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Abstract

Background: Early diagnosis and intervention in glottic carcinoma (GC) can significantly improve long-term prognosis.
However, the accurate diagnosis of early GC is challenging due to its morphological similarity to vocal cord dysplasia, with the
difficulty further exacerbated in medically underserved areas.

Objective: This study aims to address the limitations of existing technologies by designing a vision-language multimodal
model, providing a more efficient and accurate early diagnostic method for GC.

Methods: The data used in this study were sourced from the information system of the First Affiliated Hospital of Sun
Yat-sen University, comprising laryngoscopy reports and 5796 laryngoscopic images from 404 patients with glottic lesions.
We propose a vision-language—guided multimodal fusion network (VLMF-Net) based on a large vision-language model
for the early automated diagnosis of GC. The text processing module of this model uses the pretrained Large Language
Model Meta Al (LLaMa) to generate text vector representations, while the image processing module uses a pretrained vision
transformer to extract features from laryngoscopic images, achieving cross-modal alignment through the Q-Former module. By
leveraging a feature fusion module, deep integration of text and image features is achieved, ultimately enabling classification
diagnosis. To validate the model’s performance, the study selected contrastive language-image pretraining (CLIP), bootstrap-
ping language-image pretraining with frozen image encoders and large language models (BLIP-2), a large-scale image and
noisy-text embedding (ALIGN), and vision-and-language transformer (VILT) as baseline methods for experimental evaluation
on the same dataset, with comprehensive performance assessment conducted using accuracy, recall, precision, Fj-score, and
area under the curve.

Results: We found that on the internal test set, the VLMF-Net model significantly outperformed existing methods with an
accuracy of 77.6% (CLIP: 70.5%; BLIP-2: 71.5%; ALIGN: 67.3%; and VILT: 64.3%), achieving a 6.1-percentage point
improvement over the best baseline model (BLIP-2). On the external test set, our method also demonstrated robust perform-
ance, achieving an accuracy of 73.9%, which is 4.6 percentage points higher than the second-best model (BLIP-2: 69.3%). This
indicates that our model surpasses these methods in the early diagnosis of GC and exhibits strong generalization ability and
robustness.

Conclusions: The proposed VLMF-Net model can be effectively used for the early diagnosis of GC, helping to address the
challenges in its early detection.
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Introduction

Glottic carcinoma (GC) is a common malignant tumor of
the head and neck [1]. According to GLOBOCAN, China
reported 29,500 new cases and 16,900 deaths from laryngeal
cancer in 2022 [2], posing heavy burdens on health care
systems. Approximately 60% of patients are diagnosed at
an advanced stage [3], leading to significant impairment of
vital physiological functions and compromising both physical
and mental health. Early diagnosis of malignant tumors has
been increasingly emphasized in clinical practice due to its
potential to improve cure rates and organ function preserva-
tion [4]. Therefore, optimizing diagnostic methods for GC
and enhancing early detection capability are urgent tasks for
otolaryngologists.

Laryngoscopy is the primary diagnostic tool for GC [1],
offering direct visualization of lesion shape, extent, and
surface texture. When combined with narrow band imaging,
it enhances early tumor detection by identifying neovascu-
larization [5], making it a valuable tool for early diagno-
sis. However, vocal cord dysplasia (VCD), a precancerous
condition situated between normal epithelium and squamous
cell carcinoma, is characterized by a small lesion with clinical
and laryngoscopic features similar to early GC [6]. Therefore,
it is challenging for the human eye to distinguish between
them. In addition, the lesion is often covered by “leukoplakia-
like” substance, which interferes with the ability of narrow
band imaging to reveal submucosal vasculature [7], increas-
ing the risk of misdiagnosis. Laryngoscopy reports provide
textual descriptions of lesion morphology observed dynami-
cally during the examination, supplementing static images
and assisting in diagnostic decision-making. Studies have
demonstrated a correlation between morphological grading
and malignancy risk [8-10], underscoring the diagnostic
value of textual reports. Furthermore, reports authored by
experienced clinicians serve as valuable references, facili-
tating more accurate diagnoses by less experienced clini-
cians. Histopathology examination remains the gold standard
for diagnosis [1]. However, biopsy is invasive, painful,
and carries procedural risks [11], impeding its widespread
application in large-scale clinical screening. To address this
issue, it is necessary to develop an efficient and noninvasive
method to improve the diagnostic accuracy of early GC.

