribing data, even without algorithmic integration. H: high; L: low; SABA: short-acting 32-agonists; SAMA: short-acting muscarinic antagonists.
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Expanded Phenotyping: Comparing Real
and Combination Systems

Seleida’s expanded phenotyping system refines the 2025
GOLD ABE classification by incorporating the annual use of
SABA or SAMA or both as a stratification axis. Each GOLD
category—E (=2 moderate or =1 severe exacerbation), A1/B1
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(1 moderate exacerbation), and AO/BO (no exacerbations)—
is subdivided into high SABA users (H; =3 canisters per
year) and low users (L; <3 canisters per year). This additional
layer of segmentation enhances sensitivity for detecting early
manifestations of disease instability and symptom burden,
yielding a more granular and actionable classification of
COPD phenotypes (Table 1).

Table 1. Performance metrics of the 126-combination system for each chronic obstructive pulmonary disease phenotype®.

Accuracy, % SeP, % Sp°, % PPVY, % NPV®, % LR+  LR- #value  Significance of &
AO/BOHM 953 100 94.8 66.7 100 192 0.00 0.774 <001'
AO/BOLI 962 97.7 952 933 98.4 20.5 0.02 0.922 <001
Al/BIH 858 50 90.4 40 934 52 0.55 0.365 002k
Al/BIL 934 813 95.6 76.5 96.6 18.3 0.20 0.749 <001'
EH 86.8 38.9 96.6 70 88.5 114 0.63 0.431 <.001?
EL 972 57.1 100 100 97.1 +00 043 0.714 <001'

aSensitivity, specificity, PPV, NPV, and LR+/LR- for each phenotype identified by the 126-combination system. These metrics evaluate the model’s
ability to replicate real phenotyping and highlight its strengths in common phenotypes (eg, AO/BO H and AO/BO L) as well as areas requiring

refinement for less frequent phenotypes (eg, E H and A1/B1 H).
bSe: sensitivity.

Sp: specificity.

dPPV: positive predictive value.

°NPV: negative predictive value.
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fLR: likelihood ratio.
gSignificance (P value) of Cohen % coefficient.
bH: high.

Maya Viejo & Navarro Ros

%Hypothesis tests applied to assess the statistical significance of the x coefficient: Fisher exact test.

JL: low.

kHypothesis tests applied to assess the statistical significance of the x coefficient: %2 test.

Two phenotyping strategies were evaluated: (1) The 126-
combination system, designed for high-resolution stratifica-
tion, is ideally suited to research settings and complex clinical
scenarios [27,35]. (2) The simplified 21-combination system,
optimized for routine clinical application, offers a favorable
balance between predictive performance and computational
efficiency [4,39]. Its lower complexity makes it especially
appropriate for primary care and resource-limited environ-
ments, where operational simplicity and rapid decision-mak-
ing are essential [43,44].

Both systems exhibited strong concordance with clinician-
assigned phenotypes based on real-world data (Cohen #=0.70,
SE=0.050; P<.001). Sensitivity and specificity were notably
high for the most prevalent phenotypes, with specificity
exceeding 90% and sensitivity reaching or surpassing 97% for

categories such as A0/BO-H, A0/BO-L, and E-L. In contrast,
sensitivity was lower for less frequent phenotypes, underscor-
ing the importance of clinical judgment in borderline cases
and reinforcing the complementary role of Seleida alongside
expert assessment.

Internal agreement between the 126- and 21-combination
models was perfect (Cohen #=1.00, P<.001) (Figure 3A and
B). Despite its reduced granularity, the simplified system
preserved high specificity, minimizing false positives and
confirming its suitability for real-time clinical implementa-
tion. These features make it particularly advantageous for
integration into EHR systems and point-of-care workflows,
especially in settings with constrained health care infrastruc-
ture [22,31,43 ,44,53].

Figure 3. (A) Heatmap of real versus predicted phenotyping by 126-combination system. (B) Heatmap of real versus predicted phenotyping by

21-combination system.
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Overall, the expanded phenotyping approach implemented
in Seleida offers a scalable, automated solution for enhanc-
ing risk stratification and supporting targeted therapeu-
tic interventions in COPD management [20,24,2538]. By
identifying high-risk individuals early, Seleida facilitates
more personalized care, prioritizing interventions for those
most likely to benefit while reducing overtreatment in stable
cases [4,24,25,36]. This paradigm not only improves clinical
outcomes but also promotes more efficient use of health care
resources—aligning with the growing imperative for data-
driven decision-making in contemporary health care systems
[21,33,38].
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Basic Phenotyping: Evaluating the 126-
Combination System for GOLD 2025
Phenotypes

The performance of Seleida’s 126-combination system was
assessed in replicating GOLD 2025 phenotypes [14]—A0/BO
(no exacerbations), A1/B1 (1 moderate exacerbation), and E
(=2 moderate or =1 severe exacerbation)—using the annual
number of respiratory antibiotic regimens (variable b) as the
sole predictor (Table 2) [48,49]. The model’s discriminatory
capacity across these clinical categories was demonstrated by
the following results:
* A0/BO (no exacerbations): sensitivity=98.1%,
specificity=84.9%, and accuracy=97.5%, with near-
perfect agreement (#=0.83; P<.001). These findings
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confirm the model’s high reliability in identifying
well-controlled patients.

* Al1/B1 (1 moderate exacerbation): sensitivity=67.9%,
specificity=83.3%, and accuracy=79.3%, with moderate
agreement (#1=0.49; P<.001). This level of perform-

Maya Viejo & Navarro Ros

* E (=2 moderate or =1 severe exacerbation): specif-
icity=96.3%, sensitivity=44%, accuracy=84%, and a
high positive LR+=11.9. These metrics indicate robust
identification of high-risk patients with minimal false
positives, supporting timely and targeted interventions.

ance reflects a balanced capacity to detect patients at
intermediate risk, despite the inherent clinical heteroge-
neity of this group.

Table 2. Performance metrics of the 126-combination system for Global Initiative for Chronic Obstructive Lung Disease 2025 chronic obstructive
pulmonary disease phenotypes®.

Accuracy, % Se®, % Sp¢, % PPVY, % NPV€, % LR+ LR- % value Significance of &
AO0/BO 97.5 98.1 849 86.7 97.8 6.5 0.02 0.830 <001
Al1/B1 793 679 833 594 87.8 4.1 0.39 0.489 <001}
E 84 44 96.3 78.6 84.8 11.9 0.58 0475 <001

Sensitivity, specificity, PPV, NPV, LR+ /LR—, accuracy, and k for each phenotype identified by the reverse Seleida model. The metrics reflect
the model’s ability to replicate real-world phenotyping and its strengths in classifying Global Initiative for Chronic Obstructive Lung Disease 2025

phenotypes.

bSe: sensitivity.

Sp: specificity.

dpPV: positive predictive value.

°NPV: negative predictive value.

fLLR: likelihood ratios.

8Statistical significance (P value) of Cohen k coefficient.

bHypothesis tests applied to assess the statistical significance of the k coefficient: Fisher exact test.
"Hypothesis tests applied to assess the statistical significance of the k coefficient: y2 test.

Collectively, these results underscore the robustness of
Seleida’s basic phenotyping system in stratifying patients
based solely on antibiotic prescribing data. However, the
model’s ability to discriminate between A and B catego-
ries—particularly within the intermediate-risk stratum—may
benefit from the incorporation of symptom-based measures,
such as the modified Medical Research Council dyspnea
scale and the COPD Assessment Test, both of which
are widely used in routine practice [16,17,54,55]. Future
iterations integrating these variables could enhance pheno-
typic granularity and improve the model’s adaptability across
diverse health care settings.

Despite these acknowledged limitations, Seleida demon-
strates strong performance when classifying COPD pheno-
types using a single, objective, and consistently recorded
variable: annual antibiotic use. The system reliably identi-
fies patients with stable disease (A0/B0), achieves moderate
accuracy for those at intermediate risk (A1/B1), and exhibits
high specificity for detecting individuals with frequent or
severe exacerbations (E). These findings reinforce Seleida’s
potential as a pragmatic, evidence-based tool for real-world
clinical decision-making, offering scalable, reproducible, and
personalized support for COPD management across a wide
range of practice environments [29,33,34,38].

Expanded Phenotyping: Integration
of Pseudomonas Risk in the 126-
Combination System

The 126-combination phenotyping system was further
evaluated for its capacity to identify patients with COPD at

https://medinform jmir.org/2025/1/e74932

an increased risk of Pseudomonas aeruginosa colonization
or infection. Evidence indicates that individuals receiving
more than 4 respiratory antibiotic regimens annually exhibit
a markedly elevated risk of frequent exacerbations and poor
disease control [48,56-58]. By incorporating this threshold
into the Seleida model, the system enhances its ability
to detect high-risk phenotypic profiles—facilitating targeted
interventions such as antimicrobial stewardship and intensi-
fied clinical monitoring [48,59].

In contrast, the 21-combination system —by design—limits
the antibiotic variable (b) to a maximum of 2 prescriptions per
year, potentially reducing its sensitivity for identifying this
severe phenotype. The expanded resolution of the 126-com-
bination system, which accommodates values of b up to 5,
enables more accurate detection of complex clinical cases.
As illustrated in Figure 4, profiles with b=5 are consis-
tently associated with very high predicted risk, capturing
severe phenotypes that may otherwise be underrepresented
in streamlined models.
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Figure 4. Identification of patients with chronic obstructive pulmonary disease at high risk of Pseudomonas aeruginosa colonization using the
126-combination Seleida model. The shaded area highlights phenotypes with high predicted risk (Pr=0.99), =5 antibiotics per year (b), and high
or low rescue inhaler use (H or L). These patients should be prioritized for sputum culture screening and potential referral to pulmonology. This
supports targeted infection surveillance based on real-world prescribing data. COPD: chronic obstructive pulmonary disease; H: high; L: low; SABA:

short-acting 2-agonists; SAMA: short-acting muscarinic antagonists.
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Integrating Pseudomonas-related risk factors into the
high-resolution framework strengthens Seleida’s use for
proactive therapeutic planning. This refinement supports
the early identification of patients requiring microbiologi-
cal surveillance, targeted antimicrobial strategies, or referral
to hospital-based specialist care—ultimately contributing to
the mitigation of antibiotic resistance and the improvement
of long-term clinical outcomes (section S6 in Multimedia
Appendix 1) [49,60.,61].