Recently, significant progress has been made in deep
learning techniques for tackling real-world classification tasks
in computer vision and natural language processing [12-
14]. Many researchers have sought to apply these mod-
els to the detection of laryngeal cancer, yielding promis-
ing outcomes. However, most existing methods only use
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laryngoscopic images as input, including UC-DenseNet [15],
MTANet [16], Dlgnet [17], RedFormer [18], and SAM-FNet
[19]. Although these methods have demonstrated promis-
ing performance in laryngeal cancer detection and other
tasks, they neglect certain latent information present in other
modalities. Such information is typically inaccessible through
unimodal approaches, thereby highlighting the advantages of
multimodal methodologies [20,21].

Therefore, this study proposes a novel method named
vision-language—guided multimodal fusion network (VLMF-
Net) for early diagnosis of GC. Addressing the limitations of
traditional single-modality diagnostic methods, our approach
integrates the images and reports text of laryngoscopy
to provide a more comprehensive representation of lesion
characteristics. Using a pretrained vision transformer (ViT)
[22] model for image feature extraction and a LlaMa3 [23,24]
model fine-tuned for text processing, we achieve effective
multimodal feature fusion. Compared to single-modality
methods, our approach significantly improves the diagnostic
accuracy and robustness, achieving an accuracy of 0.776
on real clinical datasets. This study highlights the potential
of multi-modal fusion in clinical auxiliary diagnosis and
provides new insights for reducing misdiagnosis rates and
improving patient treatment outcomes.

Methods

Dataset

In our study, we constructed 2 datasets for model devel-
opment and validation. First, we built an internal dataset
for model training, validation, and testing. For the internal
dataset, we collected data from 404 patients with glottic
lesions at the First Affiliated Hospital of Sun Yat-sen
University in Guangzhou, China. This dataset consists of
5799 professionally annotated image-text pairs, covering two
types of lesions: VCD and GC. Each sample includes a
laryngoscopic diagnostic report written by an experienced
otolaryngologist and its corresponding laryngoscopic image.

In addition, to assess the model’s generalization ability and
robustness, we constructed an external dataset. The external
dataset was collected from the First People’s Hospital of
Zhaoqing, consisting of data from 47 patients with glottic
lesions between January 1, 2018, and August 31, 2024. This
dataset includes 308 image-text pairs and strictly follows the
principle of isolation from the training data, serving only
for final performance evaluation. For detailed information on
internal and external datasets, please refer to Figure 1 and
Table 1.
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Figure 1. The specific form of data. GC: glottic carcinoma; VCD: vocal cord dysplasia.
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Table 1. The statistics of datasets.

Datasets Internal dataset External dataset
Number of laryngoscopy reports 404 47
Number of VCD? 206 22
Number of GC” 198 25

AVCD: vocal cord dysplasia.
bGC: glottic carcinoma.

Model Architecture

Overview

Figure 2 illustrates the overall architecture of our proposed
VLMEF-Net model, which consists of 3 main modules: the
laryngoscopic image encoder, the clinical report encoder,
and the laryngeal feature fusion module. Specifically, the
laryngoscopic image encoder is responsible for extracting
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visual feature representations from laryngoscopic images,
while the clinical report encoder captures textual feature
representations from the patient’s laryngoscopic examination
findings. These features are then fused through the laryngeal
feature fusion module. Finally, the fused features are passed
through a fully connected layer to complete the classification
task. The detailed implementation of each module in our
proposed VLMF-Net model is as follows:
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Figure 2. The overall architecture of our proposed vision-language—guided multimodal fusion network (VLMF-Net) model.
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The laryngoscopic image encoder is an adapted version of
a pretrained ViT [22] model. Considering that a single ViT
model may introduce cross-modal discrepancies in multimo-
dal tasks, potentially affecting model accuracy, we incorpora-
ted an additional Q-Former [25] module into the ViT model
to mitigate the impact of modality differences and bridge the
gap between image and text features. Q-Former is a trainable
module based on Transformer that extracts and condenses
visual features through alternating stacking of self-attention
and cross-attention. Specifically, we first use ViT to extract
features from the image, and then we input the extracted
image features into a Q-Former module with frozen parame-
ters to reduce modal differences.

Formally, let f,,.( - ) denote the image encoder and f( -)
denote the Q-Former module. Given an image X;, first resize
the image to 224x224x3, then the image feature v; is obtained
as follows:

L = fq(fenc(xi : eenc); eq) (1)

where 6, and 6, are the weight parameters of the image
encoder and the Q-Former module, the shape of v; is 1x1024.
It is worth noting that in terms of the weights of the pretrained
model, we adopt the transfer learning strategy: we directly use
the pretrained weights of the BLIP-2 [25] model as the weight
parameters of the laryngoscope image encoder, because a
large number of studies have demonstrated the effectiveness
of BLIP-2 in downstream tasks [26-28]. Such operations can
ensure that the extracted image features and text features are
in the same scale space, thus effectively avoiding catastrophic
problems caused by modal differences.
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In the clinical report encoder module, we use LLaMA3
[23], an advanced large language model, as the text feature
extractor to obtain textual feature representations from the
patient’s laryngoscopic examination findings. This model is
renowned for its exceptional ability to understand long-form
text.

Formally, let fi;.vas(-) denote the clinical report
encoder function. Given a clinical report r;, the process of
obtaining the text feature ¢; can be formulated as follows:

ti=f LLaMaa(” i eq) @)

where Ogrepresents the weight parameters of the clinical
report encoder, the shape of ¢; is 1x4096. Notably, we adopt
the same transfer learning strategy for the clinical report
encoder’s weight parameters as we did for the laryngoscopic
image encoder. Furthermore, considering that the text in
our dataset is in Chinese, we use a fine-tuned LLaMA3
model trained on a Chinese dataset as the encoder’s weight
source [24]. This approach effectively addresses the original
LLaMA3 model’s limitations in Chinese language under-
standing.

Laryngeal Feature Fusion

In the 2 modules described above, we obtained image and text
features. To effectively fuse these 2 modalities, we introduced
the laryngeal feature fusion module, which aligns, maps, and
integrates the features from both modalities. Specifically, we
first use the vision projector fvp( ) and the text projector
fip(+) to map the image feature v; and text feature ¢; into a
unified feature space:
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L= ftp(ti; etp) (4)

Where v; and t; represent the mapped image and text features
(their shapes are 1x512 and 1x20438), respectively, and 6,,
and §;, are the learnable parameters of the projectors fvp( . )

and ftp( . ) .

Next, we apply L2 normalization to both features to ensure
consistency, obtaining:

v = ﬁand t; = ﬁ Thenv;" and text featuret; along
the feature dimension to form a vision-language joint
representation, denoted as:g; = Concat (v, t;). This joint
feature is then fed into a classifier, which consists of multiple
fully connected layers, dropout layers, and ReLU activation
functions. The classification process is formulated as:

)/)\i = ffc(gi’ efc)

where Oy, represents the learnable parameters of the classifier.

(5)

Model Training

The internal dataset is divided at the patient level into
training, validation, and test sets in a ratio of 8:1:1, strictly
following the principle of data isolation. Regarding the
loss function during training, we use the cross-entropy loss
function £, and the contrastive loss functionl .,, which are
formulated as follows:

Lep= — ), yilog(¥) (6)

i=1
sim(z;, z;)
£ 1 Xp( i ) 7
CcT = — Og 2N i . 7
=11k 2 i]eXP(—SLm(?’ Zk))

In £.,, C represents the total number of classes, y; denotes
the ground-truth class label in one-hot encoding, and ;
is the predicted probability for class /. This loss func-
tion aims to minimize the difference between the mod-
el’s predicted distribution and the true distribution, thereby
guiding parameter updates and optimization. In £ ., sim( -)
represents cosine similarity,z; and z; are positive sample
pairs, 7 is the temperature parameter, and N is the number of
negative samples. The final loss function £, is formulated
as follows:

Lioss = Lee + ¢ X Lt ®)
where c=0.1. All training processes and experiments are
conducted on a dedicated server equipped with 4 NVIDIA
A6000 GPUs with a total of 196GB of VRAM. The system
runs on Ubuntu 20.04.5 LTS, and the model is implemented
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using PyTorch 3.9.0 and Scikit-learn 1.3.1. In this study, we
use the AdamW optimizer to optimize VLMF-Net, with an
initial learning rate set to 0.00001. A warm-up strategy and
cosine learning rate scheduling are adopted to dynamically
adjust the learning rate. VLMF-Net is trained for a total of 80
epochs.