By capturing a broader spectrum of disease severity, this
extension reinforces the adaptability of the Seleida model and
underscores its value as a precision tool for guiding person-
alized interventions in the management of complex COPD
phenotypes across a range of clinical environments.

Impact of Rescue Medication Use on
Health Care Utilization in Patients With
COPD

High rescue medication use (H) among patients with COPD is
a well-established indicator of increased health care resource
utilization. In the present cohort (n=106), 71.4% (15/21)
of high-use patients required at least 1 respiratory-related
clinical consultation annually, compared with 40% (34/85)

https://medinform jmir.org/2025/1/e74932

of low-use patients (y?=6.691; P=.010). A moderate yet
statistically significant correlation was observed between
rescue medication consumption and health care consulta-
tions (Pearson r=0.251; P=.009), as illustrated in Multimedia
Appendix 2.

These findings highlight the use of rescue medication
as a reliable and actionable marker for patient stratification
within the Seleida phenotyping system [25]. Early identifi-
cation of high-use individuals facilitates the deployment of
targeted interventions, including optimization of maintenance
therapy, structured education to reduce inhaler overreliance,
and scheduling of more frequent clinical follow-ups [15,62,
63].

The =1 consultation per year threshold serves as a
pragmatic and clinically interpretable metric to prioritize
high-risk patients in care workflows and inform strategic
health care resource allocation. Future analyses incorporating
additional parameters—such as disease severity, multimorbid-
ity profiles, and treatment adherence—will be essential to
refine predictive accuracy and enhance the model’s capacity
to support resource optimization in diverse clinical settings
[48,64-66].
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Exacerbations in the Last Year and
Rescue Medication Use

In this cohort of 106 patients with COPD, a significant
association was observed between exacerbation history and
increased use of SABA. Among patients with no exacerba-
tions in the preceding 12 months, 88.7% (47/53) used fewer
than 3 rescue canisters annually. In contrast, 28.3% (15/53) of
those with =1 exacerbation required =3 canisters (y2;=4.810,
P=.028; Pearson r=0.213, P=.028), as depicted in Multimedia
Appendix 3.

This correlation underscores the heightened reliance
on rescue therapy among patients with recent exacerba-
tions—often reflecting suboptimal maintenance treatment
or inadequate symptom control [47,67,68]. These findings
support the implementation of targeted clinical strategies,
such as optimizing long-term inhaled therapy and reinforcing
adherence interventions, to reduce SABA dependence and
enhance overall disease management.

Incorporating this association into predictive modeling
frameworks can improve risk stratification and enable more
personalized treatment planning [69,70]. Future analyses
should account for potential confounding factors—such as
comorbid conditions, medication adherence, and variability in
EHR completeness—to further refine the model’s predictive
performance and clinical applicability across heterogeneous
patient populations [27 46].

Maya Viejo & Navarro Ros

Treatment Patterns in Patients With
Exacerbated COPD

This analysis examined treatment patterns among 53 patients
with COPD who experienced at least 1 moderate exacerba-
tion in the past year. After excluding 8 individuals due to
missing eosinophil count data, the final sample comprised 45
patients. The Seleida model was applied to assess deviations
from current therapeutic recommendations as outlined in
established clinical practice guidelines [25].

Among patients with blood eosinophil counts of
<100cells/uL. (4/45, 8.89%)—where the use of inhaled
corticosteroids (ICS) is generally not recommended [14]—
66.7% (2/3) of those classified as phenotype E, along
with 1 patient in the A1/Bl category, were nonetheless
prescribed ICS-containing regimens. Exceptions to this
pattern were documented in cases where eosinophil counts
of =100cells/uL. had been recorded previously, justifying
continued ICS use (Figure 5). In addition, 11.1% (5/45)
of patients were receiving bronchodilator monotherapy, and
22.2% (10/45) were treated with ICS—long-acting [32-agonist
combinations, despite GOLD 2025 guidelines recommend-
ing dual bronchodilation (long-acting muscarinic antago-
nist-long-acting 32-agonists) in these clinical scenarios [14].

Figure 5. Treatment regimen by annual mean eosinophilia and exacerbation phenotype. COPD: chronic obstructive pulmonary disease; ICS: inhaled
corticosteroids; LABA: long-acting 32-agonists; LAMA: long-acting muscarinic antagonists.

1 17 4 3 16 4 Number of patients
100 5.9% 63% Treatment regimens
100.0% o 50.0% 33.3% 25.0%
;\? 11.8% 12.5% /1 ICS-LAMA-LABA
= 807 17.6% 37.5% 3 ICS-LABA
& 75.0% 2 LAMA-LABA
8 60— 41.2% 66.7%
= e : 1 Monotherapy (LAMA/LABA)
= N 3 Others
E 40 20.0% 12.5%
c
2 _ 31.3%
5 20 23.5%
~
0 | T T T T |
<100 100-300 >300 <100 100-300 >300
Al/B1 E

Conversely, ICS underutilization was observed in patients
who met criteria for triple therapy—particularly those
with eosinophil counts of =100cells/uL.—suggesting that
nonclinical factors (eg, logistical or prescriber-related) may
contribute to deviations from phenotype-aligned treatment
pathways [71].