Ethical Considerations

This study was approved by the Ethics Committee of the
First Affiliated Hospital of Sun Yat-sen University (appro-
val number [2023]755-1). Informed consent was waived by
the institutional review boards of all participating hospitals
due to the study’s retrospective design. We implemented
stringent measures to protect the privacy of all participants
by anonymizing all collected data to remove any person-
ally identifiable information. Throughout the manuscript
preparation, we diligently avoided disclosing any details that
could reveal the identity of participants. Furthermore, no
compensation or indemnity was required as the study did not
cause any losses to participants beyond the necessary clinical
diagnostic and therapeutic measures.

Results
Result of Our Model

To demonstrate the effectiveness and advantages of our
proposed VLMF-Net, we selected 4 classic models as
baseline models and performed comparisons on 2 data-
sets. The 4 models include vision-and-language transformer
(VILT) [29], contrastive language-image pretraining (CLIP)
[30], bootstrapping language-image pretraining with frozen
image encoders and large language models (BLIP-2) [25],
and a large-scale image and noisy-text embedding (ALIGN)
[31], and the 2 datasets refer to the internal and external
datasets mentioned earlier. Tables 2 and 3 present the average
results of 5 trials for the 4 baseline models and our proposed
model on the internal and external datasets, respectively.
Figure 3 shows the receiver operating characteristic curves
and corresponding area under the curve values of different
models on internal and external datasets. As shown in Table
2, on the internal dataset, our method demonstrates signifi-
cant advantages, achieving the following evaluation metrics:
accuracy (0.776), precision (0.820), and Fj-score (0.776).
Notably, compared to the second-best model, our method
achieves significant improvements of 0.061, 0.032, and 0.046
in accuracy, precision, and Fj-score, respectively. In terms
of class-wise recall, VLMF-Net achieves recall rates of 0.754
and 0.803 for VCD and GC, respectively. Compared to other
models, VLMF-Net shows significant improvements across
multiple evaluation metrics, indicating its superior ability in
recognizing glottic cancer. In addition, as shown in Table
3, on the external dataset, our method also demonstrates
significant advantages, achieving accuracy (0.739), precision
(0.828), and Fj-score (0.737), with improvements of 0.046,
0.053, and 0.046 over the second-best model, respectively. In
terms of class-wise recall, our model achieves recall rates of
0.701 and 0.793 for VCD and GC, respectively. Compared to
other models, there is also a significant improvement, which
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further demonstrates that VLMF-Net possesses excellent area under the curve metrics on both internal and external
generalization ability and robustness. Moreover, as shown in  datasets. On the internal dataset, it outperforms the second-

Figure 3, our model demonstrates significant advantages in  best model by 0.026, and on the external dataset by 0.012.

Table 2. Comparison with other multimodal models on an internal dataset.

Methods Overall results Recall of different classes

Accuracy, mean (SD) Precision, mean (SD) F-score, mean (SD) VCD?, mean (SD) GCP, mean (SD)

VILT® 0.643 (0.029) 0.677 (0.029) 0.643 (0019 0.632 (0.029) 0.656 (0.019)
CLIP® 0.705 (0.019) 0.788 (0.029) 0.703 (0.019) 0.672 (0.02%) 0.750 (0.019)
BLIP-2f 0.715 (0.029) 0.770 (0.03%) 0.714 (0.029) 0.694 (0.04%) 0.742 (0.03%)
ALIGNE 0.673 (0.03%) 0.707 (0.029) 0.673 (0.04%) 0.660 (0.029) 0.688 (0.029)
VLMF-Neth 0.776 (0.01) 0.820 (0.02) 0.776 (0.01) 0.754 (0.02) 0.803 (0.01)

2VCD: vocal cord dysplasia.

bGC: glottic carcinoma.

CVILT: vision-and-language transformer.

dp<.001.

CCLIP: contrastive language-image pretraining.

fBLIP-2: bootstrapping language-image pretraining with frozen image encoders and large language models.
8ALIGN: a large-scale image and noisy-text embedding.

bV LME-Net: vision-language guided multimodal fusion network.

Table 3. Comparison with other multimodal models on an external dataset.

Methods Overall results Recall of different classes

Accuracy, mean (SD) Precision, mean (SD) Fi-score, mean (SD)  VCD?, mean (SD) GCP, mean (SD)

VILT® 0.631 (0.029) 0.663 (0.029) 0.630 (0.019) 0.633 (0.019) 0.628 (0.019)
CLIP® 0.686 (0.019) 0.748 (0.029) 0.685 (0.019) 0.670 (0.02%) 0.708 (0.02%)
BLIP-2f 0.693 (0.03%) 0.775 (0.029) 0.691 (0.03%) 0.669 (0.03%) 0.726 (0.029)
ALIGNS 0.647 (0.029) 0.680 (0.029) 0.647 (0.03%) 0.642 (0.02%) 0.653 (0.03%)
VLMF-Neth 0.739 (0.02) 0.828 (0.02) 0.737 (0.02) 0.701 (0.03) 0.793 (0.02)

2VCD: vocal cord dysplasia.

bGC: glottic carcinoma.

CVILT: vision-and-language transformer.

dp value <.001.

CCLIP: contrastive language-image pretraining.

fBLIP-2: bootstrapping language-image pretraining with frozen image encoders and large language models.
EALIGN: a large-scale image and noisy-text embedding.

hVLMF-Net: vision-language guided multimodal fusion network.

Figure 3. The ROC curves for different models. ALIGN: a large-scale image and noisy-text embedding; BLIP-2: bootstrapping language-image
pretraining with frozen image encoders and large language models; CLIP: contrastive language-image pretraining; ROC: receiver operating
characteristic; VILT: vision-and-language transformer; VLMF-Net: vision-language guided multimodal fusion network.
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Ablation Studies

To validate the effectiveness of our multimodal approach
for early diagnosis of GC, we designed an ablation study to
systematically evaluate the performance differences between
models using single-modal and multimodal inputs: (1) M1:
a single-modal model using only laryngoscopy images; (2)
M2: a single-modal model using only laryngoscopy diagnos-
tic reports; (3) M3: a multimodal model combining images
and text, but without Q-Former. (4) M4: a multimodal model
combining images and text with Q-Former. The experimental

Jin et al

results, as shown in Table 4, indicate that the multimo-
dal model M4 significantly outperforms both single-modal
models across all evaluation metrics. Specifically, compared
to the best single-modal model, M4 achieves improvements
of 0.098 in accuracy (0.776), 0.106 in precision (0.820),
0.100 in recall (0.779), and 0.098 in Fi-score (0.776).
This demonstrates that the multimodal data fusion strategy
effectively integrates visual features and textual semantic
information, significantly enhancing the diagnostic perform-
ance of the model.

Table 4. Ablation study on vision-language—guided multimodal fusion network.

Variants  Image Report Q-Former Accuracy, mean (SD) Precision, mean (SD) Recall, mean (SD)  F-score, mean (SD)
M1 v 0.678 (0.02) 0.714 (0.03) 0.679 (0.03) 0.678 (0.03)

M2 v 0.673(0.01) 0.711(0.02) 0.675(0.01) 0.673 (0.01)

M3 v v 0.722 (0.02)  0.708 (0.01) 0.723 (0.01) 0.722 (0.03)

M4 v v v 0.776 (0.01) 0.820 (0.02) 0.779 (0.02) 0.776 (0.01)

In addition, to verify the effectiveness of the Q-Former
module, we designed ablation experiments related to the
Q-Former module. The experimental results are shown in
Table 4. M4 outperforms M3 in all indicators. Specifically,
M4’s accuracy (0.776) increased by 0.054, precision (0.820)
increased by 0.112, recall (0.779) increased by 0.056, and
F1-score (0.776) increased by 0.054. This indicates that the
Q-Former module effectively reduces the impact of cross-
modal differences.