By automating phenotypic classification based on
exacerbation history, the Seleida combination systems—when
integrated with eosinophil count and treatment data—allow
for the systematic identification of discrepancies between
recommended and actual therapy [31,70]. This functionality
supports improved alignment with evidence-based guidelines,
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promoting optimal ICS use, minimizing unnecessary adverse
effects, and enhancing overall COPD management outcomes
[20,34].

Real-World COPD Phenotypes Across
Daily Inhalation Patterns

This analysis evaluated the relationship between daily
inhalation regimens and COPD phenotypes—A0/BO, A1/B1,
and E—in a cohort of 106 patients, examining treatment
intensity in relation to clinical severity and exacerbation
history (Figure 6).
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Figure 6. Distribution of chronic obstructive pulmonary disease phenotypes by daily inhalation doses. COPD: chronic obstructive pulmonary disease.
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Among AO/BO patients (n=53), 58.5% (51/53) required a
single inhalation per day, whereas 41.5% (22/53) used 2
or more. In the A1/B1 group (n=28), 75% (21/28) required
at least 2 daily inhalations, reflecting higher therapeutic
demands. Phenotype E patients (n=25), defined by =2
moderate or =1 severe exacerbations, exhibited greater
variability: 60% (15/25) used 2 or more inhalations daily,
while 40% (10/25) managed with a single dose.

Statistical testing revealed a significant association
between inhalation frequency and clinical phenotype
(y%=8.662; P=.013). A linear trend (P=.048), alongside weak
but statistically significant correlations (Pearson r=0.193,
P=047; Spearman r=0.215, P=.027), suggests that patients
with higher-risk phenotypes tend to receive more intensive
inhalation regimens.

These findings underscore the relevance of phenotype-gui-
ded treatment strategies: while low-intensity regimens may

suffice for AO/BO patients, individuals classified as A1/B1 or
E typically require escalation of therapy. Incorporating daily
inhalation patterns into predictive models enhances clinical
personalization, supports adherence to guideline-based care,
and contributes to improved patient outcomes —advancing the
principles of precision medicine in COPD management [70].

Real-World COPD Phenotypes and
Health Care Utilization

This analysis examined the association between COPD
phenotypes— A0/BO, A1/B1, and E—and respiratory-related
health care utilization in a cohort of 106 patients, with a focus

on the need for at least 1 annual clinical consultation (Figure
7).

Figure 7. Proportion of chronic obstructive pulmonary disease phenotypes by number of annual health care consultations. COPD: chronic obstructive

pulmonary disease.
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* A0/BO phenotype (n=53): 81.1% (43/53) of patients
required no respiratory-related consultations, while
18.9% (10/53) needed at least 1, reflecting stable
disease and low health care demand.

e A1/B1 phenotype (n=28): 60.7% (17/28) required at
least 1 consultation, indicating increased follow-up
needs linked to a history of moderate exacerbations.

* E phenotype (n=25): 88% (22/25) required at least 1
consultation, representing the highest level of health
care utilization, consistent with more severe disease and
frequent exacerbations.

Statistical analysis confirmed a robust association between
phenotype and health care utilization (¥%=35.873; P<.001),
with strong, statistically significant correlations observed
(Pearson r=0.578; Spearman r=0.582; both P<.001).

These findings demonstrate that health care resource
demand increases in parallel with disease severity —ranging
from minimal utilization in patients with stable phenotypes
(AO/B0O) to substantially elevated needs in those classified
as phenotype E. Integrating phenotype-based stratification
into clinical workflows can support more efficient resource
allocation, ensuring timely intervention for high-risk patients
while minimizing unnecessary consultations among those
with controlled disease.

Discussion

Principal Findings

This study presents and internally validates Seleida—a fully
automated, deterministic, and bijective model designed to
assess COPD control and generate clinically interpretable
phenotypes using structured EHR data. By relying exclusively
on routinely recorded prescribing information—specifically,
the annual number of dispensed SABA or SAMA canis-
ters or both and respiratory antibiotics—Seleida offers a
scalable and transparent alternative to conventional classifica-
tion frameworks such as GOLD 2025 and GesEPOC 2021.
These frameworks often depend on intermittently documen-
ted spirometry results and symptom scores, limiting their
feasibility and consistency in real-world, especially primary
care, settings [14,17,18,47,52,72].

The decision to implement LASSO over Ridge or Elastic
Net in the Seleida model was based on a comparative
analysis of regularization techniques. While all 3 approaches
demonstrated acceptable discrimination, LASSO provided the
best balance between predictive accuracy, parsimony, and
clinical interpretability. Ridge regression tended to over-
shrink coefficients, whereas Elastic Net offered no addi-
tional benefit in a low-dimensional, low-collinearity setting
(section S4 in Multimedia Appendix 1). This methodological
choice reinforces Seleida’s role as a computationally efficient
and clinically actionable tool for phenotype-guided COPD
management.

The model demonstrated perfect agreement between its
126- and 21-combination phenotyping schemas (Cohen
®=1.00; P<.001) and substantial concordance with

https://medinform jmir.org/2025/1/e74932

Maya Viejo & Navarro Ros

clinician-assigned phenotypes based on GOLD 2025 criteria
(»=0.70; P<.001), confirming its internal robustness and
interpretive reliability [42,73]. By leveraging high-frequency,
objective EHR variables, Seleida enables dynamic risk
stratification even in the absence of structured clinical
assessments — particularly relevant in settings where such data
may be unavailable or inconsistently applied.

Given that nearly half of individuals with COPD experi-
ence at least 1 moderate to severe exacerbation annually —
often without being flagged as uncontrolled by current tools
—Seleida addresses a critical gap by providing continuous,
data-driven risk stratification embedded within routine care
pathways [4,5].

To date, no automated or EHR-integrated phenotyping
model has been formally established for COPD in real-world
clinical settings. Unlike existing unidirectional risk scores
or machine learning classifiers focused on exacerbation or
mortality risk, Seleida was explicitly designed as a bidirec-
tional and bijective system tailored to primary care popula-
tions. This architecture enables both forward prediction from
observed data and reverse inference of phenotypic profiles
from computed probabilities—features essential for trans-
parency, auditability, and integration into decision support
environments.

Crucially, the model relies solely on structured varia-
bles that are universally available across health systems,
ensuring interoperability and scalability. As such, bench-
mark comparisons against nonbijective models were deemed
conceptually misaligned and methodologically uninformative.
Instead, internal comparisons were performed (section S4 in
Multimedia Appendix 1), and the final implementation was
selected based on predictive accuracy, sparsity, and opera-
tional interpretability.

To the best of the authors’ knowledge—based on an
exhaustive PubMed search using combinations of terms such
as COPD, automatic phenotyping, clinical decision support
systems, electronic health records, predictive modeling,
algorithmic classification, bijective model, and rule-based
phenotyping—no published model currently exists that is
specifically designed for the automatic phenotyping of
patients with COPD and suitable for direct integration into
health care information systems. Future studies may explore
head-to-head evaluations once externally validated phenotyp-
ing frameworks become available.

Implications for Digital Health Integration

Seleida was designed to overcome long-standing barriers to
the adoption of clinical decision support tools, including
limited data availability, platform heterogeneity, and clinician
disengagement driven by system opacity or poor integra-
tion. Its deterministic and parsimonious architecture ensures
full traceability and facilitates seamless integration across
heterogeneous digital infrastructures. The model’s implemen-
tation potential can be articulated across 3 core domains:
* EHR integration and technical feasibility: Seleida
requires only 2 structured input variables —annual
dispensations of SABA or SAMA canisters or both and
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respiratory antibiotics—which are consistently recorded
in most EHRs. Its architecture adheres to HL7 FHIR
standards, as detailed in section S7 in Multimedia
Appendix 1, where all model outputs were success-
fully validated using the official HL7 FHIR validator
(v6.5.28) without structural or semantic errors across
440 resources. These outputs were generated through
an automated simulation of valid (a, b) input combi-
nations—not from real patient data—and were used
to demonstrate the model’s technical interoperability
under HL7 FHIR specifications. The structured Fast
Healthcare Interoperability Resources (FHIR) bundles
include RiskAssessment (risk and rationale), Detecte-
dIssue (clinical recommendations), Condition (disease
state), and Provenance (model metadata), ensuring
syntactic integrity, semantic traceability, and compati-
bility with clinical decision support platforms.

* Clinical decision support integration: The generated
FHIR bundles enable real-time deployment within
EHR-based dashboards and alert systems via stand-
ard Application Programming Interfaces. For instance,
exceeding predefined thresholds (eg, >3 inhalers per
year or =2 antibiotic courses) can trigger automated
clinical recommendations through the Detectedlssue
resource, which remains fully auditable via associ-
ated Provenance metadata. This architecture supports
reproducible and scalable implementation in both
open-source platforms (eg, OpenMRS) and commercial
systems compliant with HL7 RS.

 Scalability and global interoperability: The model’s
minimal data requirements and exclusive reliance on
universally structured prescribing variables make it
well suited for adoption in low- and middle-income
countries. Its lightweight, FHIR-compliant design
allows integration into national health information
infrastructures aligned with the World Health Organ-
ization’s Digital Health Strategy. The use of interna-
tional terminologies (SNOMED CT and LOINC) and
standardized value sets further enables longitudinal
data integration, federated learning, and interoperability
across certified clinical environments worldwide.

Advancing Precision COPD Management

Seleida contributes to the advancement of precision med-
icine in COPD by enabling automated, phenotype-driven
decision pathways tailored to real-world primary care data.
Its deterministic architecture supports individualized care
planning through multiple mechanisms. First, the model’s
integration of 2025 GOLD ABE classification with SABA
dependency stratification facilitates personalized pharmaco-
logic strategies—informing step-up or step-down adjustments
based on quantified risk levels. Beyond pharmacologic
guidance, Seleida helps identify patients who may bene-
fit from nonpharmacologic interventions such as structured
pulmonary rehabilitation or smoking cessation support,
reinforcing a holistic, patient-centered approach to disease
control [74,75]. Moreover, the ability to isolate phenotypes
associated with frequent exacerbations or suggestive of P
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aeruginosa colonization offers additional value for microbio-
logical surveillance and early antimicrobial stewardship [76].