Visualization for Model Prediction

To enhance the interpretability of the VLMF-Net model’s
predictions, we used the Grad-CAM (Gradient-Weighted

Class Activation Mapping) [32] algorithm to generate class
activation heatmaps. The visualization results are shown in
Figure 4. In the heatmap, we can see that VLMF-Net focuses
on the lesion area of the patient when analyzing the laryngo-
scopy image. This indicates that the model is able to correctly
classify based on the features of the lesion area, enabling
early diagnosis of GC.

Figure 4. The heatmaps generated by the vision-language guided multimodal fusion network (VLMF-Net) model on patient laryngoscopic images,
where (A) represents glottic carcinoma and (B) and (C) represent vocal cord dysplasia.
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Discussion

Main Findings

In our study, we developed a novel model for the
early diagnosis of GC named VLMF-Net, which leverages
multimodal fusion technology guided by vision-language
information. When tested on an internal dataset, VLMEF-
Net achieved accuracy, precision, recall, and Fyi-score of
0.776, 0.820, 0.779, and 0.776, respectively, outperforming
all baseline methods. These results demonstrate the feasi-
bility and effectiveness of VLMF-Net in the early diagno-
sis of GC. Ablation studies further reveal that VLMF-Net
significantly outperforms unimodal models. By integrating
both laryngoscopic images and clinical text reports, VLMF-
Net captures complementary diagnostic information, thus
mitigating the risk of information loss inherent in single-
modality systems. Notably, the textual modality meaningfully
guides the extraction of image features; for instance, textual
cues explicitly describing the lesion’s location (eg, “anterior-
middle segment of the left vocal cord”) can help the model
focus on the relevant visual regions. This form of cross-modal
interaction may enhance the model’s ability to detect subtle
pathological patterns that might otherwise be overlooked.

Moreover, Grad-CAM-based visualizations demonstrate
that VLMF-Net consistently attends to clinically significant
lesion areas. These attention heatmaps show strong alignment
between the model’s focus and expert-defined pathological
regions, enhancing interpretability. Such interpretability is
crucial in clinical contexts, where transparency in decision-
making processes fosters trust and facilitates integration of Al
systems into diagnostic workflows.

Finally, these findings validate the design philosophy of
VLME-Net and highlight the broader potential of multimodal
fusion strategies in medical Al. In particular, the ability to
synthesize visual and contextual clinical information allows
for more robust and informed diagnostic decisions. This work
not only advances the state of the art in GC diagnosis but also
lays a foundation for extending vision-language multimodal
techniques to other complex diagnostic tasks where rich
multimodal data is available.

Jin et al

Deep Learning Challenges in Early GC
Diagnosis

Early GC lesions are usually small and exhibit complex
morphological characteristics, making it challenging for deep
learning models to capture fine-grained lesion features.
As a result, important details related to the lesions may
be missed, significantly affecting the model’s diagnostic
accuracy. Furthermore, most existing mainstream models
rely solely on laryngoscopic images as input. While these
models have achieved some progress in a unimodal setting,
they overlook information from other modalities, which is
often beyond the reach of image-based models [15-19]. This
limitation constrains the model’s comprehensive understand-
ing of lesion characteristics and ultimately affects diagnostic
accuracy.

Strengths and Limitations

To the best of our knowledge, this is the first study to apply
multimodal techniques to the early diagnosis of GC. In our
model, we fully utilize patients’ laryngoscopy reports and
laryngoscopic images to extract relevant information about
GC, enabling the model to comprehensively understand the
patient’s condition and thereby improve its performance.
However, this study still has some limitations. First, the
VLMF-Net, based on a pretrained large language model,
relies heavily on powerful computational resources, particu-
larly high-performance GPUs, during training, which may
result in slower training and inference speeds. Second, the
data used in this study underwent quality checks, but in
real-world scenarios, more complex situations may arise, such
as poor image clarity due to imaging devices or challenging
shooting angles, which could affect the model’s diagnostic
accuracy.

Conclusions

In this paper, we propose a VLMF-Net for the early diagno-
sis of GC. Extensive experiments on 2 datasets demonstrate
that VLMF-Net achieves superior accuracy and robustness,
effectively addressing the challenges of early GC diagnosis.
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