Seleida’s modular structure permits future expansion.
Variables such as comorbidity profiles, vaccination status,
or inflammatory biomarkers (eg, eosinophil count and
C-reactive protein) can be incorporated without compro-
mising interpretability —enhancing predictive precision and
adaptability to diverse clinical settings.

Health System Optimization and
Economic Potential

Beyond individual risk estimation, Seleida generates
population-level insights that can inform health system
optimization and performance monitoring. Its probabilis-
tic outputs enable benchmarking of COPD control across
institutions and regions, helping identify care gaps and
guiding policy interventions to reduce diagnostic iner-
tia, undertreatment, and geographic disparities in disease
management.

At the public health level, the model supports strategic
planning by quantifying the projected impact of interven-
tions—such as seasonal vaccination campaigns, air quality
alerts, or therapeutic adjustments—on exacerbation rates
and control metrics at scale. Its forecasting capacity also
informs resource allocation, enabling estimates of emergency
visits, hospitalization demands, and inhaler supply needs
—particularly critical in overstretched systems or during
seasonal peak periods.

From an economic perspective, COPD exacerbations—
especially those requiring hospitalization—account for more
than 70% of direct disease-related health care expendi-
tures [77]. By identifying high-risk patients early, Seleida
may help reduce exacerbation incidence by approximately
15%-25%, consistent with reductions observed in phenotype-
guided management programs [74,75]. Preventing a single
severe exacerbation may yield direct savings of $1700 to
$4720 (the cost that was originally reported in euros [€]
was converted to US dollars using the exchange rate of
€1=$1.18 as of September 15, 2025, based on the Euro-
pean Central Bank reference rates per patient annually) [21].
While these projections remain hypothetical within Seleida’s
current context, they underscore its potential contribution to
value-based care. Confirmatory evidence from prospective
cost-effectiveness evaluations in multicenter implementation
studies will be essential to fully quantify this impact.

As health care systems face mounting pressure to improve
outcomes while managing resource constraints, tools such
as Seleida—anchored in objective, high-frequency data and
deployable across diverse infrastructures —offer a pragmatic
path toward more efficient, equitable, and data-driven
respiratory care.

Interpretability and Clinical Use in Real-
World Practice

Seleida was designed for seamless integration into EHR
systems, where structured clinical inputs—specifically rescue
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inhaler use and antibiotic prescriptions—can be continuously
analyzed to generate real-time risk estimates and automated
alerts. The model can also be applied manually in settings
without digital integration, allowing clinicians to interpret
the probability of poor control as a continuous indicator of
exacerbation risk, with higher values reflecting proportionally
greater clinical vulnerability. This dual deployment capacity
is particularly valuable in resource-constrained environments
where decision support infrastructures are limited.

For exploratory implementation, a provisional risk
threshold was established. Because the sample size of this
pilot study precluded formal statistical derivation, a reference
point of Pr>.50 was selected based on the internal distribution
of predicted probabilities. This should be interpreted not as a
strict clinical cutoff but as an operational inflection point to
guide prioritization. The model supports graded stratification
across the risk spectrum, enabling providers to flag higher-
risk profiles (eg, Pr>.70) for proactive evaluation, treatment
adjustment, or closer follow-up.

Beyond individual patient care, Seleida enables popula-
tion-level case finding using prescribing data alone, with-
out requiring recent consultations or the patient’s physical
presence. This capability allows the generation of risk-strati-
fied reports for entire patient panels, facilitating earlier
identification of those likely to be poorly controlled. The
transition from reactive recognition during encounters to
anticipatory detection at the database level supports a
scalable, equitable, and resource-efficient approach to COPD
management. By combining point-of-care guidance with
population surveillance, Seleida offers a flexible solution
adaptable to diverse health care settings.

From a clinical perspective, fully automated and bijec-
tive phenotyping enables early detection of unstable COPD
without the need for spirometry or symptom scores.
By generating actionable, guideline-aligned classifications
from routine EHR data, Seleida supports timely treatment
selection, targeted microbiological assessment, and precise
referral. Prioritizing follow-up for poorly controlled patients
has the potential to reduce primary care and emergency Visits,
exacerbations, hospitalizations, and even mortality, while
improving disease control and optimizing health care resource
use.

Seleida’s deterministic and bijective framework delivers
precise, phenotype-driven COPD management using only
routinely collected prescribing data. By translating high-fre-
quency medication patterns into actionable risk profiles,
it facilitates earlier therapeutic escalation, targeted treat-
ment stratification, and proactive follow-up scheduling—
particularly in patients who might otherwise remain unde-
tected by conventional spirometry-based or symptom-based
approaches.

The model’s simplicity, transparency, and full EHR
interoperability enable smooth integration into clinical
workflows, supporting earlier detection of instability,
automated triage, and efficient resource allocation. At the
system level, Seleida empowers population-wide surveillance,
equitable access to timely interventions, and optimization
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of health care resources—priorities central to contemporary
primary care and health system planning.

At the health system level, proactive, database-driven
detection enables earlier triage and strategic resource
allocation across the care continuum. Identifying high-risk
patients before clinical deterioration allows services to
intensify follow-up, focus preventive interventions, and
streamline emergency response. This anticipatory approach
promotes equitable access to timely care, reduces unneces-
sary utilization, and decreases the likelihood of preventable
hospitalizations —enhancing the efficiency, scalability, and
sustainability of COPD management while maximizing the
effectiveness of interventions in primary care.

Limitations and Validation Needs

Despite its strengths, several limitations warrant considera-
tion:

e Sample size and scope: The model was validated
retrospectively in a single-country cohort of 106
patients from 2 Spanish primary care centers. While the
results support internal consistency, the generalizability
to other health systems, demographic groups, and care
models remains to be established through multicen-
ter external validation [45]. To address this, future
validation studies are planned with larger and more
heterogeneous cohorts drawn from multiple Spanish
regions, aiming to evaluate the model’s performance
across broader demographic, geographic, and clinical
contexts. Given its reliance on universally recorded
prescribing data, Seleida also has strong potential
for applicability in diverse international settings, and
validation efforts will extend to health care systems in
both European and non-European countries.

* Variable parsimony: Seleida was intentionally designed
for simplicity and scalability, relying on 2 objective,
high-frequency prescribing variables. However, this
design may limit sensitivity in clinically complex
or multimorbid phenotypes. In particular, the model
may underperform in identifying atypical exacerbation
profiles, discordant symptom patterns, or overlapping
syndromes such as asthma-COPD overlap syndrome,
eosinophilic COPD, or symptom-dominant cases with
low exacerbation burden [78].

* Fixed thresholds and model rigidity: The deterministic
and bijective architecture of Seleida requires predefined
integer inputs (a, b), which enhances reproducibility
and transparency but may reduce flexibility. This could
limit performance in borderline or transitional cases,
especially in patients with fluctuating clinical trajec-
tories near decision thresholds. Future iterations may
incorporate hybrid models with continuous or adaptive
inputs, leveraging machine learning—based adjustments
to enhance model responsiveness and flexibility [79].

* Omission of conventional clinical metrics: The
exclusion of spirometry (eg, forced expiratory volume
in the first second of expiration), symptom scores (eg,
COPD Assessment Test, modified medical research
council, and patient-reported outcomes enhances
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operational feasibility but may reduce clinical accepta-
bility in settings where such metrics are routinely used
for monitoring, reimbursement, or treatment authoriza-
tion. Furthermore, Seleida may not fully capture disease
burden in patients whose impact is driven more by
symptoms than by exacerbation frequency —highlight-
ing the need for future multimodal extensions.

Future Directions

To support broader adoption, equity, and scientific transpar-
ency, several development paths are under consideration:

1. Multinational validation: Future collaborations with
international partners—such as the WHO Digital Health
Programme —may enable cross-context evaluation of
Seleida using open-source EHR infrastructures such as
OpenMRS. This would facilitate assessment in diverse
health care systems, including low- and middle-income
settings.

2. Atrtificial intelligence—enhanced predictive modeling:
Planned extensions include the incorporation of
machine learning components to enable dynamic
thresholds, time series forecasting, and the integra-
tion of social and environmental determinants of
health. These enhancements aim to improve contextual
relevance, longitudinal accuracy, and model adaptabil-
ity in complex clinical scenarios.

3. Open-science reproducibility: A complete techni-
cal framework —including public, detailed model
documentation, and executable pseudocode —could
be released to support independent replication,
collaborative development, and global dissemination.

Maya Viejo & Navarro Ros

This approach would follow successful precedents in
predictive modeling platforms, such as QRISK [80].

Ethical Considerations and Equity

Future iterations will incorporate algorithmic fairness audits
to detect and mitigate potential biases in risk estimation—
particularly among historically underrepresented or under-
served populations. Equity by design is a foundational
principle of the Seleida framework. By relying exclu-
sively on structured prescribing data—universally recor-
ded across health systems—and remaining independent of
costly diagnostic tools or patient-reported inputs, Seleida is
inherently scalable and adaptable to low-resource settings.
Its compatibility with open-source EHR infrastructures, such
as OpenMRS, facilitates national-scale deployment in both
high- and middle-income countries. Partnerships with public
health authorities and patient advocacy groups are envisioned
to ensure that Seleida promotes access and actively reduces
—rather than reinforces—structural disparities in COPD
management [81-84].

By bridging predictive analytics with frontline clinical
decision-making, Seleida supports equitable, individualized
care (Figure 8). Its automated, interoperable, and fully
transparent architecture enables the early identification of
poorly controlled patients and the delivery of actionable,
risk-aligned interventions. Through the transformation of
routine prescribing data into clinically interpretable pheno-
types, Seleida contributes not only to personalized medicine
but also to system-level optimization and population risk
mitigation.

Figure 8. Applications of the refined Seleida model. The model uses EHR data to identify patients with poorly controlled chronic obstructive
pulmonary disease, enabling phenotyping and targeted interventions to improve disease management. COPD: chronic obstructive pulmonary disease;
EHR: electronic health care record; GOLD: Global Initiative for Chronic Obstructive Lung Disease; H: high; L: low; SABA: short-acting 32-ago-

nists; SAMA: combined with short-acting muscarinic antagonists.
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Planned multicenter validation and open-science dissemina-
tion are expected to further reinforce Seleida’s role as
a cornerstone in the emerging field of data-driven respira-
tory precision medicine—advancing a vision grounded in
accessibility, transparency, and global equity.

Conclusions

This study presents Seleida as the first model for assess-
ing COPD control that is fully automated, mathematically
bijective, and clinically validated using structured data
routinely captured in primary care. By leveraging 2 objective,
high-frequency prescribing variables—namely, the number of
dispensed rescue inhaler canisters and respiratory antibi-
otic courses—Seleida enables scalable, reproducible, and
clinically interpretable phenotyping aligned with real-world
care workflows.

The model demonstrated strong internal validity, with
perfect concordance between its high-resolution and
streamlined phenotyping systems (#=1.00; P<.001), and
substantial agreement with clinician-assigned phenotypes
based on GOLD 2025 criteria (#=0.70; P<.001), supporting
both its discriminative capacity and interpretive reliability.
Its deterministic structure supports real-time risk estimation
and reverse phenotype mapping, enabling individualized
treatment planning within EHR-integrated environments.

Maya Viejo & Navarro Ros

Designed for seamless digital integration, Seleida’s low
data burden and full compatibility with HL7 FHIR standards
facilitate implementation across a broad range of informat-
ics platforms—including dashboards, telehealth systems,
and registry-based surveillance tools. These features, along
with its transparency and interoperability, make the model
particularly applicable to resource-limited settings.

While the present validation was limited to a retrospec-
tive cohort from 2 Spanish primary care centers, prospec-
tive multicenter studies are underway to evaluate Seleida’s
generalizability, economic impact, and performance across
diverse health systems. Future model iterations aim to
enhance flexibility and contextual precision through adaptive
thresholds, multimodal inputs, and algorithmic fairness
auditing.

By transforming routinely collected prescribing data into
actionable, risk-aligned insights, Seleida offers a reproducible
and ethically grounded approach to phenotype-guided COPD
care. It provides a concrete, scalable contribution toward
operationalizing precision medicine principles in everyday
respiratory practice.
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H: high

HL7 FHIR: Health Level Seven Fast Healthcare Interoperability Resources
ICD-10: International Classification of Diseases, Tenth Revision
ICS: inhaled corticosteroid

L: low

LABA: Long-acting [32-agonists

LAMA: Long-acting muscarinic antagonists

LASSO: Least Absolute Shrinkage and Selection Operator

LR: likelihood ratio

ML: machine learning

NPV: Negative predictive value

PPV: Positive predictive value

Pr: Probability of poor control

SABA: short-acting 2-agonists

SAMA: short-acting muscarinic antagonists

Se: Sensitivity

Sp: Specificity

Edited by Jeffrey Klann; peer-reviewed by Chun-Yuan Chen, Taofeek Yusuff, Yiging Wang; submitted 25.03.2025; final
revised version received 26.08.2025; accepted 27.08.2025; published 13.10.2025

Please cite as:

Maya Viejo JD, Navarro Ros FM

Automated Chronic Obstructive Pulmonary Disease Phenotyping and Control Assessment in Primary Care: Retrospective
Multicenter Study Using the Seleida Model

JMIR Med Inform 2025;13:¢74932

URL: hitps://medinform jmir.org/2025/1/e74932

doi: 10.2196/74932

© José David Maya Viejo, Fernando M Navarro Ros. Originally published in JMIR Medical Informatics (https://medin-
form jmir.org), 13.10.2025. This is an open-access article distributed under the terms of the Creative Commons Attribution
License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete biblio-
graphic information, a link to the original publication on https://medinform.jmir.org/, as well as this copyright and license
information must be included.

https://medinform jmir.org/2025/1/e74932 JMIR Med Inform 2025 | vol. 13 1e74932 | p. 22
(page number not for citation purposes)


https://medinform.jmir.org/2025/1/e74932
https://doi.org/10.2196/74932
https://medinform.jmir.org
https://medinform.jmir.org
https://creativecommons.org/licenses/by/4.0/
https://medinform.jmir.org/
https://medinform.jmir.org/2025/1/e74932

	Automated Chronic Obstructive Pulmonary Disease Phenotyping and Control Assessment in Primary Care: Retrospective Multicenter Study Using the Seleida Model
	Introduction
	Methods
	Study Design, Setting, and Population
	Objective and Methodology
	Outcome Definition and Model Application
	Model Development, Validation, and Performance Evaluation
	Reverse Model Definition
	Mathematical Proof of Bijectivity
	Ethical Considerations

	Results
	Expanded Phenotyping: Analysis of the 126-Combination System
	Expanded Phenotyping: Analysis of the 21-Combination System
	Expanded Phenotyping: Comparing Real and Combination Systems
	Basic Phenotyping: Evaluating the 126-Combination System for GOLD 2025 Phenotypes
	Expanded Phenotyping: Integration of Pseudomonas Risk in the 126-Combination System
	Impact of Rescue Medication Use on Health Care Utilization in Patients With COPD
	Exacerbations in the Last Year and Rescue Medication Use
	Treatment Patterns in Patients With Exacerbated COPD
	Real-World COPD Phenotypes Across Daily Inhalation Patterns
	Real-World COPD Phenotypes and Health Care Utilization

	Discussion
	Principal Findings
	Implications for Digital Health Integration
	Advancing Precision COPD Management
	Health System Optimization and Economic Potential
	Interpretability and Clinical Use in Real-World Practice
	Limitations and Validation Needs
	Future Directions
	Ethical Considerations and Equity
	Conclusions



